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Pose-Aware 3D Talking Face Synthesis using
Geometry-guided Audio-Vertices Attention

Bo Li, Xiaolin Wei, Bin Liu, Zhifen He, Junjie Cao, Yu-Kun Lai

Abstract—Most of the existing 3D talking face synthesis meth-
ods suffer from the lack of detailed facial expressions and realistic
head poses, resulting in unsatisfactory experiences for users.
In this paper, we propose a novel pose-aware 3D talking face
synthesis method with a novel geometry-guided audio-vertices
attention. To capture more detailed expression, such as the subtle
nuances of mouth shape and eye movement, we propose to
build hierarchical audio features including a global attribute
feature and a series of vertex-wise local latent movement features.
Then, in order to fully exploit the topology of facial models, we
further propose a novel geometry-guided audio-vertices attention
module to predict the displacement of each vertex by using vertex
connectivity relations to take full advantage of the corresponding
hierarchical audio features. Finally, to accomplish pose-aware
animation, we expand the existing database with an additional
pose attribute, and a novel pose estimation module is proposed by
paying attention to the whole head model. Numerical experiments
demonstrate the effectiveness of the proposed method on realistic
expression and head movements against state-of-the-art methods.

Index Terms—Audio-driven, 3D Facial Animation, Pose-Aware,
Hierarchical Features, audio-vertices Attention.

I. INTRODUCTION

3D talking face synthesis aims to create virtual life-like vi-
sual simulations of human conversation. There are various

applications of 3D talking faces, such as virtual customer ser-
vice agents and digital avatars for gaming. Benefiting from the
strong geometric expression capacity, 3D audio-driven facial
animation is richer and more vibrant than 2D methods, can
be viewed from arbitrary directions, and accurately replicates
natural head motion and facial expressions with sufficient
fidelity.

Generally, 3D talking face techniques aim to establish
a correlation between input audio and realistic 3D facial
expressions along with head movements [1]. Nevertheless,
the current methods [2]–[4] encounter a common limitation
in that they frequently lack intricate facial expressions and
precise head poses, leading to synthesized results that do not
consistently resemble authentic human face animation. The
inconsistency can be traced back to the following issues.
Among existing methods [2]–[4], encoder-decoder structured
networks are commonly used to establish the relationship
between audio and facial spaces. Their common drawback is
that the encoders only focus on global features of audio or
face meshes. Hence it is difficult for these methods to capture
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Fig. 1. Results of audio-driven facial animations generated by the proposed
method. Given a template mesh and an audio clip, our method produces
a mesh deformation sequence with reasonable mouth and eye movements,
which also contains smooth head movements with realistic poses. To better
demonstrate how the method works, we visualize the audio and pose attention
maps. To illustrate the pose variation, we plot the vertex normal at the top of
the nose. The arrows in red and green indicate the orientation of the original
template mesh and the synthesized mesh, respectively. This visualization also
applies to subsequent figures in this paper.

subtle nuances of mouth shape, eye movement and forehead
wrinkles which are essential for creating refined and realistic
expressions. In addition, despite the popularity of datasets such
as VOCASET [2] and Multiface [5], they lack the attribute of
head poses corresponding to audio. As a result, most existing
methods can only produce facial animation with a fixed “zero
pose”, and cannot produce pose-aware realistic animation.

To address the challenges stated above, a novel pose-aware
and realistic 3D talking face synthesis algorithm is proposed in
this paper. On the one hand, to enhance the level of details in
facial animation synthesis, a novel hierarchical audio feature
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is designed. In contrast to the global features employed in
existing works [2]–[4], the proposed hierarchical feature is
composed of a global attribute feature and a series of vertex-
wise local latent movement features. In addition, in order to
fully exploit the topology of facial models, we further pro-
pose a novel geometry-guided audio-vertices attention (GAVA)
module to get geometry-consistent movements of individual
vertices by using vertex connectivity relations to take full
advantage of corresponding hierarchical audio features. On
the other hand, to create life-like talking face animation with
realistic pose movements, we propose to expand the existing
3D talking head datasets with a novel 3D pose attribute
estimation algorithm, then an attention-based head pose pre-
diction module is designed to generate realistic and pose-aware
head movements according to the input audio. Numerical
experiments are conducted to validate the effectiveness of the
proposed method on realistic expression and head movements
against state-of-the-art methods.

In summary, the main contributions of the work include:
• A novel geometry-guided audio-vertices attention method

is proposed to predict detailed and geometry-consistent
facial expressions by taking full advantage of inherent
geometric structure constraints.

