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Editor: Hubert Saleur In this article we study the possible Morita equivalence classes of algebras in three families of 
fusion categories (pointed, near-group and 

(
𝐴1, 𝑙

)
1
2
) by studying the Non-negative Integer Matrix 

representations (NIM-reps) of their underlying fusion ring, and compare these results with existing 
classification results of algebra objects. Also, in an appendix we include a test of the exponents 
conjecture for modular tensor categories of rank up to 4.
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1. Introduction

The study of fusion rings and their associated non-negative integer matrix representations (or NIM-reps, for short) has stimulated 
a rich production in the literature, see e.g. [6,11,14,17,18]. A good reason behind this is the connection of NIM-reps to boundary 
rational conformal field theory (or D-branes in string theory): in particular, finding NIM-reps is equivalent to solving Cardy’s equation 
in these cases. Some recent papers have continued this work [10,34], showing that this interest keeps up after time.

Given a rational, 𝑐2-cofinite vertex operator algebra describing the chiral symmetries of a rational conformal field theory, its 
category of representations is a modular tensor category [20,21]. In this paper we go for a slightly more general setting than modular 
and focus on the study and classification of NIM-reps for two different families of fusion categories, pointed and near-group. We also 
include the case of the modular tensor category 

(
𝐴1, 𝑙

)
1
2
, thus covering a certain amount of modular tensor categories known to 

date (see e.g. [3–5,7,8,26,31], more recently [25], and references thereof). Our main motivation for undertaking this work is to test 
the potential of NIM-reps as a detection tool for families of algebra objects in fusion categories that represent their corresponding 
module categories. In this way, we generalise the results of [2] for any pointed fusion category (recovering the expected group 
algebras as described by [24,29]), extend results outlined in [30, Appendix A] and our understanding of algebra objects in near-

group categories as discussed in [16,23]; and recover the results outlined by [13] for ℤ+-modules and by [28] for algebra objects 
in 

(
𝐴1, 𝑙

)
1
2
. Furthermore, there is an interesting conjecture relating the exponents of NIM-reps and those of the modular invariants 

of the category they live on. In an appendix, we test explicitly this conjecture for unitary modular tensor categories up to rank 4 
(which by [31] include examples of the three families of categories considered in this paper for which we compute their respective 
NIM-reps).

The structure of the paper is as follows. In Section 2 we introduce all the necessary background on fusion and module categories 
as well as algebra objects, and also on ℤ+-modules and NIM-reps. In Section 3 we compute the NIM-reps for each category, and also 
the algebra objects derived from those. Appendix A includes the calculations testing the exponents conjecture for modular tensor 
categories of rank up to 4.

Acknowledgements. SH is supported by the Engineering and Physical Sciences Research Council. ARC is supported by Cardiff 
University. DY’s contribution was supported by the Cardiff University On-Campus Internship Scheme 21/22. The authors would like 
to especially thank an anonymous referee for their helpful comments and suggestions.

2. Preliminaries

Throughout this paper, we fix k to be an algebraically closed field. In this section, we collect some basic definitions necessary for 
our work.

2.1. Group actions

Here we recall several standard definitions and well-known results on group actions, e.g. see [1,9].

Definition 2.1. Let 𝐺 be a group and 𝑆 a set. A G-action on 𝑆 is a binary operation ∗∶ 𝐺 ×𝑆 → 𝑆 such that, for all 𝑠 ∈ 𝑆 ,

𝑒 ∗ 𝑠 = 𝑠, and (𝑔 ⋅ ℎ) ∗ 𝑠 = 𝑔 ∗ (ℎ ∗ 𝑠),

where 𝑒 ∈𝐺 is the group identity element. A set with such an action is called a G-set.

Definition 2.2. Let 𝑆 be a 𝐺-set, and 𝑠 ∈ 𝑆 .

- The orbit of G through s is the subset of 𝑆 defined by

Orb(𝑠) = {𝑔 ∗ 𝑠|𝑔 ∈𝐺}.

- The 𝐺-action on 𝑆 is called transitive if Orb(𝑠) = 𝑆 .

- The stabiliser of s is the subgroup of 𝐺 defined by

Stab(𝑠) = {𝑔 ∈𝐺|𝑔 ∗ 𝑠 = 𝑠}.

For two elements 𝑠, 𝑡 ∈ 𝑆 , the orbits Orb(𝑠), Orb(𝑡) are either equal or disjoint. Hence the set 𝑆 can be partitioned into a collection 
of transitive 𝐺-sets. The following results can be found at [9, Theorem 1.3].

Proposition 2.3. Let 𝑆 be a 𝐺-set, and take 𝑠 ∈ 𝑆 . There is an isomorphism of 𝐺-sets between the orbit Orb(𝑠) and the set of left cosets 
𝐺∕Stab(𝑠), where 𝐺 acts on the set of left cosets by left-translation.
2

Proposition 2.4. Two left coset 𝐺-sets 𝐺∕𝐻 , 𝐺∕𝐾 are isomorphic as 𝐺-sets if and only if 𝐻, 𝐾 are conjugate as subgroups of 𝐺.
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As a result of these propositions, we can study all 𝐺-sets by studying the 𝐺-sets of left cosets for all conjugacy classes of subgroups 
of 𝐺.

2.2. Fusion categories

In this subsection we follow [12].

A monoidal category  consists of a tuple (,⊗,1, 𝛼, 𝑙, 𝑟) where  is a category, ⊗∶  ×  →  is a bifunctor, 1 ∈ 𝖮𝖻 (), 
𝛼𝑋,𝑌 ,𝑍 ∶ (𝑋 ⊗𝑌 )⊗𝑍 →𝑋⊗ (𝑌 ⊗𝑍) is a natural isomorphism for each 𝑋, 𝑌 , 𝑍 ∈𝖮𝖻 (), and 𝑙𝑋 ∶ 1 ⊗𝑋 →𝑋 and 𝑟𝑋 ∶ 𝑋⊗1 →𝑋

are natural isomorphisms for all 𝑋 ∈𝖮𝖻 (), satisfying coherence axioms (pentagon and triangle).

A monoidal category is called rigid if it comes equipped with left and right dual objects — that means, for every 𝑋 ∈𝖮𝖻 () there 
exists respectively an object 𝑋∗ ∈ 𝖮𝖻 () with evaluation and coevaluation maps 𝖾𝗏𝑋 ∶ 𝑋∗ ⊗𝑋 → 1 and 𝖼𝗈𝖾𝗏𝑋 ∶ 1 →𝑋 ⊗𝑋∗, as 
well as an object ∗𝑋 ∈𝖮𝖻 () with evaluation and coevaluation maps 𝖾𝗏𝑋 ∶ 𝑋⊗ ∗𝑋 → 1 and 𝖼𝗈𝖾𝗏𝑋 ∶ 1 → ∗𝑋⊗𝑋 satisfying in both 
cases the usual conditions.

A k-linear abelian category  is locally finite if, for any two objects 𝑉 , 𝑊 ∈𝖮𝖻 (), 𝖧𝗈𝗆 (𝑉 ,𝑊 ) is a finite-dimensional k-vector 
space and every object has a finite filtration by simple objects. Further, we say  is finite if there are finitely many isomorphism 
classes of simple objects. A tensor category is a locally finite, rigid, monoidal category such that the tensor product is k-linear in each 
slot and the monoidal unit is a simple object of the category.

At this point, it is useful to introduce the following notion. Given an abelian category , the Grothendieck group Gr () of  is the 
free abelian group generated by isomorphism classes 𝑋𝑖 of simple objects in . If 𝑋 and 𝑌 are objects in  such that 𝑌 is simple 
then we denote as [𝑋 ∶ 𝑌 ] the multiplicity of 𝑌 in a Jordan-Hölder series of 𝑋. To any object 𝑋 in  we can canonically associate 
its class [𝑋] ∈ Gr () given by the formula:

[𝑋] =
∑
𝑖

[
𝑋 ∶ 𝑋𝑖

]
𝑋𝑖.

A monoidal category  is called braided if it comes equipped with natural isomorphisms 𝑐𝑋,𝑌 ∶ 𝑋 ⊗ 𝑌 → 𝑌 ⊗𝑋, for all 𝑋, 𝑌 ∈
𝖮𝖻 (), called the braiding, that are compatible with the monoidal structure of the category. This means, the braiding satisfies the 
so-called hexagon identities for any three objects 𝑋, 𝑌 , 𝑍 ∈𝖮𝖻 ():

𝑋 ⊗ (𝑌 ⊗𝑍)
𝑐𝑋,𝑌⊗𝑍 (𝑌 ⊗𝑍)⊗𝑋

𝛼𝑌 ,𝑍,𝑋

(𝑋 ⊗𝑌 )⊗𝑍

𝛼𝑋,𝑌 ,𝑍

𝑐𝑋,𝑌 ⊗𝖨𝖽𝑍

𝑌 ⊗ (𝑍 ⊗𝑋)

(𝑌 ⊗𝑋)⊗𝑍
𝛼𝑌 ,𝑋,𝑍

𝑌 ⊗ (𝑋 ⊗𝑍)
𝖨𝖽𝑌 ⊗𝑐𝑋,𝑍

(𝑋 ⊗𝑌 )⊗𝑍
𝑐𝑋⊗𝑌 ,𝑍

𝑍 ⊗ (𝑋 ⊗𝑌 )
𝛼−1
𝑍,𝑋,𝑌

𝑋 ⊗ (𝑌 ⊗𝑍)

𝛼−1
𝑋,𝑌 ,𝑍

𝖨𝖽𝑋⊗𝑐𝑌 ,𝑍

(𝑍 ⊗𝑋)⊗𝑌

𝑋 ⊗ (𝑍 ⊗𝑌 )
𝛼−1
𝑋,𝑍,𝑌 (𝑋 ⊗𝑍)⊗𝑌

𝑐𝑋,𝑍⊗𝖨𝖽𝑌

A ribbon category is a braided tensor category  together with a ribbon twist, i.e., a natural isomorphism 𝜃𝑋 ∶ 𝑋 → 𝑋 which 
satisfies

𝜃𝑋⊗𝑌 = (𝜃𝑋 ⊗ 𝜃𝑌 )𝑐𝑌 ,𝑋𝑐𝑋,𝑌 , 𝜃1 = 𝖨𝖽1, (𝜃𝑋 )∗ = 𝜃𝑋∗ .

In order to define modular tensor categories, we require the notion of non-degeneracy of a braided category. We say that an 
object 𝑋 centralises another object 𝑌 of  if

𝑐𝑌 ,𝑋𝑐𝑋,𝑌 = 𝖨𝖽𝑋⊗𝑌 .

A braided finite tensor category  is non-degenerate if the only objects 𝑋 that centralise all objects of  are of the form 𝑋 = 1⊕𝑛

[12, Section 8.20]. Equivalently,  is non-degenerate if and only if it is factorisable, i.e., there is an equivalence of braided monoidal 
categories () ≃ rev ⊠ , where rev is  as a tensor category, but with reversed braiding given by the inverse braiding [32]. If 
 is a fusion category (i.e., a semi-simple finite tensor category) with a ribbon structure, then the above notion of non-degeneracy is 
equivalent to the commonly used condition that the 𝑆-matrix is non-singular.
3

Definition 2.5 ([22,32]). A braided finite tensor category is modular if it is a non-degenerate ribbon category.
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2.3. ℤ+-rings

In this subsection we continue following [12]. Denote as ℤ+ the semi-ring of positive integers with zero.

Definition 2.6. Let 𝑅 be a ring which is free as a ℤ-module.

(1) A ℤ+-basis of 𝑅 is a basis 𝐵 = {𝑏𝑖}𝑖∈𝐼 , where 𝐼 is an indexing set, such that 𝑏𝑖𝑏𝑗 =
∑
𝑘∈𝐼

𝑐𝑘
𝑖𝑗
𝑏𝑘, where 𝑐𝑘

𝑖𝑗
∈ℤ+.

(2) A ℤ+-ring is a ring with a fixed ℤ+-basis and with an identity 1 which is a non-negative linear combination of the basis elements. 
If 1 is a basis element, then it is called a unital ℤ+-ring.

(3) Given a ℤ+-ring (𝑅,𝐵), a ℤ+-module is an 𝑅-module 𝑇 with a fixed ℤ-basis 𝑀 = {𝑚𝑙}𝑙∈𝐿 such that for any 𝑚𝑙 ∈𝑀 , 𝑏𝑖 ∈ 𝐵, 
then 𝑏𝑖 ⊳𝑚𝑙 =

∑
𝑘∈𝐿

𝑎𝑘
𝑖,𝑙
𝑚𝑘, where 𝑎𝑘

𝑖,𝑙
∈ℤ+.

Example 2.7. For  a fusion category with 𝑋𝑖 the representatives of the isomorphism classes of simple objects, the tensor product 
on  induces a natural multiplication on Gr () defined by the formula:

𝑋𝑖𝑋𝑗 ∶=
[
𝑋𝑖 ⊗𝑋𝑗

]
=
∑
𝑘∈𝐼

[
𝑋𝑖 ⊗𝑋𝑗 ∶ 𝑋𝑘

]
𝑋𝑘,

where 𝑖, 𝑗 ∈ 𝐼 . This multiplication is associative, and thus Gr () is a ℤ+-ring with unit [1]. Gr () is called the Grothendieck ring of 
.

Let (𝑅, 𝐵) be a ℤ+-ring, and let 𝑖 ∈ 𝐼0 ⊂ 𝐼 such that 𝑏𝑖 appears in the decomposition of 1. Then, let 𝜏 ∶ 𝑅 → ℤ denote the group 
homomorphism defined by:

𝜏
(
𝑏𝑖
)
=

{
1 𝑖 ∈ 𝐼0,

0 𝑖 ∉ 𝐼0.

Definition 2.8. A ℤ+-ring (𝑅, 𝐵) is called a based ring if there exists an involution ()∗ ∶ 𝐼 → 𝐼 , 𝑖 ↦ 𝑖∗ of the index set 𝐼 such that the 
induced map

𝑎 =
∑
𝑖∈𝐼

𝑎𝑖𝑏𝑖 ↦ 𝑎∗ =
∑
𝑖∈𝐼

𝑎𝑖𝑏𝑖∗ ,

where 𝑎𝑖 ∈ℤ, is an anti-involution of the ring 𝑅 and

𝜏
(
𝑏𝑖𝑏𝑗

)
=

{
1 𝑖 = 𝑗∗,

0 𝑖 ≠ 𝑗∗.

Proposition 2.9 (Proposition 3.1.6, [12]). In any based ring, the number 𝑐𝑘∗
𝑖,𝑗

is invariant under cyclic permutations of i,j,k.

We arrive to one of the main definitions of this paper:

Definition 2.10. A fusion ring is a unital, based ring of finite rank.

In order to later introduce the NIM-reps, it is convenient to observe the following property:

Proposition 2.11. (Rigidity property) A fusion ring (𝑅, 𝐵) can be equipped with a symmetric bilinear form (−, −) ∶ 𝑅 ×𝑅 → ℤ satisfying 
(𝑏𝑖𝑏𝑗 , 𝑏𝑘) = (𝑏𝑗 , 𝑏𝑖∗ ⋅ 𝑏𝑘).

Proof. Let (−, −) be the symmetric bilinear form defined by the condition (𝑏𝑖, 𝑏𝑗 ) = 𝛿𝑖,𝑗 . Then the property of 𝜏(𝑏𝑖𝑏𝑗 ) = 𝛿𝑖,𝑗∗ can be 
reformulated as

(1, 𝑏𝑖𝑏𝑗 ) = (𝑏𝑖, 𝑏𝑗∗ ) = (𝑏𝑖∗ , 𝑏𝑗 ).

It is clear that (1, (𝑏𝑖𝑏𝑗 )𝑏𝑘) = 𝜏((𝑏𝑖𝑏𝑗 )𝑏𝑘) = 𝑐𝑘
∗

𝑖𝑗
, and that (1, (𝑏𝑖𝑏𝑗 )𝑏𝑘) = (1, 𝑏𝑖(𝑏𝑗𝑏𝑘)) by associativity. Thus, we find that

((𝑏𝑖𝑏𝑗 )∗, 𝑏𝑘) = (𝑏𝑗∗𝑏𝑖∗ , 𝑏𝑘) = (𝑏𝑖∗ , 𝑏𝑗𝑏𝑘),

where the first equality uses that the induced map is an anti-involution. Relabelling of the indices gives the stated result. □
4

Notation 2.12. Whenever clear from the context, we may refer to a fusion ring simply as 𝑅 instead of (𝑅,𝐵).
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Example 2.13. Let  be a semi-simple rigid monoidal category. Then the Grothendieck ring is a fusion ring, with the simple 
objects acting as the basis. The involution is then taking the dual of an object and the symmetric bilinear form is (𝑋, 𝑌 ) =
dimk

(
Hom (𝑋,𝑌 )

)
, for simple objects 𝑋, 𝑌 ∈ Ob(C).

The following explicit examples will be studied in detail in later Sections.

Example 2.14 (Group rings). Take a finite group 𝐺, and construct the group ring ℤ𝐺 where addition is linear and multiplication is 
given by the group operation. Then (ℤ𝐺, 𝐺) is a fusion ring with involution 𝑔∗ = 𝑔−1.

Example 2.15 (Ising fusion ring). Let 𝐵 = {1, 𝑋, 𝑌 }, and 𝑅 the integer span ℤ𝐵 with addition defined linearly and multiplication 
given by the fusion rules

𝑋2 = 1 + 𝑌 , 𝑌 2 = 1 𝑋𝑌 = 𝑌 𝑋 =𝑋.

(ℤ𝐵, 𝐵) is a fusion ring with the self-dual involution 𝑋∗ =𝑋, 𝑌 ∗ = 𝑌 .

2.4. NIM-reps

In this subsection we introduce the main character of this article, following [6,7,17–19].

Definition 2.16. Let (𝑅, 𝐵) be a fusion ring. A non-negative integer matrix representation (NIM-rep for short) of (𝑅, 𝐵) is a ℤ+-module 
(𝑇 , 𝑀) that satisfies the following condition;

- (Rigidity condition): let T have the symmetric form (−, −) ∶𝑀 ×𝑀 →ℤ defined by

(𝑚𝑙,𝑚𝑘) = 𝛿𝑙,𝑘,

for any 𝑙, 𝑘 ∈𝐿. Then we must have, for any 𝑖 ∈ 𝐼, 𝑙, 𝑘 ∈𝐿

(𝑏𝑖 ⊳𝑚𝑙,𝑚𝑘) = (𝑚𝑙, 𝑏𝑖∗ ⊳𝑚𝑘).

Remark 2.17. In this definition, unlike Proposition 2.11, rigidity is a condition, not a property.

Example 2.18. A fusion ring can always be considered as a NIM-rep of itself, with the module action simply the ring multiplication.

Remark 2.19. Note that, for 𝑡 ∈ 𝑇 , 𝑚𝑙 ∈𝑀 , the symmetric bilinear form (𝑡, 𝑚𝑙) counts the multiplicity of 𝑚𝑙 in the basis decomposi-

tion of 𝑡. We then immediately see that (𝑡, 𝑡) = 1 if and only if 𝑡 ∈𝑀 .

Viewed as ℤ+-modules, it is straightforward to define the direct sum of NIM-reps: given two NIM-reps (𝑇 , 𝑀), (𝑇 ′ , 𝑀 ′) over a 
fusion ring (𝑅, 𝐵) the direct sum of NIM-reps is the 𝑅-module 𝑇 ⊕ 𝑇 ′ with a distinguished basis 𝑀 ⊕𝑀 ′. Other basic notions like 
sub-NIM-rep are defined in a similar way.

Definition 2.20 ([12] Section 3.4, [28] Lemma 2.1.). A NIM-rep is called irreducible if it has no proper sub-NIM-reps.1

Remark 2.21. Suppose we have a NIM-rep (𝑇 , 𝑀) over a fusion ring (𝑅, 𝐵) that satisfies 𝑏𝑖 ⊳𝑚𝑗 = 0𝑅 for some 𝑏𝑖 ∈ 𝐵, 𝑚𝑗 ∈𝑀 . The 
rigidity condition then imposes that 𝑚𝑗 = 0𝑅 ∈𝑀 . However, the only way 0𝑅 appears in the NIM-rep basis is if {0𝑅} =𝑀 , (i.e. this

NIM-rep is the trivial NIM-rep). We shall remove this NIM-rep from future considerations.

Definition 2.22 ([2]). Let (𝑇 , 𝑀), (𝑇 ′, 𝑀 ′) be two NIM-reps over a fusion ring (𝑅, 𝐵). A NIM-rep morphism is a function 𝜓 ∶ 𝑀 →𝑀 ′

inducing a ℤ-linear map between the modules. If 𝜓 is a bijection, and the induced map is an isomorphism of 𝑅-modules, then we 
say that the NIM-reps are equivalent.

Notation 2.23. Unlike the case of a fusion ring, since we will be working mostly with the basis of the NIM-rep, we may refer to a 
NIM-rep simply as 𝑀 instead of (𝑇 ,𝑀).

We can visually express the data of a NIM-rep in the following way. For a given NIM-rep (𝑇 , 𝑀) over a fusion ring (𝑅, 𝐵), a 
NIM-graph (sometimes also called in the literature ‘fusion graphs’) is constructed with a node for each element of the basis 𝑀 , and 

1 One can also have the notion of indecomposable NIM-rep, meaning one which is not isomorphic to a non-trivial direct sum of NIM-reps. Since we are working over 
5

fusion rings, these two notions are equivalent.
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a directed arrow with source 𝑚𝑙 and target 𝑚𝑘, labelled by an element 𝑏𝑖 ∈ 𝐵, for every copy of 𝑚𝑘 in 𝑏𝑖 ⊳ 𝑚𝑙 . Every node in a 
NIM-graph will have a self-loop labelled by the ring identity, which we omit for simplicity.

Example 2.24. If we consider the Ising fusion ring from Example 2.15 as a NIM-rep over itself, the corresponding NIM-graph is given 
by;

𝑚1 𝑚𝑋

𝑚𝑌

𝑋

𝑌 𝑋

𝑌

Remark 2.25.

- The NIM-graph allows us to visualise irreducibility of the corresponding NIM-rep, as a NIM-rep is irreducible if and only if the 
NIM-graph is connected.

- In [18,19], NIM-reps are defined equivalently as an assignment of a matrix with non-negative integer entries to each element 
in 𝖮𝖻(), satisfying several compatibility conditions. We will not use this description in the main text but it will be useful in 
Appendix A.

2.5. Module categories, algebra objects and NIM-reps

In this section, unless specified  = (,⊗,1, 𝛼, 𝑙, 𝑟) is a fusion category.

Definition 2.26. An algebra in  is a triple (𝐴,𝑚, 𝑢), with 𝐴 ∈ 𝖮𝖻 (), and 𝑚∶ 𝐴 ⊗𝐴 → 𝐴 (multiplication), 𝑢∶ 1 → 𝐴 (unit) being 
morphisms in , satisfying unitality and associativity constraints:

𝑚(𝑚⊗ 𝖨𝖽𝐴) =𝑚(𝖨𝖽𝐴 ⊗𝑚)𝛼𝐴,𝐴,𝐴, 𝑚(𝑢⊗ 𝖨𝖽𝐴) = 𝑙𝐴, 𝑚(𝖨𝖽𝐴 ⊗ 𝑢) = 𝑟𝐴.

Example 2.27. Let  be a tensor category, then 1 is an algebra. In fact, for any 𝑋 ∈ Ob() the object 𝐴 = 𝑋 ⊗𝑋∗ has a natural 
structure of an algebra with unit 𝑢 = coev𝑋 and multiplication 𝑚 = 𝖨𝖽𝑋 ⊗ ev𝑋 ⊗ 𝖨𝖽𝑋∗ .

Definition 2.28.

(a) An algebra 𝐴 in  is indecomposable if it is not isomorphic to a direct sum of non-trivial algebras in .

(b) An algebra 𝐴 in  is separable if there exists a morphism Δ′ ∶ 𝐴 →𝐴 ⊗𝐴 in  so that 𝑚Δ′ = 𝖨𝖽𝐴 as maps in  with(
𝖨𝖽𝐴 ⊗𝑚

)
𝛼𝐴,𝐴,𝐴

(
Δ′ ⊗ 𝖨𝖽𝐴

)
=Δ′𝑚 =

(
𝑚⊗ 𝖨𝖽𝐴

)
𝛼−1
𝐴,𝐴,𝐴

(
𝖨𝖽𝐴 ⊗Δ′) .

Just like in abstract algebra, one can construct the related notion of a module over an algebra in the following way.

Definition 2.29. Take 𝐴 ∶= (𝐴, 𝑚, 𝑢), an algebra in . A right 𝐴-module in  is a pair (𝑀, 𝜌𝑀 ), where 𝑀 ∈ Ob(), and 𝜌𝑀 ∶=
𝜌𝐴
𝑀
∶ 𝑀 ⊗𝐴 →𝑀 is a morphism in  so that

𝜌𝑀 (𝜌𝑀 ⊗ 𝖨𝖽𝐴) = 𝜌𝑀 (𝖨𝖽𝑀 ⊗𝑚)𝛼𝑀,𝐴,𝐴 and 𝑟𝑀 = 𝜌𝑀 (𝖨𝖽𝑀 ⊗ 𝑢).

A morphism of right 𝐴-modules in  is a morphism 𝑓 ∶ 𝑀 →𝑁 in  so that 𝑓𝜌𝑀 = 𝜌𝑁 (𝑓 ⊗ 𝖨𝖽𝐴). Right 𝐴-modules in  and their 
morphisms form a category, which we denote by 𝖬𝗈𝖽 −𝐴. The categories 𝐴 −𝖬𝗈𝖽 of left 𝐴-modules and 𝐴 −𝖡𝗂𝗆𝗈𝖽 of 𝐴-bimodules 
in  are defined likewise.

We want to relate these categories of modules to the following notion:

Definition 2.30. Let  be a monoidal category. A left module category over  is a category  equipped with an action (or module 
product) bifunctor ⊗∶  × → and natural isomorphisms

𝑚𝑋,𝑌 ,𝑀 ∶ (𝑋 ⊗𝑌 )⊗𝑀 →𝑋 ⊗ (𝑌 ⊗𝑀) ,
6

called the module associativity constraint and
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𝜆𝑀 ∶ 1⊗𝑀 →𝑀,

called the module unit constraint, such that both the pentagon diagram:

((𝑋 ⊗𝑌 )⊗𝑍)⊗𝑀

𝑎𝑋,𝑌 ,𝑍⊗𝖨𝖽𝑀 𝑚𝑋⊗𝑌 ,𝑍,𝑀

(𝑋 ⊗ (𝑌 ⊗𝑍))⊗𝑀

𝑚𝑋,𝑌⊗𝑍,𝑀

(𝑋 ⊗𝑌 )⊗ (𝑍 ⊗𝑀)

𝑚𝑋,𝑌 ,𝑍⊗𝑀

𝑋 ⊗ ((𝑌 ⊗𝑍)⊗𝑀)
𝖨𝖽𝑋⊗𝑚𝑌 ,𝑍,𝑀

𝑋 ⊗ (𝑌 ⊗ (𝑍 ⊗𝑀))

and the triangle diagram:

(𝑋 ⊗ 1)⊗𝑀
𝑚𝑋,1,𝑀

𝑟𝑋⊗𝖨𝖽𝑀

𝑋 ⊗ (1⊗𝑀)

𝖨𝖽𝑋⊗𝜆𝑀

𝑋 ⊗𝑀

are commutative ∀𝑋, 𝑌 , 𝑍 ∈ Ob() and 𝑀 ∈ Ob().