• A hierarchical feature composed of a global attribute
feature and a series of vertex-wise local latent movement
features is proposed to achieve detailed facial expressions.

• A novel 3D pose estimation method is proposed to add
complementary pose attributes to the popular datasets,
including VOCASET [2] and Multiface [5].

• Qualitative and quantitative experiments demonstrate that
the proposed approach outperforms state-of-the-art meth-
ods.

II. RELATED WORK

As a key technology of human-computer interaction in
the virtual environment, audio-driven facial animation has
attracted a lot of research [1], [6]. Based on the representation
of talking heads, the majority of existing methods can be
divided into two primary groups: 2D synthesis methods and
3D synthesis methods.

A. 2D synthesis methods

In 2D synthesis methods, facial animation is generated
mainly using facial landmarks, semantic maps, 3D parametric
models or image translation as bridges to solve the problem.
For example, methods [7], [8] utilize facial landmarks as an
intermediate layer for mapping from low-dimensional audio
to high-dimensional video. Another class of methods [9], [10]
uses image-to-image translation to generate facial animation,
where convolutional neural networks or generative adversarial
networks are used to learn the joint embedding of face and
audio. Unlike the above methods, Ye et al. [11] propose a new
image encoding structure, where they extract features from the
audio input and reshape these features as dynamic convolution
kernels of the encoder network. By modularizing the repre-
sentations of talking human faces into the spaces of speech
content, head pose, and identity respectively, Zhou et al. [12]

achieved results with more accurate lip synchronization. Wang
et al. [13] designed an audio-visual correlation transformer
that takes phonemes and facial keypoint-based motion fields
as input to enable single-speaker training, while Huang et
al. [14] performed audio-driven facial video synthesis via
neural rendering from tri-planes [15] to produce realistic
frames. All of the 2D methods described above operate in
the pixel space and cannot be easily generalized to producing
3D animation sequences.

B. 3D synthesis methods

3D synthesis methods can be divided into parametric and
non-parametric methods in general.

1) Parametric methods: The main idea of parametric meth-
ods [16]–[21] is to learn the mapping between speech features
and semantic coefficients represented by parameterized face
models [22]–[24]. The main differences among these methods
are the speech encoder and coefficient regression model. For
example, Zhang et al. [20] use a convolution-based genera-
tive adversarial network to produce head poses for a given
audio, and do not adopt the multi-layer perceptron (MLP)
architecture utilized in most methods. In addition, to better
model the head movement of faces, other researchers [25]–
[29] attempt to predict the semantic parameters of head poses
from captured face videos. Limited by the linear assumption
of face-parameterized representations such as FLAME [24]
and 3DMM [22], the reconstruction accuracy and flexibility of
parametric methods are not good enough especially for facial
details, and it is unable for these methods to control the local
semantics of lips, eyes and wrinkles.

2) Non-parametric methods: Non-parametric methods di-
rectly use the geometric representation of the 3D head and aim
to learn the movement of each vertex. To improve the gener-
alization capability, VOCA [2] employs principal component
analysis for the initial setup of the face representation latent
space and then uses a neural network to subsequently update
and improve this representation. GDPnet [3] starts by utilizing
an autoencoder network to learn the geometric prior of the face
representation latent space from a facial mesh dataset. Subse-
quently, they apply the learned geometric prior to constraining
the face representation space, which is subsequently learned
from the speech. Lahiri et al. [30] introduce a new model that
incorporates personalized information from videos to improve
the realism of 3D face animation. FaceFormer [31] employs a
transformer-based model to analyze and capture the mapping
between audio space and facial movements. MeshTalk [4]
introduces a two-stage talking face algorithm. In the first
stage, a latent expression space is learned with aligned audio
and facial mesh. In the second stage, an audio-conditioned
autoregressive network is employed to synthesize the facial an-
imation. CodeTalker [32] is also a two-step process. Instead of
regarding the audio-vertices mapping as a continuous regres-
sion task as in MeshTalk, CodeTalker conducted cross-modal
mapping in a learned quantified latent space. Nevertheless, the
non-parametric methods discussed above solely focus on the
global feature of audio, neglecting the essential local spatial
attention in audio features. As a consequence, this oversight
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Fig. 2. The pipeline of the proposed pose-aware 3D facial animation synthesis method.

can lead to a lack of intricate and detailed animation in the final
output. In addition, as the existing public talking head datasets
including VOCASET [2] and Multiface [5] only provide “zero-
pose” data, most methods cannot produce realistic talking
faces with fluent pose movement.