In a similar way, one defines a right -module category.

A tensor category is the simplest example: it is a module category over itself. A convenient, less trivial example for us is the 
following:

Proposition 2.31 (Proposition 7.8.10, [12]). 𝖬𝗈𝖽 −𝐴 is a left -module category.

In fact, given certain conditions one can go one step further.

Lemma 2.32 (Proposition 7.8.30, [12]). Let 𝐴 be a separable algebra in a fusion category . Then the category 𝖬𝗈𝖽−𝐴 of right 𝐴-modules 
in  is also semisimple.

Example 2.33. (Follow-up from Definition 2.13) If we take a semi-simple module category  over , then the Grothendieck group 
Gr() is a NIM-representation of Gr(), with the isomorphism classes of simple objects acting as the basis. The NIM-rep action of 
Gr() on Gr() is induced from the module category action of  on .

In particular, if  is a fusion category, we note that by Lemma 2.32 every separable algebra 𝐴 in  gives rise to a NIM-rep over 
Gr().

We now describe how to detect potential algebra objects from certain NIM-reps. We state the following theorem using results 
from [12, Section 7.10]:

Theorem 2.34. Let  be a fusion category,  an indecomposable semisimple -module category, and 𝑁 ∈Ob() such that [𝑁] generates 
Gr() as a based ℤ+-module over Gr(). Then there is an equivalence  ≃𝖬𝗈𝖽 −𝐴 of -module categories, where 𝐴 =Hom(𝑁, 𝑁).

We now translate this to the language of NIM-reps;

Lemma 2.35. Suppose we are in the setup of Theorem 2.34. Then the basis element [𝑁] of the NIM-rep Gr() satisfies the condition that, 
for all other basis elements [𝑁𝑖], there exists a basis element [𝑋𝑖] in Gr() such that [𝑋𝑖] ⊳ [𝑁] = [𝑁𝑖].

Proof. This follows straightforwardly from the conditions in Theorem 2.34, as the class [𝑁] generates Gr() as a ℤ+-module. This 
condition restricted to the basis elements gives the result. □

Definition 2.36. We shall call a NIM-rep (𝑇 , 𝑀) over the fusion ring (𝑅, 𝐵) admissible if there exists an element 𝑚0 ∈𝑀 such that, 
for every other element 𝑚𝑖 ∈𝑀 , there exists an element 𝑏𝑗 ∈ 𝐵 that satisfies 𝑏𝑗 ⊳𝑚0 =𝑚𝑖.

Proposition 2.37. Let (𝑇 , 𝑀) be an admissible NIM-rep over the fusion ring Gr(). If it is the underlying NIM-rep of an indecomposable 
semisimple -module category, as in the setup of Theorem 2.34, then the decomposition of the algebra 𝐴 =Hom(𝑁, 𝑁) is given by 

⨁
𝑖∈𝐼 𝑎𝑖𝑏𝑖, 
7

where 𝑎𝑖 is the number of self-loops of 𝑚0 labelled by 𝑏𝑖 in the NIM-graph of (𝑇 , 𝑀).



Nuclear Physics, Section B 1002 (2024) 116525S. Hannah and A. Ros Camacho

Proof. Using the isomorphism from [12, Equation 7.21] applied to the algebra 𝐴, we have that

𝖧𝗈𝗆 (𝑋,𝐴) ≅ 𝖧𝗈𝗆(𝑋 ⊳𝑁,𝑁).

By Schur’s Lemma, if we restrict 𝑋 to the simple objects of 𝐶 , then 𝑋 appears in the decomposition of 𝐴 if and only if 𝑁 is in the 
decomposition of 𝑋 ⊳𝑁 . But by restricting to the NIM-reps picture, and the identification of 𝑚0 with 𝑁 , we see that this occurs 
exactly when 𝑋 labels a self-loop on 𝑚0. This gives the result. □

Example 2.38. Consider the Ising fusion ring as NIM-rep over itself. By looking at the NIM-graph from Example 2.24, we see that 
this is admissible by setting 𝑚0 =𝑚1, as 𝑋 ⊳𝑚1 =𝑚𝑋 and 𝑌 ⊳𝑚1 =𝑚𝑌 .

As every NIM-rep that can be constructed from an irreducible separable algebra is necessarily admissible, we now have a criteria 
that allows us to capture all possible object structures of these separable algebras.

3. NIM-representations

In the following subsections we compute explicitly the NIM-reps of fusion rings associated to relevant examples of families of 
modular and fusion categories. We also extract from these any algebra objects and compare to existing results.

From now on, we refer to NIM-reps (𝑇 ,𝑀) simply as 𝑀 for the sake of clarity.

3.1. Group rings

Let 𝐺 be a finite group. In this section, we will focus on classifying all possible NIM-reps over the group fusion rings 𝑅(𝐺) ∶=
(ℤ𝐺, 𝐺) described in Example 2.14.

Proposition 3.1. Let 𝑀 be a NIM-rep over the fusion ring 𝑅(𝐺). The NIM-rep module action restricts to a group action on 𝑀 .

Proof. The NIM-rep module action will restrict to a group action on 𝑀 if every element 𝑔 ⊳ 𝑚𝑙 is in the basis of 𝑀 . This can be 
seen as

(𝑔 ⊳𝑚𝑙, 𝑔 ⊳𝑚𝑙) = (𝑚𝑙, 𝑔
−1 ⊳ (𝑔 ⊳𝑚𝑙)) = (𝑚𝑙,𝑚𝑙) = 1,

and so 𝑔 ⊳𝑚𝑙 is in the basis of 𝑀 by Remark 2.19. □

If we restrict ourselves to irreducible NIM-reps, we get the following result.

Proposition 3.2. Irreducible NIM-reps of the group fusion ring 𝑅(𝐺) correspond to transitive group actions of G.

Proof. If a NIM-rep 𝑀 over 𝑅(𝐺) is not irreducible, then its corresponding group action will always be partitioned into 𝐺-orbits by 
restricting the action to the NIM-reps that sum to give 𝑀 . Thus the group action is transitive only if the NIM-rep is irreducible.

Conversely, if the group action is not transitive, then we can write it as the sum of some finite combination of G-actions ⊳𝑖∶
𝐺 ×𝑀𝑖 →𝑀𝑖. It is easy to see that each 𝑀𝑖 is a ℤ-basis for another NIM-rep over 𝑅(𝐺). Hence the NIM-rep is irreducible only if the 
group action is transitive. □

We can thus explicitly describe the structure of such NIM-reps of 𝑅(𝐺). By Proposition 2.3, the basis elements of an irreducible 
NIM-rep 𝑀 are parametrised by the left cosets of 𝐻 in 𝐺, for some subgroup 𝐻 ⊆ 𝐺 i.e. if we let {𝑔𝑖}1⩽𝑖⩽|𝐺∶𝐻| be a set of coset 
representatives, then 𝑀 = {𝑚𝑔𝑖

}1⩽𝑖⩽|𝐺∶𝐻|.
The NIM-rep action is then given by the induced 𝐺-action on this set of left cosets,

𝑌 ⊳𝑚𝑔𝑖
=𝑚𝑔𝑗

, 𝑌 ∈𝐺,

where 𝑌 𝑔𝑖 ∈ 𝑔𝑗𝐻 . We shall write 𝑀(𝐻) for such a NIM-rep.

Proposition 3.3. Two NIM-reps 𝑀(𝐻), 𝑀(𝐾) over 𝑅(𝐺) are isomorphic if and only if 𝐻, 𝐾 are conjugate subgroups of 𝐺.

Proof. This follows immediately by combining Proposition 2.4 and Proposition 3.2. □

Example 3.4. (NIM-reps of 𝑅(ℤ2 ×ℤ2))
The Klein-four group has presentation

ℤ2 ×ℤ2 = {𝑎, 𝑏, 𝑐|𝑎2 = 𝑏2 = 𝑐2 = 𝑎𝑏𝑐 = 𝑒}.
8
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There are 3 isomorphism classes of subgroups in ℤ2 ×ℤ2;

• ℤ2 ×ℤ2 as a subgroup of itself; Then 𝑀(ℤ2 ×ℤ2) has a single basis element corresponding to the single coset representative 𝑒. 
The NIM-rep graph is given by:

𝑚𝑒

𝑎

𝑏 𝑐

• Isomorphism class of ℤ2; There are 3 conjugacy classes of subgroups in this case; 𝐻1 = {𝑒, 𝑎}, 𝐻2 = {𝑒, 𝑏}, 𝐻3 = {𝑒, 𝑐}. The NIM-

reps 𝑀(𝐻1), 𝑀(𝐻2), 𝑀(𝐻3) have two basis elements parameterised by coset representatives {𝑒, 𝑏}, {𝑒, 𝑐}, {𝑒, 𝑎} respectively.

𝑚𝑒 𝑚𝑏, 𝑚𝑒 𝑚𝑐, 𝑚𝑒 𝑚𝑎

𝑎

𝑏
𝑐

𝑎 𝑏

𝑎

𝑐

𝑏 𝑐

𝑏

𝑎

𝑐

• The trivial subgroup 𝐻 = {𝑒}; The basis elements of 𝑀(𝐻) are simply parameterised by elements of ℤ2 ×ℤ2.

𝑚𝑒 𝑚𝑎

𝑚𝑏 𝑚𝑐

𝑎

𝑏 𝑏𝑐

𝑎

Example 3.5. (NIM-reps of 𝑅(𝐷3))
Consider the dihedral group 𝐷3, with presentation

𝐷3 = {𝑥, 𝑎 | 𝑥2 = 𝑎3 = 𝑒, 𝑥𝑎 = 𝑎−1𝑥}.

There are four conjugacy classes of subgroups of 𝐷3, giving four isomorphism classes of NIM-reps;

• 𝐷3 as a subgroup of itself. This NIM-graph simply consists of a single basis element, with each group ring element acting trivially.

𝑚𝑒

𝑥

𝑎

𝑥𝑎2𝑥𝑎

𝑎2

• The isomorphism class of ℤ3, given by 𝐻 = {𝑒, 𝑎, 𝑎2}.

𝑚𝑒 𝑚𝑥

𝑎

𝑎2

𝑥

𝑥𝑎

𝑥𝑎2

𝑎

𝑎2

• The isomorphism class of ℤ2 is given by 3 conjugate subgroups, 𝐻 = {𝑒, 𝑥}, {𝑒, 𝑥𝑎}, {𝑒, 𝑥𝑎2}. This gives one NIM-graph, up to 
9

isomorphism of NIM-reps. We shall label our graph using the subgroup 𝐻 = {𝑒, 𝑥}.
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𝑚𝑒 𝑚𝑎

𝑚𝑎2

𝑥

𝑥𝑎2

𝑎

𝑎2

𝑥𝑎

𝑎2

𝑎
𝑥

𝑎2

𝑎
𝑥𝑎

𝑥𝑎2

• The trivial subgroup 𝐻 = {𝑒}. The basis elements are parameterised by the elements of 𝐷3.

𝑚𝑎

𝑚𝑒 𝑚𝑎2

𝑚𝑥 𝑚𝑥𝑎2

𝑚𝑥𝑎

𝑎

𝑎2

𝑥

𝑥𝑎2 𝑥𝑎𝑎

𝑎2

𝑥

𝑥𝑎

𝑥𝑎2

𝑎

𝑥𝑎2

𝑥𝑎

𝑎2

𝑥

𝑎2

𝑎

𝑎2

𝑎𝑎
𝑎2

3.2. Near-group fusion rings

In this subsection, we shall focus on another class of fusion rings that can be formed from a finite group 𝐺.

Definition 3.6 ([30,33]). Let 𝐺 be a finite group and 𝛼 ∈ℤ+. The near-group fusion ring is the fusion ring constructed by taking the 
integer span of the set 𝐺 ∪ {𝑋}, with multiplication of the group elements as the group operation, and with the element 𝑋 as:

𝑋𝑔 = 𝑔𝑋 =𝑋,

𝑋2 =
∑
𝑔∈𝐺

𝑔 + 𝛼𝑋,

for 𝑔 ∈𝐺. The element 𝑋 is self-dual, i.e. 𝑋∗ =𝑋. This is a fusion ring, which we shall denote by 𝐾(𝐺, 𝛼).

Example 3.7. [12, Example 4.10.5] The case 𝛼 = 0 is known as the Tambara-Yamagami fusion ring. Notice that this ring is categorifi-

able if and only if 𝐺 is abelian.

The action of 𝐾(𝐺, 𝛼) on a NIM-rep 𝑀 consists of the action of the group 𝐺 and the non-invertible element 𝑋. By the results of 
Section 3.1, we know that the NIM-action of the group component will correspond to some 𝐺-action on the NIM-rep basis. However, 
unlike Section 3.1, we cannot guarantee that this 𝐺-action is transitive on the basis 𝑀 , due to the action of the non-invertible 
element 𝑋. This can be seen in the following example:

Example 3.8. (NIM-rep over 𝐾(ℤ2, 0)) The Ising fusion ring from Example 2.15 can be viewed as the near-group fusion ring 
𝐾(ℤ2, 0). Viewed as a NIM-rep over itself, using the notation from Example 2.24, the NIM-basis can be partitioned into 𝐺-orbits, 
𝑀 = {𝑚1, 𝑚𝑌 } ∪ {𝑚𝑋}, with stabiliser groups {𝑒} and ℤ2 respectively. The two orbits are connected by the action of 𝑋, with 
𝑋 ⊳𝑚1 =𝑋 ⊳𝑚𝑌 =𝑚𝑋 , 𝑋 ⊳𝑚𝑋 =𝑚1 +𝑚𝑌 .

From this example, we see that the NIM-rep basis 𝑀 can be partitioned into 𝐺-orbits, which are connected to each other by the 
action of 𝑋. We will write this partition as

𝑝⋃
𝑖

10

𝑀 =
𝑖=1

{𝑚
𝑙
}1⩽𝑙⩽|𝐺∶𝐻𝑖|,
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where the 𝑖-label counts the 𝑝 distinct orbits, each defined by a stabiliser subgroup {𝐻𝑖}. The 𝑙-label denotes the individual elements 
in each orbit. Hence, a NIM-rep 𝑀 over 𝐾(𝐺, 𝛼) consists of 

∑𝑝

𝑖=1 |𝐺 ∶𝐻𝑖| basis elements, with the NIM-rep action of the group part 
of 𝐾(𝐺, 𝛼) having already been covered in Section 3.1. Thus, we now need to focus only on the action of the non-invertible element 
𝑋.

Proposition 3.9. Let 𝑀 be an irreducible NIM-rep over 𝐾(𝐺, 𝛼). For a fixed group orbit label 𝑖 in the partition of 𝑀 , we have that 
𝑋 ⊳𝑚𝑖

𝑙1
=𝑋 ⊳𝑚𝑖

𝑙2
for all 1 ⩽ 𝑙1, 𝑙2 ⩽ |𝐺 ∶𝐻𝑖|.

Proof. As 𝑚𝑖
𝑙1

and 𝑚𝑖
𝑙2

are in the same 𝐺-orbit, there is a group element 𝑔 ∈ 𝐺 such that 𝑚𝑖
𝑙1
= 𝑔 ⊳ 𝑚𝑖

𝑙2
. Then, using the module 

action and the fusion rules in Definition 3.6, we have that

𝑋 ⊳𝑚𝑖
𝑙1
=𝑋 ⊳ (𝑔 ⊳𝑚𝑖

𝑙2
) = (𝑋𝑔) ⊳𝑚𝑖

𝑙2
=𝑋 ⊳𝑚𝑖

𝑙2
. □

Notation 3.10. We shall write 𝑐𝑖,𝑗 ∶= (𝑋 ⊳ 𝑚𝑖
𝑙
, 𝑚𝑗

𝑘
). It is clear from Proposition 3.9 that varying the 𝑙, 𝑘 labels has no effect. Addi-

tionally, note that by the rigidity condition of the NIM-rep, we have 𝑐𝑖,𝑗 = 𝑐𝑗,𝑖.

Remark 3.11. Irreducibility of a NIM-rep over 𝐾(𝐺, 𝛼) implies that the group orbits are connected to each other by the non-invertible 
element 𝑋.

From now on, we shall denote the action of 𝑋 on an element 𝑚𝑖
𝑙

by

𝑋 ⊳𝑚𝑖
𝑙
=

𝑝∑
𝑗=1

𝑐𝑖,𝑗

|𝐺∶𝐻𝑗 |∑
𝑘=1

𝑚
𝑗

𝑘
. (3.2.1)

If we act on both sides of Equation (3.2.1) with 𝑋, using the fusion rules in Definition 3.6 along with Proposition 3.9, we find 
that

|𝐻𝑖| |𝐺∶𝐻𝑖|∑
𝑘=1

𝑚𝑖
𝑘
+ 𝛼𝑋 ⊳𝑚𝑖

𝑙
=

𝑝∑
𝑗=1

𝑐𝑖,𝑗 |𝐺 ∶𝐻𝑗 |𝑋 ⊳𝑚
𝑗

𝑙
.

By counting in this equation the multiplicities of the orbit labelled with 𝑖, and one labelled by 𝑞 ≠ 𝑖 respectively, we get that

|𝐻𝑖|+ 𝛼𝑐𝑖,𝑖 =
𝑝∑

𝑗=1
𝑐2𝑖,𝑗 |𝐺 ∶𝐻𝑗 |, (3.2.2)

𝛼𝑐𝑖,𝑞 =
𝑝∑

𝑗=1
𝑐𝑖,𝑗 𝑐𝑗,𝑞|𝐺 ∶𝐻𝑗 |. (3.2.3)

Remark 3.12. Should our NIM-rep partition contain only one 𝐺-orbit, then we would only have one equation of the form of 
Equation (3.2.2) as we clearly can pick no 𝑞 such that 𝑞 ≠ 𝑖.

To classify all NIM-reps over a near-group fusion ring, we thus need to find solutions for this set of equations. To better visualise 
this problem, we can think of these equations in terms of matrices. By setting 𝐶 ∶= {𝑐𝑖,𝑗}, the matrix that determines the action of 
𝑋, and 𝐵 =diag{|𝐺 ∶𝐻𝑖|}, the action of 𝑋 is thus governed by the matrix equation

𝐶𝐵𝐶 = 𝛼 ⋅𝐶 + |𝐺| ⋅𝐵−1. (3.2.4)

We are thus seeking to find choices of subgroups {𝐻𝑖} such that there is an non-negative integer-valued symmetric matrix 𝐶 satisfying 
Equation (3.2.4).

As the matrix 𝐵 is invertible, we obtain a quadratic matrix equation in the variable 𝐶𝐵;

(𝐶𝐵)2 = 𝛼 ⋅ (𝐶𝐵) + |𝐺| ⋅ 𝐼,
where 𝐼 is the identity matrix. As all of the coefficient matrices commute with each other, we can solve via the quadratic equation, 
giving us

𝐶𝐵 = 1
2
𝛼 ⋅ 𝐼 ±

√
(𝛼

2

4
+ |𝐺|) ⋅ 𝐼 = 1

2
𝛼 ⋅ 𝐼 ±

√
(𝛼

2

4
+ |𝐺|) ⋅ 𝑌 , (3.2.5)

where 𝑌 is a square root of the identity matrix 𝐼 . As all the elements in 𝐶𝐵 are non-negative, the non-diagonal elements of 𝑌 must 
all have the same sign. As both 𝑌 and −𝑌 are square roots of the identity matrix, only one can provide a valid solution for 𝐶𝐵, so 
11

we can always take the sign in Equation (3.2.5) to be positive.
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Remark 3.13. As the elements of 𝐶𝐵 are integers, the non-diagonal elements of 𝑌 must be divisible by ( 𝛼
2

4 + |𝐺|)−1∕2.

Hence, the problem of classifying NIM-reps over 𝐾(𝐺, 𝛼) comes down to finding suitable square roots of identity matrices. We do 
this in full detail for 𝑝 = 1, 2 in the following propositions.

Proposition 3.14. NIM-reps over 𝐾(𝐺, 𝛼) consisting of one group orbit are parametrised by pairs (𝐻, 𝑐1,1), where 𝐻 ⊆𝐺 a subgroup and 
𝑐1,1 ∈ℤ+, such that 𝛼 = 𝑐1,1|𝐺 ∶𝐻| − |𝐻|

𝑐1,1
, 𝑐1,1 divides |𝐻| and (𝑐1,1)2|𝐺 ∶𝐻| ⩾ |𝐻|.

Proof. As 𝑝 = 1, 𝑌 = 1 is the only possible choice that leads to a valid solution. Let 𝐻 be the subgroup of 𝐺 that governs this orbit. 
The action of the non-invertible element 𝑋 is given by a single non-negative integer 𝑐1,1 ∈ℤ+. By Remark 2.21, this integer is in fact 
strictly positive.

If we switch to the element-wise notation, Equation (3.2.5) can be written as√
𝛼2

4
+ |𝐺| = 𝑐1,1|𝐺 ∶𝐻|− 1

2
𝛼.

By squaring both sides,

𝛼2

4
+ |𝐺| = (𝑐1,1)2|𝐺 ∶𝐻|2 − 𝛼𝑐1,1|𝐺 ∶𝐻|+ 𝛼2

4
.

Rearranging this for 𝛼 gives the required equation, with the other conditions following from the condition that 𝛼 must be a non-

negative integer. □

Proposition 3.15. All irreducible NIM-reps over 𝐾(𝐺, 𝛼) consisting of two group orbits are parametrised by tuples (𝐻1, 𝐻2, 𝑐1,1, 𝑐2,2), where 
𝐻1, 𝐻2 ⊆ 𝐺 are subgroups and 𝑐1,1, 𝑐2,2 ∈ ℤ+, such that 𝛼 = 𝑐1,1|𝐺 ∶𝐻1| + 𝑐2,2|𝐺 ∶𝐻2|, |𝐺| divides |𝐻1||𝐻2|, and ( |𝐻1||𝐻2||𝐺| + 𝑐1,1𝑐2,2)
is a square number.

Proof. It is well known that all square roots 𝑌 of the 2-by-2 identity matrix are either diagonal matrices whose non-zero elements 
are from the set {−1, 1}, or have the form

𝑌 =
(
𝑦1,1 𝑦1,2
𝑦2,1 −𝑦1,1

)
where 𝑦21,1 + 𝑦1,2𝑦2,1 = 1, 𝑦1,2, 𝑦2,1 ≠ 0. (3.2.6)

It is clear by Remark 3.11 that irreducible NIM-reps can only come from square root matrices of the form in Equation (3.2.6).

Let 𝐻1, 𝐻2 be subgroups of 𝐺 that govern the group orbits in the NIM-rep, and 𝐶 = {𝑐𝑖,𝑗}1⩽𝑖,𝑗⩽2 the matrix governing the NIM-

action of 𝑋. By inputting this data into Equation (3.2.5), we get the following system of equations:

𝑐1,1|𝐺 ∶𝐻1| = 1
2
𝛼 +

√
𝛼2

4
+ |𝐺|𝑦1,1,

𝑐2,2|𝐺 ∶𝐻2| = 1
2
𝛼 −

√
𝛼2

4
+ |𝐺|𝑦1,1,

𝑐1,2|𝐺 ∶𝐻2| =√
𝛼2

4
+ |𝐺|𝑦1,2,

𝑐1,2|𝐺 ∶𝐻1| =√
𝛼2

4
+ |𝐺|𝑦2,1.

By adding the first two equations, we get that 𝛼 = 𝑐1,1|𝐺 ∶𝐻1| + 𝑐2,2|𝐺 ∶𝐻2|. By multiplying the first two equations together and 
the last two equations together, we obtain

𝑐1,1𝑐2,2|𝐺 ∶𝐻1||𝐺 ∶𝐻2| = 𝛼2

4
−

(
𝛼2

4
+ |𝐺|)(𝑦1,1)2,

(𝑐1,2)2|𝐺 ∶𝐻1||𝐺 ∶𝐻2| =(
𝛼2

4
+ |𝐺|)𝑦1,2𝑦2,1.

By using the defining relation in Equation (3.2.6), and rearranging to solve for (𝑐1,2)2, we find that

(𝑐1,2)2 =
|𝐻1||𝐻2||𝐺| + 𝑐1,1𝑐2,2.

Hence we can always obtain 𝑐1,2 from the other input data. The remaining conditions come from the fact that 𝑐1,2 must be a positive 
12

integer.
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Hence, a two-orbit NIM-rep over 𝐾(𝐺, 𝛼) has input data of (𝐻1, 𝐻2, 𝑐1,1, 𝑐2,2) satisfying the above conditions, and explicit 𝑋-action 
given by

𝑋 ⊳𝑚1
𝑖 = 𝑐1,1

|𝐺∶𝐻1|∑
𝑘=1

𝑚1
𝑘
+

√|𝐻1||𝐻2||𝐺| + 𝑐1,1𝑐2,2

|𝐺∶𝐻2|∑
𝑘=1

𝑚2
𝑘
,

𝑋 ⊳𝑚2
𝑖 =

√|𝐻1||𝐻2||𝐺| + 𝑐1,1𝑐2,2

|𝐺∶𝐻1|∑
𝑘=1

𝑚1
𝑘
+ 𝑐2,2

|𝐺∶𝐻2|∑
𝑘=1

𝑚2
𝑘
. □

While this only completes the classification for NIM-reps consisting of two group orbits, this is sufficient to completely classify 
irreducible NIM-reps over the Tambara-Yamagami fusion rings.

Corollary 3.16. All irreducible NIM-reps over the Tambara-Yamagami fusion ring 𝐾(𝐺, 0) consist of at most two group orbits.

Proof. By setting 𝛼 = 0 in Equation (3.2.4), we easily see that the matrix 𝐶𝐵𝐶 must be diagonal. Element-wise, this means that

(𝐶𝐵𝐶)𝑖,𝑗 =
𝑝∑

𝑘=1
𝑐𝑖,𝑘𝑐𝑘,𝑗 |𝐺 ∶𝐻𝑖| = 0,

for all 𝑖 ≠ 𝑗. However, by Remark 3.11, there always exists a choice of 𝑖 ≠ 𝑗 such that both 𝑐𝑖,𝑘, 𝑐𝑖,𝑗 ≠ 0 when 𝑝 ⩾ 3. Thus, as 𝐶 is 
symmetric, the result follows. □

Example 3.17. (NIM-reps over the Ising fusion ring)

Recall Example 2.15. The Ising fusion ring can be viewed as the Tambara-Yamagami fusion ring 𝐾(ℤ2, 0). So by Corollary 3.16, 
we only need to check for 1 and 2-orbit NIM-reps.

When 𝑝 = 1, we must have 𝑐1,1|ℤ2 ∶𝐻| = |𝐻|∕𝑐1,1 by Proposition 3.14. But as the only choices for 𝐻 are the trivial group and 
ℤ2, both of which lead to non-integer values for 𝑐1,1, we see that there are no 1-orbit NIM-reps over 𝐾(ℤ2, 0).

For 𝑝 = 2, by Proposition 3.15 we must have 0 = 𝑐1,1|𝐺 ∶𝐻1| + 𝑐2,2|𝐺 ∶𝐻2|, which only occurs when 𝑐1,1 = 𝑐2,2 = 0. Hence, we 
see that (𝑐21,2) =

|𝐻1||𝐻2||𝐺| , which must be an square number. The only possible choice of subgroups is 𝐻1 ≅ {1}, 𝐻2 ≅ ℤ2 (or vice 
versa, which gives an equivalent NIM-rep). In this case, 𝑐1,2 = 1.