III. POSE-AWARE 3D FACIAL ANIMATION SYNTHESIS

Given a template mesh and input audio, our goal is to gener-
ate a realistic and detailed 3D facial expression animation with
fluent poses consistent with the input audio. In this section,
a novel geometry-guided audio-vertices attention method is
proposed for pose-aware 3D facial animation synthesis. The
pipeline of the proposed method is illustrated in Fig. 2. First,
instead of merely using global features as done in related
work [2]–[4], we propose to extract both global facial attribute
feature and local vertex-wise latent movement feature based
on the DeepSpeech [33] encoding, and then both features
are fused to produce the hierarchical feature. To get the
underlying sentiment of the input audio which is crucial to
the head pose, we extract the Mel spectrogram feature of
the audio and utilize a Long Short-Term Memory (LSTM)
network to encode the temporal audio feature. Then a novel
geometry-guided audio-vertices attention module is designed
to predict both the vertex-wise movement and the global pose
transformation. Finally, the animated facial model will be

generated by performing the predicted transformation on the
template mesh.

The remainder of this section is organized as follows. Sec-
tion III-A illustrates the symbol definition, while Section III-B
introduces the proposed method to augment existing datasets
with the pose attribute, followed by the description of the
proposed hierarchical feature extracted from the input audio
signal and defined holistically as well as at individual vertices
in Section III-C. Finally, the geometry-guided audio-vertices
attention method is described in Section III-D.

A. Symbol Definition

In this paper, we organize the training data in the following
form, {(I,yi,pi,di,mi)}Ti=1. I ∈ RN×3 denotes the template
mesh and each row of I contains the x, y, z coordinates of a
vertex. N is the number of vertices of the mesh. yi ∈ RN×3

and pi ∈ R3 denote the ground truth spatial coordinates and
head pose of the ith frame. di ∈ RW×D is the speech feature
window at the ith frame generated by DeepSpeech [33], where
D is the number of phonemes in the alphabet plus an extra
one for a blank label and W is the window size. mi ∈ RF×L

represents the Mel spectrogram transformed from the raw
waveform at the ith frame, where F is the number of Mel
filter banks and L is the length. T is the total number of
frames.
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Fig. 3. The diverse poses produced by the proposed method.

B. Pose Attribute Augmentation

Existing public 3D talking mesh datasets including VO-
CASET [2] and Multiface [5] only provide the animated
head meshes with “zero pose”, and do not have the flexible
pose attribute with respect to audios with various sentiments.
Therefore, most of the existing methods [2]–[4] trained on
the above two datasets cannot provide pose-aware 3D facial
animation.

In order to generate realistic facial animation with audio-
related pose variations, we propose to expand the popular
VOCASET and Multiface datasets with an additional “pose”
attribute. The motivation for the proposed pose augmentation
method is as follows. First, 2D talking face animation methods
can produce facial images with consistent head poses benefit-
ing from the huge amounts of training videos with real poses.
Second, although 2D face animation methods cannot render
realistic facial images as well as 3D synthesis algorithms,
especially in cases with obvious occlusions, the predicted 2D
poses are reliable and can be utilized to help predict a proper
3D head pose.

The proposed pose augmentation method is composed of
two stages. First, given the rendered image of a subject in
VOCASET (or Multiface) and its corresponding audio, we
use the image-based audio-driven talking head method [34] to
synthesize a facial video with realistic pose variations. Then,
we utilize the method [35] to predict the 3D pose parameters
of the head object from the video frames, which are consistent
with the FLAME model [24]. To get more consistent poses, a
Gaussian filter with a standard deviation of 1 and a window
size of 15 is used to smooth the estimated pose parameters
along the time axis. Some examples of the generated head
models with audio-related poses are shown in Fig. 3, and the
statistics of pose movement computed on both datasets are
shown in Fig. 4.

In order to predict the proper latent pose feature fp from
the given audio, we propose to use the Mel spectrogram
rather than the DeepSpeech feature, since the Mel spectrogram
feature is more responsive to the speaker’s emotions and is thus
more related to head poses. An ablation study is conducted in
the supplementary material to compare the performance of
the pose prediction by the above two features. An LSTM
network is then utilized to extract the latent pose feature
fp(mj) from the Mel spectrogram features of the input audio

Fig. 4. The statistics of pose movement on both datasets. The x-axis denotes
the modulus of the pose transformation vector, while the y-axis means the
frequency of the corresponding movement.

clip (Fig. 2). The detailed network architecture is illustrated
in the supplementary material.