Thus, there is only one irreducible NIM-rep over the Ising fusion ring, given by the tuple ({1}, ℤ2, 0, 0).

For 𝑝 ⩾ 3, there is not an explicit classification of square roots of the identity matrix. For instance, it is still unknown whether 
there exists a Hadamard matrix of order 4𝑘 for every positive integer 𝑘. So, in what follows we will detail some relevant examples.

Example 3.18. A Hadamard matrix of order 𝑛 satisfies 𝐻𝑛𝐻𝑛 = 𝑛𝐼𝑛, and rows are mutually orthogonal and the matrix contains only 
+1 and −1, so clearly 1√

𝑛
𝐻𝑛 is a square root of the identity. However, 𝐻𝑛 contains exactly 𝑛(𝑛 − 1)∕2 elements that are −1, which 

contradicts the fact all non-diagonal elements of 𝑌 must be non-negative, of which there are 𝑛(𝑛 −1). So the only value valid is 𝑛 = 1, 
which is the trivial case.

Example 3.19. (NIM-rep over 𝐾(ℤ𝑞 , 𝑞 − 1), 𝑞 prime)

Consider the 𝑝-by-𝑝 matrix that has −1
2𝛼 as its diagonal elements, and 1 for all off-diagonal elements,

𝑍𝑝 =

⎛⎜⎜⎜⎜⎝
−1

2𝛼 1 … 1
1 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 1
1 … 1 −1

2𝛼

⎞⎟⎟⎟⎟⎠
. (3.2.7)

If there is a NIM-rep that corresponds to this matrix, it must have 𝑐𝑖,𝑖 = 0 for all i by looking Equation (3.2.5).

We want to find values of 𝛼 and 𝐺 such that this matrix is a square root of ( 𝛼
2

4 + |𝐺|) ⋅ 𝐼𝑝. It is easily verified that

(𝑍2
𝑝 )𝑖,𝑖 =

𝛼2

4
+ 𝑝− 1, (𝑍2

𝑝 )𝑖,𝑗 = 𝑝− 2 − 𝛼, 𝑖 ≠ 𝑗.

Thus, the matrix 𝑍𝑝 may give a NIM-rep via Equation (3.2.5) only if 𝛼 = 𝑝 − 2 and |𝐺| = 𝑝 − 1. Thus 𝑍𝑝 may give a NIM-rep over 
𝐾(𝐺, 𝑝 − 2), where |𝐺| = 𝑝 − 1. The existence of such a NIM-rep depends on the particular choice of group, but we can provide the 
case such that 𝑝 = 𝑞 + 1, where 𝑞 is prime.

The only group of order 𝑞 is the cyclic group ℤ𝑞 , so 𝑍𝑞+1 defines a NIM-rep only over 𝐾(ℤ𝑞, 𝑞 − 1). By putting Equation (3.2.7)

into Equation (3.2.5), it is clear that 𝑐𝑖,𝑗 |𝐺 ∶𝐻𝑗 | = 1 for all 𝑖 ≠ 𝑗. As the only subgroups of ℤ𝑞 are the trivial subgroup and the group 
13

itself, the only choice that leads to an integer value of 𝑐𝑖,𝑗 is if 𝐻𝑗 ≅ℤ𝑞 for all 𝑗. This gives 𝑐𝑖,𝑗 = 1.
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Thus, for 𝑞 prime, we have a NIM-rep 𝑀 over 𝐾(ℤ𝑞, 𝑞 −1) where the 𝑀 consists of 𝑞 +1 elements {𝑚𝑖}1⩽𝑖⩽𝑞+1, the ℤ𝑞 -action on 
𝑀 is trivial, and the action of the non-invertible element 𝑋 is given by

𝑋 ⊳𝑚𝑖 =
𝑞+1∑
𝑗=1
𝑗≠𝑖

𝑚𝑗 .

Note that to look at the possible case that a NIM-rep over 𝐾(𝐺, 𝛼) can be partitioned into three or more orbits, one would need 
to find symmetric integer matrix solutions to the matrix equation. We can use the following result to reduce the options in some 
circumstances.

Proposition 3.20. A NIM-rep over 𝐾(𝐺, 𝛼) consists of an odd number of group orbits if and only if 
√

𝛼2

4 + |𝐺| is a rational number.

Proof. As the matrix 𝐶𝐵 contains only integers, from Equation (3.2.5) we see that the matrix 
√

( 𝛼
2

4 + |𝐺|) ⋅𝑌 contains only rational 
numbers. Its determinant is then rational. But 𝑌 is a square root of the identity matrix, that has determinant ±1. Hence, the 

determinant of 
√

( 𝛼
2

4 + |𝐺|) ⋅ 𝑌 is equal to ( 𝛼
2

4 + |𝐺|)𝑝∕2. The result is then immediate, as the rational numbers are closed under 

multiplication, so this determinant is rational if and only if ( 𝛼
2

4 + |𝐺|)1∕2 is rational. □

We can also express 𝛼 in terms of elements of 𝐶 and 𝐵:

Corollary 3.21. Suppose 𝑀 is an irreducible NIM-rep over 𝐾(𝑔, 𝛼) that can be partitioned into 𝑝 𝐺-orbits.

If 𝑝 = 1, then 𝛼 = 𝑐1,1|𝐺 ∶𝐻1| − |𝐻1|∕𝑐1,1.

If 𝑝 ⩾ 2. Then 𝛼 =
∑𝑝

𝑗=1
𝑐𝑖,𝑗 𝑐𝑗,𝑞

𝑐𝑖,𝑞
|𝐺 ∶𝐻𝑗 | for any orbit labels 𝑖 ≠ 𝑞 where 𝑐𝑖,𝑞 > 0.

Proof. For the 𝑝 = 1 case, we simply rearrange Equation (3.2.2) for 𝛼. The 𝑝 = 2 case is just as immediate, instead rearranging 
Equation (3.2.3). Using the fact 𝑐𝑖,1 is non-zero by Remark 3.11, we always have at least one choice of matrix elements to write 𝛼 in 
this form. □

We conclude this section with some concrete examples.

Example 3.22. An example of such a NIM-rep is given by the tuple (ℤ75, ℤ75, 5, 5) over the fusion ring 𝐾(ℤ75, 10). As the two 
subgroups that govern the partition of the NIM-rep are the whole group, these orbits consist of one NIM-element each, so 𝑀 = {𝑚, 𝑛}.

By the found formulas, 𝑐1,1 = 𝑐2,2 = 5, 𝑐1,2 = 10 and so the NIM-rep has the following structure;

𝑔 ⊳𝑚 =𝑚 , 𝑔 ⊳ 𝑛 = 𝑛 ∀𝑔 ∈ℤ75,

𝑋 ⊳𝑚 = 5𝑚+ 10𝑛 , 𝑋 ⊳ 𝑛 = 10𝑚+ 5𝑛.

We note that by [30, Theorem A.14], this instance is not a categorifiable one as ℤ75 is abelian. However, if we let 𝐺 = (ℤ5 ×ℤ5) ⋊ℤ3, 
which has order 75 but is not abelian, then the NIM-rep (𝐺, 𝐺, 5, 5) with the same structure as above is a NIM-rep over 𝐾(𝐺, 10). 
Note that this case can admit a categorification.

Example 3.23. 𝐾(ℤ175, 62) has a NIM-rep corresponding to (ℤ35, ℤ25, 11, 1). Labelling the two group orbits by {𝑚𝑖}1⩽𝑖⩽5, {𝑛𝑗}1⩽𝑗⩽7, 
the explicit structure of the non-invertible element is given by

𝑋 ⊳𝑚𝑖 = 11
5∑

𝑙=1
𝑚𝑙 + 4

7∑
𝑘=1

𝑛𝑘 , 𝑋 ⊳ 𝑛𝑗 = 4
5∑

𝑙=1
𝑚𝑙 +

7∑
𝑘=1

𝑛𝑘.

Note that by [30, Theorem A.6], this fusion ring is not categorifiable.

3.3. Admissible NIM-reps and algebra objects for pointed and near-group fusion categories

Finally, we extract algebra objects from the NIM-reps we have computed. While we cannot read out explicit algebra morphisms, 
14

we still are able to recover a collection of familiar results.
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Proposition 3.24. (Admissible NIM-reps for group rings) All irreducible NIM-reps over a group fusion rings 𝑅(𝐺) are admissible.

Proof. Let 𝑀(𝐻) be a NIM-rep over 𝑅(𝐺). Recall that the basis elements are parametrised by the left cosets 𝐺∕𝐻 . For any two 
NIM-basis elements 𝑚𝑔𝑖

, 𝑚𝑔𝑗
, we have that (𝑔𝑗𝑔−1𝑖

) ⊳𝑚𝑔𝑖
=𝑚𝑔𝑗

. Hence any NIM-basis element can take the role of 𝑚0 in Lemma 2.35, 
thus 𝑀(𝐻) is admissible. □

Remark 3.25. The algebra object associated to a NIM-rep 𝑀(𝐻) over 𝑅(𝐺) is then given by 
⨁

ℎ∈𝐻 𝑏ℎ. It is clear from Examples 3.4

and 3.5 that this object can be seen by counting the self-loops present in the NIM-graph. This agrees with the classification of algebras 
in pointed categories given in [24,29].

Proposition 3.26. An admissible irreducible NIM-rep over a near-group fusion ring consists of either one group orbit, parameterised by 
(𝐻, 𝑐1,1), or two group orbits, parametrised by (𝐻1, 𝐻2, 0, 𝑐2,2).

Proof. For a NIM-rep consisting of one orbit, we can argue in the same way as Lemma 2.35 that any NIM-basis element can be set 
as 𝑚0 in Lemma 2.35.

For a NIM-rep consisting of more than one group orbit, the only way to have an 𝑚0 that connects to the orbits it does not lie in is 
via the non-invertible element 𝑋. So for 𝑛 ∈𝑀 , where 𝑛 is not in the same orbit as 𝑚0, we must have 𝑋 ⊳ 𝑚0 = 𝑛. But then by the 
fusion rules,

𝑋 ⊳ 𝑛 =𝑋2 ⊳𝑚0 =
∑

𝑖∈𝐺⋅𝑚0

𝑚𝑖 + 𝛼𝑋 ⊳𝑚0 =
∑

𝑖∈𝐺⋅𝑚0

𝑚𝑖 + 𝛼𝑛.

From this we see that the group orbits of 𝑚0 and 𝑛 are only connected to each other, so by the irreducibility of the NIM-rep it only 
contains two group orbits.

If we label the orbit containing 𝑚0 by 1, and the one containing 𝑛 by 2, we note that the condition 𝑋 ⊳ 𝑚0 = 𝑛 implies 𝑐1,1 = 0. 
This gives the result. □

Remark 3.27. We thus have two forms of algebra objects arising in categories associated to near-group fusion rings.

• For a NIM-rep parametrised by (𝐻, 𝑐1,1), the algebra is given as an object by ⊕ℎ∈𝐻𝑏ℎ ⊕ 𝑐1,1𝑋.

• For a NIM-rep parametrised by (𝐻1, 𝐻2, 0, 𝑐2,2), the algebra object is given by ⊕ℎ∈𝐻1
𝑏ℎ, i.e. it is of the form of a group algebra 

object.

Algebra objects representing module categories over near-group categories have been studied previously at [23,16]: in the case 
of non-group theoretical Tambara-Yamagami categories with abelian 𝐺 we have twisted group algebras, see [16, Proposition 5.7]. 
[23, Section 8 and 9] proceed in a slightly more general way, for 𝐺-graded fusion categories with 𝐺 not necessarily abelian. Only 
for the case of Tambara-Yamagami (see [23, Section 9]) they recover the same two families of algebras we observe.

3.4. (𝐴1, 𝑙) 1
2

fusion rings and its admissible NIM-reps and algebra objects

Following [27] (other useful references are [14,15]), we can construct a modular tensor category (𝐴1, 𝑙) from a quantum group 
of type 𝐴1 at level 𝑙 ∈ ℤ+. The Grothendieck ring Gr((𝐴1, 𝑙)) has basis {𝑉𝑖}𝑖∈[0,𝑙], and the fusion coefficients of 𝑉𝑖𝑉𝑗 =

∑𝑙
𝑘=0 𝑐

𝑘
𝑖,𝑗
𝑉𝑘

are given by:

𝑐𝑘𝑖,𝑗 =

{
1, if |𝑖− 𝑗| ⩽ 𝑘 ⩽min(𝑖+ 𝑗,2𝑘− 𝑖− 𝑗) and 𝑘 ≡ 𝑖+ 𝑗 mod 2,
0, else.

(3.4.1)

We note here that, as seen by the fusion rules, Gr((𝐴1, 𝑙)) is commutative.

Definition 3.28. For an object 𝑉𝑖 ∈Gr((𝐴1, 𝑙)), we define the length of 𝑉𝑖 to be length(Vi) ∶=
l∑

k=0
𝑐𝑘
𝑖,𝑖

.

When 𝑙 is a positive odd integer, we can define a modular subcategory (𝐴1, 𝑙) 1
2

by taking the full subcategory with simple objects

Irr((𝐴1, 𝑙) 1
2
) =

{
𝑉2𝑖 | 0 ⩽ 𝑖 ⩽ 𝑙 − 1

2

}
.

Remark 3.29. In the fusion ring Gr((𝐴1, 𝑙) 1
2
), it is simple to check using the fusion rules that 𝑉𝑖 ≠ 𝑉𝑗 if and only if length(𝑉𝑖) ≠
15

length(𝑉𝑗 ).
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We shall now focus on finding the admissible NIM-reps of Gr((𝐴1, 𝑙) 1
2
). As 𝑙 = 1 results in the trivial ring, we shall assume 

𝑙 ⩾ 3. Recall from Lemma 2.35 that an admissible NIM-rep 𝑀 over a fusion ring has a distinguished basis element 𝑚0. We have 
seen in Section 3.3 that in the case of group and near-group fusion rings, we can have objects in the ring basis 𝑏𝑖, 𝑏𝑗 such that 
𝑏𝑖 ⊳𝑚0 = 𝑏𝑗 ⊳𝑚0, due to the invertibility of the group parts of these fusion rings. This is not the case when working with Gr((𝐴1, 𝑙) 1

2
).

Lemma 3.30. Let 𝑀 be an admissible NIM-rep over Gr((𝐴1, 𝑙) 1
2
), and 𝑉𝑖 ≠ 𝑉𝑗 ∈ Gr((𝐴1, 𝑙) 1

2
) such that 𝑉𝑖 ⊳ 𝑚0, 𝑉𝑗 ⊳ 𝑚0 ∈ 𝑀 . Then 

𝑉𝑖 ⊳𝑚0 ≠ 𝑉𝑗 ⊳𝑚0.

Proof. If we assume that 𝑉𝑖 ⊳ 𝑚0 = 𝑉𝑗 ⊳ 𝑚0, then as the fusion ring is commutative, we have that 𝑉 2
𝑖
⊳ 𝑚0 = 𝑉 2

𝑗
⊳ 𝑚0. But by 

Remark 3.29, length(𝑉𝑖) ≠ length(Vj), and so the only way that 𝑉 2
𝑖
⊳ 𝑚0 = 𝑉 2

𝑗
⊳ 𝑚0 is if some 𝑉𝑘 in the decomposition of 𝑉 2

𝑖
or 𝑉 2

𝑗
(whichever has larger length), satisfies 𝑉𝑘 ⊳𝑚0 = 0. This has been ruled out by Remark 2.21. □

Remark 3.31. If we have objects 𝑉𝑖, 𝑉𝑗 ∈ Gr((𝐴1, 𝑙) 1
2
) such that length(𝑉𝑖) > length(𝑉𝑗 ), then it is easily verified using the fusion 

rules in Equation (3.4.1) that (𝑉 2
𝑖
⊳ 𝑚𝑝, 𝑚𝑝) > (𝑉 2

𝑗
⊳ 𝑚𝑝, 𝑚𝑝). Thus, if 𝑉𝑖 ⊳ 𝑚𝑝 ∈𝑀 , then we immediately have that 𝑉𝑗 ⊳ 𝑚𝑝 ∈𝑀 . In 

the case of an admissible NIM-rep 𝑀 over Gr((𝐴1, 𝑙) 1
2
), if the basis 𝑀 has cardinality d, we immediately get that the objects 𝑉𝑗 that 

satisfy 𝑉𝑗 ⊳𝑚0 ∈𝑀 are exactly those of length(𝑉𝑗 ) ⩽ 𝑑.

Proposition 3.32. In any NIM-rep 𝑀 over the fusion ring Gr((𝐴1, 𝑙) 1
2
), (𝑉𝑙−1 ⊳𝑚𝑝, 𝑚𝑞) ⩽ 1 for all 𝑚𝑝, 𝑚𝑞 ∈𝑀 .

Proof. If we assume that (𝑉𝑙−1 ⊳𝑚𝑝, 𝑚𝑞) = 𝑎
𝑞

𝑙−1,𝑝 ⩾ 2, we can use the fusion rules in Equation (3.4.1) to obtain

𝑚𝑝 + 𝑉2 ⊳𝑚𝑝 = 𝑉 2
𝑙−1 ⊳𝑚𝑝 = 𝑎

𝑞

𝑙−1,𝑝𝑉𝑙−1 ⊳𝑚𝑞 +
∑
𝑘∈𝐿
𝑘≠𝑞

𝑎𝑘
𝑙−1,𝑝𝑉𝑙−1 ⊳𝑚𝑘.

Applying the form (−, 𝑚𝑝), and using the rigidity condition of the NIM-rep, we find that

(𝑉2 ⊳𝑚𝑝,𝑚𝑝) ⩾ 𝑎
𝑞

𝑙−1,𝑝(𝑉𝑙−1 ⊳𝑚𝑞,𝑚𝑝) − 1 ⩾ 3 (3.4.2)

The fusion rules in Equation (3.4.1) give that when 𝑙 ⩾ 3, 𝑉2𝑗𝑉2 = 𝑉2𝑗−2 +𝑉2𝑗 +𝑉2𝑗+2, when 1 ⩽ 𝑗 ⩽ 𝑙−3
2 , and 𝑉2𝑉𝑙−1 = 𝑉𝑙−3 +𝑉𝑙−1. 

We let ℎ𝑖,𝑝 ∶=
∑

𝑘∈𝐿 𝑎𝑘
𝑖,𝑝

, which counts the number of NIM-basis elements in the decomposition of 𝑉𝑖 ⊳𝑚𝑝. Applying the fusion rules 
to 𝑉2𝑗𝑉2 ⊳𝑚𝑝 =

∑
𝑘∈𝐿 𝑎𝑘2,𝑝𝑉2𝑗 ⊳𝑚𝑘, we obtain

𝑉2𝑗−2 ⊳𝑚𝑝 + 𝑉2𝑗+2 ⊳𝑚𝑝 = (𝑎𝑝2,𝑝 − 1)𝑉2𝑗 ⊳𝑚𝑝 +
∑
𝑘∈𝐿
𝑘≠𝑝

𝑎𝑘2,𝑝𝑉2𝑗 ⊳𝑚𝑘, 1 ⩽ 𝑗 ⩽ 𝑙 − 3
2

𝑉𝑙−3 ⊳𝑚𝑝 = (𝑎𝑝2,𝑝 − 1)𝑉𝑙−1 ⊳𝑚𝑝 +
∑
𝑘∈𝐿
𝑘≠𝑝

𝑎𝑘2,𝑝𝑉𝑙−1 ⊳𝑚𝑘.

By noting that ℎ𝑖,𝑝 > 1 for all choices of 𝑖, 𝑝, and 𝑎𝑝2,𝑝 ⩾ 3 by Equation (3.4.2), when we count the NIM-basis elements on each side 
we obtain the following inequalities;

ℎ2𝑗−2,𝑝 + ℎ2𝑗+2,𝑝 ⩾ 2ℎ2𝑗,𝑝 + ℎ2,𝑝 − 3, 1 ⩽ 𝑗 ⩽ 𝑙 − 3
2

,

ℎ𝑙−3,𝑝 ⩾ ℎ𝑙−1,𝑝 + ℎ2,𝑝 − 3.

By taking the inequality for each 1 ⩽ 𝑗 ⩽ 𝑙−1
2 and summing them together, we obtain

1 + ℎ2,𝑝 + 2ℎ4,𝑝 + ...+ 2ℎ𝑙−3,𝑝 + ℎ𝑙−1,𝑝 ⩾ 2ℎ2,𝑝 + 2ℎ4,𝑝 + ...+ 2ℎ𝑙−1,𝑝 +
𝑙 − 1
2

(ℎ2,𝑝 − 3),

⟹ 3𝑙 − 1
2

⩾ 𝑙 + 1
2

ℎ2,𝑝 + ℎ𝑙−1,𝑝 ⩾
𝑙 + 1
2

ℎ2,𝑝 + 2,

⟹ 3𝑙 − 5
𝑙 + 1

⩾ ℎ2,𝑝,

where the last inequality in the second line follows due to our initial assumption. However, the last inequality cannot be satisfied as 
the fraction on the left-hand side is strictly less than 3 for all values of 𝑙, which contradicts (𝑉2 ⊳ 𝑚𝑝, 𝑚𝑝) = 𝑎

𝑝

2,𝑝 ⩾ 3. Hence we have 
16

a contradiction, and so, (𝑉𝑙−1 ∗𝑚𝑝, 𝑚𝑞) ⩽ 1, for all 𝑚𝑝, 𝑚𝑞 ∈𝑀 . □
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Lemma 3.33. In any NIM-rep 𝑀 over Gr((𝐴1, 𝑙) 1
2
), (𝑉 2

𝑙−1 ⊳𝑚𝑝, 𝑚𝑝) ⩽ 3 for all 𝑚𝑝, 𝑚𝑞 ∈𝑀 .

Proof. If we assume that (𝑉 2
𝑙−1 ⊳𝑚𝑝, 𝑚𝑝) > 4, then by Proposition 3.32, we have that ℎ𝑙−1,𝑝 = (𝑉 2

𝑙−1 ⊳𝑚𝑝, 𝑚𝑝) > 4. By the fusion rules 
in Equation (3.4.1), we have that (𝑉2 ⊳ 𝑚𝑝, 𝑚𝑝) ⩾ 3. We are in a very similar setup to the proof of Proposition 3.32, which if we 
follow through results in the inequality

3𝑙 − 9
𝑙 + 1

⩾ ℎ2,𝑝.

This fraction is also strictly less than 3, so we obtain the desired contradiction. □

Proposition 3.34. Let 𝑀 be an admissible NIM-rep over Gr((𝐴1, 𝑙) 1
2
). Then there exists no 𝑚𝑘 ∈𝑀 such that (𝑉 2

𝑙−1 ⊳𝑚𝑘, 𝑚𝑘) = 3.

Proof. Assume there exists some 𝑚𝑘 ∈𝑀 such that (𝑉 2
𝑘−1 ⊳𝑚𝑘, 𝑚𝑘) = 3. By Lemma 3.33, we can write

𝑉𝑘−1 ⊳𝑚𝑘 =𝑚𝑥 +𝑚𝑦 +𝑚𝑧,

where 𝑚𝑥, 𝑚𝑦, 𝑚𝑧 ∈𝑀 are distinct NIM-basis elements. The fusion rule of 𝑉 2
𝑙−1 gives us that (𝑉2 ⊳𝑚𝑘, 𝑚𝑘) = 2.

As the NIM-rep is admissible and 𝑚𝑥, 𝑚𝑦, 𝑚𝑦 are distinct NIM-basis elements, the cardinality of the NIM-basis 𝑀 is at least 3, so 
by Remark 3.31 we know that 𝑉2 ⊳𝑚0, 𝑉𝑙−1 ⊳𝑚0 ∈𝑀 . We also know that there exists a 𝑉𝑗 ∈ (𝐴1, 𝑙) 1

2
such that 𝑉𝑗 ⊳𝑚0 =𝑚𝑘. Using 

the fusion rules, we find that

𝑉𝑙−1 ⊳𝑚𝑘 = 𝑉𝑙−1𝑉𝑗 ⊳𝑚0 = 𝑉𝑙−1−𝑗 ⊳𝑚0 + 𝑉𝑙+1−𝑗 ⊳𝑚0.

Acting with 𝑉𝑙−1 again on both sides and then using the form (−, 𝑚𝑘), we have

𝑚𝑘 + 𝑉2 ⊳𝑚𝑘 = 𝑉 2
𝑘−1 ⊳𝑚0 = 𝑉𝑗 ⊳𝑚0 + 2𝑉𝑗+2 ⊳𝑚0 + 𝑉𝑗+4 ⊳𝑚0

⟹ 𝑉2 ⊳𝑚𝑘 = 2𝑉𝑗+2 ⊳𝑚0 + 𝑉𝑗+4 ⊳𝑚0. (3.4.3)

A second way to calculate 𝑉2 ⊳𝑚𝑘 is as follows:

𝑉2 ⊳𝑚𝑘 = 𝑉2𝑉𝑗 ⊳𝑚0 = 𝑉𝑗−2 ⊳𝑚0 + 𝑉𝑗 ⊳𝑚0 + 𝑉𝑗+2 ⊳𝑚0. (3.4.4)

By applying the form (−, 𝑚𝑘) to both Equation (3.4.3) and Equation (3.4.4), we have that

2 = 2(𝑉𝑗+2 ⊳𝑚0,𝑚𝑘) + (𝑉𝑗+4 ⊳𝑚0,𝑚𝑘), (3.4.5)

1 = (𝑉𝑗−2 ⊳𝑚0,𝑚𝑘) + (𝑉𝑗+2 ⊳𝑚0,𝑚𝑘). (3.4.6)

By the fusion rules Equation (3.4.1) and Remark 3.31, it is clear that we can only satisfy Equation (3.4.5) when 𝑗 ⩽ 𝑙±1
2 , where the 

sign is determined by 𝑙 ≡ ∓1 mod 4. But then we immediately have that (𝑉𝑗−2 ⊳𝑚𝑘, 𝑚1) = 0 by Remark 3.31, so the above equations 
give us that

(𝑉𝑗+2 ⊳𝑚0,𝑚𝑘) = 1, and (𝑉𝑗+4 ⊳𝑚0,𝑚𝑘) = 0. (3.4.7)

If we calculate the fusion rules, we see that the only term that appears in the expansion of (𝑉𝑗+2𝑉𝑗 ⊳ 𝑚0, 𝑚0) and not in that of 
(𝑉𝑗+4𝑉𝑗 ⊳ 𝑚0, 𝑚0) is (𝑉2 ⊳ 𝑚0, 𝑚0). But as 𝑉2 ⊳ 𝑚0 ∈𝑀 and 𝑉2 is non-invertible, this term must always be 0. Hence we can never 
satisfy Equation (3.4.7), giving a contradiction. Thus we must have (𝑉 2

𝑙−1 ⊳𝑚0, 𝑚0) ⩽ 2 for all 𝑚𝑘 ∈𝑀 . □

Proposition 3.35. Up to isomorphism, there is only one admissible NIM-rep over Gr((𝐴1, 𝑙) 1
2
).

Proof. Suppose we have an admissible NIM-rep 𝑀 over Gr((𝐴1, 𝑙) 1
2
) where 𝑀 has cardinality 𝑑. Then there exists a 𝑉𝑗 ∈Gr((𝐴1, 𝑙) 1

2
)

where length(Vj) = d and 𝑉𝑗 ⊳𝑚0 ∈𝑀 . Acting with 𝑉𝑙−1 we get that

𝑉𝑙−1𝑉𝑗 ⊳𝑚0 = 𝑉𝑙−1−𝑗 ⊳𝑚0 + 𝑉𝑙+1−𝑗 ⊳𝑚0.