C. Hierarchical Feature Construction

Most of the existing related works [2]–[4] merely extract
global features from speech and then map them to the motion
of each vertex. Although the global audio feature has strong
relations to vertex-wise movement, it encodes all the infor-
mation of the input audio including sentiment, global head
poses, expressions and vertex movements, etc. As a result, the
animated meshes predicted only by the global feature suffer
from a lack of detailed expressions, such as the movement
around the mouth regions (Fig. 9).

In this paper, we propose to build hierarchical features
extracted from the audio signal including a global attribute
feature fg and a series of vertex-wise local latent movement
features {flj}i, where j = 1, · · · , N denotes the index of
each vertex and i is the frame index. Global feature fg(di)
encodes the holistic audio feature di, such as facial expressions
with the input audio, while local features {flj (di)} indicate
the localized vertex-wise movement complemented with the
global attribute fg . Then the hierarchical feature {fhj}i is con-
structed by concatenating or summing up both global and local
features. Numerical experiments show that the performance of
the two operations is similar and we choose to sum up global
and local features in this paper. The framework of hierarchical
feature extraction is shown in Fig. 2, and the network details
are illustrated in the supplementary material. An ablation study
is designed in Section IV to validate the effectiveness of the
proposed hierarchical feature.

D. Geometry-guided Audio-vertices Attention Mechanism

Most of the related talking mesh synthesis methods [2]–
[4] utilize MLPs as the decoder to predict the vertex-wise
movement. However, MLP is redundant for the task of talking
mesh as it computes the relationships among any vertices
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Fig. 5. Experimental results on VOCASET [2]. For clearer visualization, we enlarge the mouth area, and the color maps give the distribution of vertex-to-vertex
distance errors (unit: millimeter). We can find that our method has a better ability to preserve details, such as the lips and chin.
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blindly and ignores the intrinsic geometric prior for registered
head meshes.

In order to find the most salient vertices with respect
to the input audio and fully utilize the inherent geome-
try prior, a novel geometry-guided audio-vertices attention
module (GAVA) is proposed to predict the realistic facial
animation. The pipeline of GAVA is shown in Fig. 2. The
hierarchical geometric features fhj

along with the global pose
feature fp are set as the input tokens of an encoder-only
transformer. Each unit of the proposed geometry-driven audio-
vertices transformer is composed of two modules: geometric
attention and pose attention. Geometric attention is designed to
estimate the detailed movement of each vertex according to the
hierarchical audio features and intrinsic head model geometry,
while pose attention is proposed to estimate the consistent and
realistic global pose by analyzing the features of all vertices.

Traditional transformers with self-attention (SA) take a
global approach, i.e., the interactions between all pairs of
vertices (geometric tokens) are computed irrespective of their
local topology relationship. Hence, the architecture does not
incorporate the intrinsic geometric prior to a standard base
head model. To fully exploit the topology of facial models,
a novel geometry-guided audio-vertices attention module is
proposed to predict the realistic movement of each vertex
with the geometric prior regularization. Specifically, we limit
the range that the hierarchical features of each vertex can
“see”. Each vertex can only pay attention to those vertices
that are directly connected to it in each attention module. The
motivation is inspired by traditional heat diffusion on meshes
[36], and the attention map will learn to propagate to the final
meaningful regions with the geometric prior regularization. An
experiment is designed to validate the intuition in Sec. IV, and
the results showed that our design yielded better results.

In addition to the vertex-wise geometry tokens fhj , we set
the global pose feature fp as the last token to predict the
corresponding pose transformation. We assume that the the
prediction of global pose attribute can “see” the features of
the whole mesh while the vertex-wise detailed facial geometric
features are independent of the global head pose.

Based on the above analysis, the geometry-guided audio-
vertices attention is designed as follows. First, we extract the
adjacency matrix of the template head model, M ∈ RN×N ,
where Mi,j represents the connection relationship between
the ith and jth vertices. If there is an edge between these
two vertices, Mi,j will be set to 1, otherwise, it will be
assigned as negative infinity. In order to predict the global
pose transformation, one more row and one more column
are augmented on M, corresponding to the global head
pose. Therefore, we can get an augmented adjacency matrix
M̃ ∈ R(N+1)×(N+1), where the values of the last row are
set to 1, and the first N elements in the last column are set
to negative infinity, i.e., the head pose depends on detailed
features of all the vertices, but vertex features are independent
of the head pose.