Using the fusion rules from Equation (3.4.1) and Definition 3.28, if 𝑗 < 𝑙±1
2 , (where the sign depends on 𝑘 ≡ ∓1 mod 4), then length 

(𝑉𝑙+1−𝑗 ) = 𝑑 + 1 and so 𝑉𝑙−1−𝑗 ⊳𝑚0 ∉𝑀 , by Remark 3.31. Similarly, if 𝑗 > 𝑙±1
2 , then 𝑉𝑙+1−𝑗 ⊳𝑚0 ∉𝑀 . In both cases, this leads to

(𝑉 2
𝑙−1𝑉𝑗 ⊳𝑚0, 𝑉𝑗 ⊳𝑚0) ⩾ (𝑉𝑙−1−𝑗 ⊳𝑚0, 𝑉𝑙−1−𝑗 ⊳𝑚0) + (𝑉𝑙+1−𝑗 ⊳𝑚0, 𝑉𝑙+1−𝑗 ⊳𝑚0) = 3.

This contradicts 𝑉𝑗 ⊳ 𝑚0 ∈ 𝑀 by Proposition 3.34, and so we must have that 𝑗 = 𝑙±1
2 . All other objects 𝑉𝑖 have length less than 

𝑉𝑗 , and so every 𝑚𝑘 ∈𝑀 is of the form 𝑉𝑖 ⊳ 𝑚0 ∈𝑀 . This gives that the full NIM-rep structure is simply generated by the fusion 
17

rules. □
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Remark 3.36. The algebra object corresponding to this single admissible NIM-rep over Gr((𝐴1, 𝑙) 1
2
) is the monoidal unit object 1.

Now that we have all admissible NIM-reps over Gr((𝐴1, 𝑙) 1
2
), we turn our attention back to (𝐴1, 𝑙). We can form a second full 

subcategory (𝐴1, 𝑙)pt by taking the simple objects Irr((𝐴1, 𝑙)pt ) = {𝑉0, 𝑉𝑙}.

Lemma 3.37 ([27] Section 4). There is an equivalence of modular tensor categories (𝐴1, 𝑙) ≃ (𝐴1, 𝑙) 1
2
⊠ (𝐴1, 𝑙)pt

On the level of Grothendieck rings, this equivalence tells us that the basis set of Gr((A, l)) is equivalent to the direct product 
of basis sets of Gr((𝐴1, 𝑙) 1

2
) and Gr((𝐴1, 𝑙)pt ) = 𝑅(ℤ2), with the ring structure induced component-wise from the ring structures of 

Gr((𝐴1, 𝑙) 1
2
) and 𝑅(ℤ2) respectively.

If we have a NIM-rep 𝑀 over Gr((𝐴1, 𝑙)), we immediately gain a NIM-rep over both Gr((𝐴1, 𝑙) 1
2
) and 𝑅(ℤ2) by restricting 

along the natural embedding. NIM-reps over the Grothendieck ring Gr((𝐴1, 𝑙)) have been classified in [13] and are in one-to-one 
correspondence with simply laced Dynkin diagrams with Coxeter number ℎ = 𝑙 + 2. In the case that 𝑙 is an odd integer, this gives 
the only NIM-rep as Gr((𝐴1, 𝑙)) viewed as a NIM-rep over itself. The restriction of this NIM-rep to Gr((𝐴1, 𝑙) 1

2
) is exactly the single 

admissible NIM-rep found in Proposition 3.35.
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Appendix A. Modular invariants and the exponents conjecture for low rank modular tensor categories, joint with Devi 
Young

Here we would like to test a conjecture that relates NIM-reps of modular tensor categories and their so-called modular invariants. 
Let us first introduce several notions.

Definition A.1. Let  be a modular tensor category of rank 𝑘 with modular data 𝑆 and 𝑇 . A modular invariant is a square matrix 𝑍 , 
with rows and columns labelled by Ob(), satisfying:

MI1: 𝑍𝑆 = 𝑆𝑍 and 𝑍𝑇 = 𝑇𝑍 ;

MI2: 𝑍ab ∈ℕ, ∀𝑎, 𝑏 ∈Ob(); and

MI3: 𝑍00 = 1.

The easiest example of a modular invariant is the identity matrix. Indeed, the most interesting ones would be different ones than 
this one.

Definition A.2. Given a modular invariant 𝑍 associated to a modular tensor category  of rank k with Ob() = {1, 𝑋1, 𝑋2, … , 𝑋𝑘−1}, 
the exponent of 𝑍 is the multi-set 𝑍 where 𝑎 ∈ Ob() appears with multiplicity 𝑍aa. We will denote the exponent as: 𝑍 =(
1𝑍00 ,𝑋

𝑍11
1 ,… ,𝑋

𝑍𝑘−1𝑘−1
𝑘−1

)
.

Given a certain NIM-rep 𝑀 in a modular tensor category, observed in the sense of [18,19] described in Remark 2.25, the 
18

matrices 𝑀𝑎 can be simultaneously diagonalised by a unitary matrix. Each eigenvalue of 𝑀𝑎 equals 𝑆𝑎,𝑏∕𝑆0,𝑏, for some 𝑏 ∈ Ob(). 
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Each eigenvalue corresponds to at most one element in Ob(). This allows us to introduce a second, seemingly different notion of an 
exponent attached to the modular data:

Definition A.3. Let 𝑀 be a NIM-rep associated to a modular tensor category of rank k with Ob () = {1, 𝑋1, 𝑋2, … , 𝑋𝑘−1}. The 
multiset associated to the assignment 𝑎 ↦𝑀𝑎 is defined to be 𝑎 (𝑀) =

(
1𝑛
0,𝑋

𝑛1
1 , ...,𝑋

𝑛𝑘−1
𝑘−1

)
, where 𝑛𝑏 ∈ {0, 1} is the multiplicity of 

𝑆𝑎,𝑏∕𝑆0,𝑏 corresponding to an eigenvalue in 𝑀𝑎. This multiset is independent of 𝑎, so we define the exponent of 𝑀 to be  (𝑀) ∶=
𝑎 (𝑀).

These two notions seem to be related in the following way:

Conjecture A.4. Consider a rational conformal field theory described by a modular tensor category . Then, for every modular invariant 𝑍
there is a NIM-rep 𝑁 satisfying that:

 (𝑀) = 𝑍.

There is certain evidence that this conjecture is not true in general, see e.g. [17]. Still, it is an interesting question to see up to 
which point it holds, and why it is the case. In what follows we test this conjecture for all unitary modular tensor categories of rank 
less or equal 4 as classified in [31]. For this, we use the NIM-reps we have computed in the present article since they all fall into 
the families we have classified. Tables 1, 2, 3, 4, and 5 contain the modular invariants and NIM-reps associated to each of these 
categories, as well as their respective associated exponents.

Table 1

Modular invariants, NIM-reps and their respective exponents for rank 2 modular 
tensor categories.

Category Modular invariant Exponent NIM-rep Exponent

Semion Id
(
11,𝑋1

1

)
𝑋1 ↦

(
0 1
1 0

) (
11,𝑋1

1

)
Fibonacci Id

(
11,𝑋1

1

)
𝑋1 ↦

(
0 1
1 1

) (
11,𝑋1

1

)

Table 2

Modular invariants, NIM-reps and their respective exponents for rank 3 modular tensor categories.

MTC Modular invariant Exponent NIM-rep Exponent

ℤ3 Id
(
11,𝑋1

1 ,𝑋
1
2

)
𝑋1 ↦

⎛⎜⎜⎝
0 1 0
0 0 1
1 0 0

⎞⎟⎟⎠,
(
11,𝑋1

1 ,𝑋
1
2

)
𝑋2 ↦

⎛⎜⎜⎝
0 0 1
1 0 0
0 1 0

⎞⎟⎟⎠⎛⎜⎜⎝
1 0 0
0 0 1
0 1 0

⎞⎟⎟⎠
(
11,𝑋0

1 ,𝑋
0
2

)
𝑋1,𝑋2 ↦ (1)

(
11,𝑋0

1 ,𝑋
0
2

)

Ising/
(
𝐴1,2

)
Id

(
11,𝑋1

1 ,𝑋
1
2

)
𝑋1 ↦

⎛⎜⎜⎝
0 1 0
1 0 0
0 0 1

⎞⎟⎟⎠,
(
11,𝑋1

1 ,𝑋
1
2

)
𝑋2 ↦

⎛⎜⎜⎝
0 0 1
0 0 1
1 1 0

⎞⎟⎟⎠
(𝐴1,5)1∕2 Id

(
11,𝑋1

1 ,𝑋
1
2

)
𝑋1 ↦

⎛⎜⎜⎝
0 1 0
1 0 1
0 1 1

⎞⎟⎟⎠,
(
11,𝑋1

1 ,𝑋
1
2

)
𝑋2 ↦

⎛⎜⎜⎝
0 0 1
0 1 1
1 1 1

⎞⎟⎟⎠
Here, note that the fusion rings of the Ising and 

(
𝐴1,2

)
MTCs, are the same. As the NIM-reps do not carry any of the modular data 

beyond this, the NIM-reps for each of these pair of categories are the same. For the Ising and 
(
𝐴1,2

)
pair, the remaining modular 

data is so similar that we cannot even distinguish them using their modular invariants. This is not the case for the toric and 
(
𝐷1,4

)

19

pair.
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Table 3

Modular invariants, NIM-reps and their respective exponents for rank 4 modular tensor categories, ℤ4
and (𝐴1 , 7)1∕2 cases.

MTC Modular invariant Exponent NIM-rep Exponent

ℤ4 Id
(
11,𝑋1

1 ,𝑋
1
2 ,𝑋

1
3

)
𝑋1 ↦

⎛⎜⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎟⎠,
(
11,𝑋1

1 ,𝑋
1
2 ,𝑋

1
3

)

𝑋2 ↦

⎛⎜⎜⎜⎝
0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

⎞⎟⎟⎟⎠,

𝑋3 ↦

⎛⎜⎜⎜⎝
0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0

⎞⎟⎟⎟⎠⎛⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎟⎠
(
11,𝑋1

1 ,𝑋
0
2 ,𝑋

0
3

)
𝑋1 ↦

(
1 0
0 1

)
,

(
11,𝑋1

1 ,𝑋
0
2 ,𝑋

0
3

)
𝑋2,𝑋3 ↦

(
0 1
1 0

)
𝑋1,𝑋2,𝑋3 ↦ (1),

(
11,𝑋0

1 ,𝑋
0
2 ,𝑋

0
3

)
(𝐴1,7)1∕2 Id

(
11,𝑋1

1 ,𝑋
1
2 ,𝑋

1
3

)
𝑋1 ↦

⎛⎜⎜⎜⎝
0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1

⎞⎟⎟⎟⎠,
(
11,𝑋1

1 ,𝑋
1
2 ,𝑋

1
3

)

𝑋2 ↦

⎛⎜⎜⎜⎝
0 0 1 0
0 1 0 1
1 0 1 1
0 1 1 1

⎞⎟⎟⎟⎠,

𝑋3 ↦

⎛⎜⎜⎜⎝
0 0 0 1
0 0 1 1
0 1 1 1
1 1 1 1

⎞⎟⎟⎟⎠
Table 4

Modular invariants, NIM-reps and their respective exponents for rank 4 modular tensor categories, toric case.

MTC Modular invariant Exponent NIM-rep Exponent

Toric Id
(
11 ,𝑋1

1 ,𝑋
1
2 ,𝑋

1
3

)
𝑋1 ↦

⎛⎜⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎟⎠,
(
11,𝑋1

1 ,𝑋
1
2 ,𝑋

1
3

)

𝑋2 ↦

⎛⎜⎜⎜⎝
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞⎟⎟⎟⎠,

𝑋3 ↦

⎛⎜⎜⎜⎝
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞⎟⎟⎟⎠⎛⎜⎜⎜⎝
1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠
(
11 ,𝑋1

1 ,𝑋
0
2 ,𝑋

0
3

)
𝑋1 ↦

(
1 0
0 1

)
,

(
11,𝑋1

1 ,𝑋
0
2 ,𝑋

0
3

)
𝑋2,𝑋3 ↦

(
0 1
1 0

)
⎛⎜⎜⎜⎝
1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

⎞⎟⎟⎟⎠
(
11 ,𝑋0

1 ,𝑋
1
2 ,𝑋

0
3

)
𝑋2 ↦

(
1 0
0 1

)
,

(
11,𝑋0

1 ,𝑋
1
2 ,𝑋

0
3

)
𝑋1,𝑋3 ↦

(
0 1
1 0

)

What we see is that for rank 2,3 MTCs each modular invariant has a corresponding NIM-rep, and the correspondence is true. 
However, at rank 4 it already starts breaking down: the ℤ4 MTC has a NIM-rep that does not correspond to a modular invariant, and 
20

the toric and (𝐷4, 1) MTCs each having two modular invariants associated to a single NIM-rep.
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Table 4 (continued)

MTC Modular invariant Exponent NIM-rep Exponent

⎛⎜⎜⎜⎝
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎟⎠
(
11,𝑋0

1 ,𝑋
0
2 ,𝑋

1
3

)
𝑋3 ↦

(
1 0
0 1

)
,

(
11,𝑋0

1 ,𝑋
0
2 ,𝑋

1
3

)
𝑋1,𝑋2 ↦

(
0 1
1 0

)
⎛⎜⎜⎜⎝
1 1 0 0
0 0 0 0
1 1 0 0
0 0 0 0

⎞⎟⎟⎟⎠
(
11,𝑋0

1 ,𝑋
0
2 ,𝑋

0
3

)
𝑋1,𝑋2,𝑋3 ↦ (1)

(
11,𝑋0

1 ,𝑋
0
2 ,𝑋

0
3

)
⎛⎜⎜⎜⎝
1 0 1 0
1 0 1 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠
(
11,𝑋0

1 ,𝑋
0
2 ,𝑋

0
3

)
– –

Table 5

Modular invariants, NIM-reps and their respective exponents for rank 4 modular tensor categories, (𝐷4, 1) case.

MTC Modular invariant Exponent NIM-rep Exponent

(𝐷4,1) Id
(
11 ,𝑋1

1 ,𝑋
1
2 ,𝑋

1
3

)
𝑋1 ↦

⎛⎜⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎟⎠,
(
11,𝑋1

1 ,𝑋
1
2 ,𝑋

1
3

)

𝑋2 ↦

⎛⎜⎜⎜⎝
0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

⎞⎟⎟⎟⎠,

𝑋3 ↦

⎛⎜⎜⎜⎝
0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0

⎞⎟⎟⎟⎠⎛⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎟⎠
(
11 ,𝑋1

1 ,𝑋
0
2 ,𝑋

0
3

)
𝑋1 ↦

(
1 0
0 1

)
,

(
11,𝑋1

1 ,𝑋
0
2 ,𝑋

0
3

)
𝑋2,𝑋3 ↦

(
0 1
1 0

)
⎛⎜⎜⎜⎝
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞⎟⎟⎟⎠ (11,𝑋0
1𝑋

1
2 ,𝑋

0
3 ) 𝑋2 ↦

(
1 0
0 1

)
,

(
11,𝑋0

1 ,𝑋
1
2 ,𝑋

0
3

)
𝑋1,𝑋3 ↦

(
0 1
1 0

)
⎛⎜⎜⎜⎝
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎟⎠ (11,𝑋0
1 ,𝑋

0
2 ,𝑋

1
3 ) 𝑋3 ↦

(
1 0
0 1

)
,

(
11,𝑋0

1 ,𝑋
0
2 ,𝑋

1
3

)
𝑋1,𝑋2 ↦

(
0 1
1 0

)
⎛⎜⎜⎜⎝
1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

⎞⎟⎟⎟⎠ (11,𝑋0
1 ,𝑋

0
2 ,𝑋

0
3 ) 𝑋1,𝑋2,𝑋3 ↦ (1)

(
11,𝑋0

1 ,𝑋
0
2 ,𝑋

0
3

)
⎛⎜⎜⎜⎝
1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

⎞⎟⎟⎟⎠ (11,𝑋0
1 ,𝑋

0
2 ,𝑋

0
3 ) – –

References

[1] M.A. Armstrong, Groups and Symmetry, Undergraduate Texts in Mathematics, Springer-Verlag, 2010.

[2] T. Booker, A. Davydov, Commutative algebras in Fibonacci categories, J. Algebra 355 (2012) 176–204.

[3] P. Bruillard, C. Galindo, S.-H. Ng, J.Y. Plavnik, E.C. Rowell, Z. Wang, Classification of super-modular categories by rank, Algebr. Represent. Theory 23 (2020) 
795–809.

[4] P. Bruillard, S.-H. Ng, E.C. Rowell, Z. Wang, On classification of modular categories by rank, Int. Math. Res. Not. 24 (2016) 7546–7588.

[5] P. Bruillard, C.M. Ortiz-Marrero, Classification of rank 5 premodular categories, J. Math. Phys. 59 (2018).

[6] R.E. Behrend, P.A. Pearce, V.B. Petkova, J.-B. Zuber, Boundary conditions in rational conformal field theories, Nucl. Phys. B 579 (3) (2000) 707–773.
21

[7] P. Bruillard, J. Plavnik, E.C. Rowell, Q. Zhang, On classification of super-modular categories of rank 8, J. Algebra Appl. 20 (01) (2021) 2140017.

http://refhub.elsevier.com/S0550-3213(24)00091-9/bib4B9B1C96867F6FBD045F7B450E87B8C6s1
http://refhub.elsevier.com/S0550-3213(24)00091-9/bib0A5A4D7386065C6C6AC19C303768C7E1s1
http://refhub.elsevier.com/S0550-3213(24)00091-9/bib16C19E577B39604DA09EF306319CE1ABs1
http://refhub.elsevier.com/S0550-3213(24)00091-9/bib16C19E577B39604DA09EF306319CE1ABs1
http://refhub.elsevier.com/S0550-3213(24)00091-9/bibEB50FD0118C52BF3936A243AFF7C7629s1
http://refhub.elsevier.com/S0550-3213(24)00091-9/bib292365AA98C86C6962152D0D010B9846s1
http://refhub.elsevier.com/S0550-3213(24)00091-9/bib8771562DA1E37EA95F89474036922EEBs1
http://refhub.elsevier.com/S0550-3213(24)00091-9/bibD0EBA1EBA15DCE8C75ED0C0117E02F5As1


Nuclear Physics, Section B 1002 (2024) 116525S. Hannah and A. Ros Camacho

[8] P. Bruillard, Rank 4 premodular categories, N.Y. J. Math. 22 (2016) 775–800.

[9] P.J. Cameron, Permutation Groups, London Mathematical Society Student Texts, Cambridge University Press, 1999.

[10] Y. Choi, B.C. Rayhaun, Y. Sanghavi, S.-H. Shao, Remarks on boundaries, anomalies, and noninvertible symmetries, Phys. Rev. D 108 (12) (December 2023).

[11] P. Di Francesco, J.-B. Zuber, SU (N) lattice integrable models associated with graphs, Nucl. Phys. B 338 (1990) 602–646.

[12] P. Etingof, S. Gelaki, D. Nikshych, V. Ostrik, Tensor Categories, Mathematical Surveys and Monographs, vol. 205, American Mathematical Society, Providence, 
RI, 2015.

[13] P. Etingof, M. Khovanov, Representations of tensor categories and Dynkin diagrams, Int. Math. Res. Not. (5) (1995) 235–247, available at https://academic .oup .
com /imrn /article -pdf /1995 /5 /235 /6768493 /1995 -5 -235 .pdf.

[14] D.E. Evans, M. Pugh, Classification of module categories for SO(3)2𝑚 , Adv. Math. 384 (2021) 107713.

[15] J. Froehlich, T. Kerler, Quantum Groups, Quantum Categories and Quantum Field Theory, Lecture Notes in Mathematics, vol. 1542, Springer, 1993.

[16] C. Galindo, Clifford theory for graded fusion categories, Isr. J. Math. 192 (2012) 841–867.

[17] T. Gannon, Boundary conformal field theory and fusion ring representations, Nucl. Phys. B 627 (2002) 506–564.

[18] T. Gannon, Modular data: the algebraic combinatorics of conformal field theory, J. Algebraic Comb. 22 (2) (2005) 211–250.

[19] T. Gannon, Moonshine Beyond the Monster: The Bridge Connecting Algebra, Modular Forms and Physics, Cambridge University Press, 2006.

[20] Y.-Z. Huang, J. Lepowsky, L. Zhang, Logarithmic tensor category theory, VIII: braided tensor category structure on categories of generalized modules for a 
conformal vertex algebra, preprint, arXiv :1110 .1931v2 [math .QA].

[21] Y.-Z. Huang, Rigidity and modularity of vertex tensor categories, Commun. Contemp. Math. 10 (suppl. 1) (2008) 871–911.

[22] T. Kerler, V.V. Lyubashenko, Non-semisimple Topological Quantum Field Theories for 3-Manifolds with Corners, Lecture Notes in Mathematics, vol. 1765, 
Springer-Verlag, Berlin, 2001.

[23] E. Meir, E. Musicantov, Module categories over graded fusion categories, J. Pure Appl. Algebra 216 (2012) 2449–2466.

[24] S. Natale, On the equivalence of module categories over a group-theoretical fusion category, SIGMA 13 (2017) 042.

[25] S.-H. Ng, E.C. Rowell, X.-G. Wen, Classification of modular data up to rank 11, preprint, arXiv :2308 .09670 [math .QA].

[26] S.-H. Ng, E. Rowell, Z. Wang, X.-G. Wen, Reconstruction of modular data from 𝑆𝐿2 (ℤ) representations, Commun. Math. Phys. 402 (2023) 2465–2545.

[27] S.H. Ng, Y. Wang, Q. Zhang, Modular categories with transitive Galois actions, Commun. Math. Phys. 390 (2022) 1271–1310.

[28] V. Ostrik, Module categories, weak Hopf algebras and modular invariants, Transform. Groups 8 (2003) 177–206.

[29] V. Ostrik, Module categories over the Drinfeld double of a finite group, Int. Math. Res. Not. 27 (2003) 1507–1520.

[30] V. Ostrik, Pivotal fusion categories of rank 3, Mosc. Math. J. 15 (2) (2015) 373–396.

[31] E.C. Rowell, R. Stong, Z. Wang, On classification of modular tensor categories, Commun. Math. Phys. 292 (2009) 343–389.

[32] K. Shimizu, Non-degeneracy conditions for braided finite tensor categories, Adv. Math. 355 (2019).

[33] J. Siehler, Near-group categories, Algebraic Geom. Topol. 3 (2003) 719–775.( )
22

[34] C. Yuan, R. Zhao, L. Li, Irreducible ℤ+-modules of near-group fusion ring 𝐾 ℤ3,3 , Front. Math. China 13 (2018).

http://refhub.elsevier.com/S0550-3213(24)00091-9/bib8D37869EBC7AF08A31DF14FE3F48BEE2s1
http://refhub.elsevier.com/S0550-3213(24)00091-9/bib7C4FBC7564970F2B62D055F9B75C1A41s1
http://refhub.elsevier.com/S0550-3213(24)00091-9/bib39D24D37CFF1B85490AB8084A9FBD97Es1
http://refhub.elsevier.com/S0550-3213(24)00091-9/bibABEF4D37FE6F478DAD8D87AB88F8CDF4s1
http://refhub.elsevier.com/S0550-3213(24)00091-9/bibCFE27F2BE6681872381F1DA96749D01Bs1
http://refhub.elsevier.com/S0550-3213(24)00091-9/bibCFE27F2BE6681872381F1DA96749D01Bs1
https://academic.oup.com/imrn/article-pdf/1995/5/235/6768493/1995-5-235.pdf
https://academic.oup.com/imrn/article-pdf/1995/5/235/6768493/1995-5-235.pdf
http://refhub.elsevier.com/S0550-3213(24)00091-9/bib078401532866081DDDDA6744220B4C75s1
http://refhub.elsevier.com/S0550-3213(24)00091-9/bib8C8BA29DAFD95AF91E280D1E80B81773s1
http://refhub.elsevier.com/S0550-3213(24)00091-9/bibC2010B36F265DB0CC5B44440D518545Es1
http://refhub.elsevier.com/S0550-3213(24)00091-9/bib20D54258A09EE41CA7B8888A471ED6E8s1
http://refhub.elsevier.com/S0550-3213(24)00091-9/bibC4A648BECD03776536304811C85292DFs1
http://refhub.elsevier.com/S0550-3213(24)00091-9/bib85F7E0EC0B776685067D046A21935192s1
http://refhub.elsevier.com/S0550-3213(24)00091-9/bib8E08A8518DCA274AC40BAB51FCA2BEF9s1
http://refhub.elsevier.com/S0550-3213(24)00091-9/bib8E08A8518DCA274AC40BAB51FCA2BEF9s1
http://refhub.elsevier.com/S0550-3213(24)00091-9/bib61F511F727B857A4B16547CA4E59A680s1
http://refhub.elsevier.com/S0550-3213(24)00091-9/bib7E9293E90055A83D4943872232FF638Fs1
http://refhub.elsevier.com/S0550-3213(24)00091-9/bib7E9293E90055A83D4943872232FF638Fs1
http://refhub.elsevier.com/S0550-3213(24)00091-9/bibAD05F78187C942F9DD521605FA81F1BAs1
http://refhub.elsevier.com/S0550-3213(24)00091-9/bib07F2A27C6E5EE8AFD08991E64DD5C136s1
http://refhub.elsevier.com/S0550-3213(24)00091-9/bibFF9467F010415BF63726AF5F1A41645Es1
http://refhub.elsevier.com/S0550-3213(24)00091-9/bibE54B5DC1F2468335666DEDE7B552168Ds1
http://refhub.elsevier.com/S0550-3213(24)00091-9/bibBBFBF92BCBB5CFE02C0A56B5B57A410Cs1
http://refhub.elsevier.com/S0550-3213(24)00091-9/bibC11BB3272C5887A0A5131E9DED0A9357s1
http://refhub.elsevier.com/S0550-3213(24)00091-9/bib6D68E67261C17271D0F1659553067C97s1
http://refhub.elsevier.com/S0550-3213(24)00091-9/bibA1B66A5D2C830BB4DE6399BCF67A4ACAs1
http://refhub.elsevier.com/S0550-3213(24)00091-9/bib741066DB83E01B2E278E24CCFC2EC1C3s1
http://refhub.elsevier.com/S0550-3213(24)00091-9/bib986E489F6308C2BE37BEE9C79438F932s1
http://refhub.elsevier.com/S0550-3213(24)00091-9/bibD2552CC4F069FA9E6EC1A1E7F1F408EEs1
http://refhub.elsevier.com/S0550-3213(24)00091-9/bib42E83E50F44BCE233A1005CA9ED69F7Ds1

	Detecting algebra objects from NIM-reps in pointed, near-group and quantum group-like fusion categories
	1 Introduction
	2 Preliminaries
	2.1 Group actions
	2.2 Fusion categories
	2.3 Z+-rings
	2.4 NIM-reps
	2.5 Module categories, algebra objects and NIM-reps

	3 NIM-representations
	3.1 Group rings
	3.2 Near-group fusion rings
	3.3 Admissible NIM-reps and algebra objects for pointed and near-group fusion categories
	3.4 (A1,l)1/2 fusion rings and its admissible NIM-reps and algebra objects

	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Appendix A Modular invariants and the exponents conjecture for low rank modular tensor categories, joint with Devi Young
	References