Then, the geometry-guided audio-vertices attention can be
formulated as follows,

softmax(
FWQ(FWK)T√

dk
⊙M)(FWV ). (1)

where F = {fh1
, · · · , fhN

, fp} ∈ R(N+1)×d, d is the feature
dimension. WQ, WK and WV are three trainable linear
projection layers, corresponding to queries, keys and values.
dk is the dimension of the queries and keys. As the first N
values of the last row of M are set to 1, the pose prediction
module is computed by integrating the movements of the
whole head model.

Finally, The output of the final transformer layer is
further encoded into the vertex-wise displacement O =
{o1, o2, ..., oN} ∈ RN×3 and the global head pose transfor-
mation parameters Tp. The ith frame of the predicted facial
model can be computed by

ŷi = Tp(I+O) (2)

E. Loss function

The training loss L is composed of four items, including
reconstruction loss Lr, velocity loss Lv , eye loss Le, and
pose loss Lp:

L = Lr + λ1Lv + λ2Lp + λ3Le, (3)

where λ1, λ2 and λ3 are weight parameters.
The reconstruction loss Lr between the ground truth yi

and the predicted 3D model ŷi is defined as the mean squared
error of vertex-to-vertex displacements,

Lr =
1

N

N∑
j=1

∥yj
i − ŷj

i ∥2, (4)

where || · |||2 is the L2-norm.
Velocity loss is used to induce temporal stability, which

measures the smoothness of the prediction in the context of
the sequence. It is formulated as

Lv =
1

N

N∑
j=1

∥(yj
i − yj

i−1)− (ŷj
i − ŷj

i−1)∥2. (5)

Since eye movements have a limited correlation with audio,
further eye loss is required for the prediction of the eye
movements like blinking. We propose to calculate the KL
divergence between the anticipated and actual movements of
the eye region, treating them as random variables. Specifically,
the loss Le is defined as the following:

Le = KL
j∈Meye

(ŷj , yj), (6)

where ŷj denotes the coordinates of the j-th vertex in all
frames of batches, yj is the corresponding ground-truth po-
sition, and Meye refers to the mask of eye regions. It is
crucial to note that we no longer distinguish between batches
while computing the loss Le, because we assume that the way
human eyes move follows a similar pattern.

The pose loss function Lp is utilized to constrain the
predicted pose to be similar to the ground truth obtained in
Sec. III-B.

Lp = ∥pi − [Tp(p0)]i∥2 . (7)

where p0 is the initial “zero-pose” of template head model.
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Fig. 6. Experimental results on Multiface [5]. For clearer visualization, we enlarge the mouth and eye areas, and the color maps give the distribution of
vertex-to-vertex distance errors (unit: millimeter). We can find that our method has a better ability to preserve details, such as the lips and eyes.
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TABLE I
QUANTITATIVE COMPARISON WITH STATE-OF-THE-ART METHODS.

VOCASET [2] Multiface [5]
Evl Eve FDD AFDD Evl Eve FDD AFDD

VOCA [2] 6.384 1.993 1.927 1.624 5.075 3.224 3.353 2.514
GDPnet [3] 6.062 1.986 1.929 1.570 - - - -

MeshTalk [4] 6.449 2.097 2.657 2.226 6.385 4.462 3.355 2.369
Faceformer [31] 5.506 2.013 1.673 1.349 5.285 3.098 4.655 3.221
CodeTalker [32] 5.278 2.060 1.544 1.098 6.139 4.124 2.507 1.711

Ours 5.081 1.932 1.407 1.085 4.567 3.171 2.222 1.699

IV. EXPERIMENT

In this section, we first introduce the implementation details
and datasets used in the proposed method. Then qualitative
and quantitative experiments are conducted to demonstrate
the effectiveness of our method. Finally, two ablation study
experiments are conducted to validate the effectiveness of the
proposed modules.

Implementation details. We train the network using the
Adam optimization algorithm on an NVIDIA A100 GPU.
The values of hyperparameters λ1, λ2 and λ3 in the loss
function (Eq. 3) have been assigned as 10, 0.001, and 0.005,
respectively. The batch sizes are set as 16 and 8 for the VO-
CASET and Multiface datasets respectively, and the training
process consists of 70,000 iterations. The parameter W in
DeepSpeech is set to 16 and the F in the Mel spectrogram is
set to 80.

Datasets. The VOCASET dataset [2] comprises a compre-
hensive collection of audio-4D scan pairs obtained from 6
female and 6 male subjects. Each subject delivers 40 sentences
for the recordings. The 3D facial movements are captured at
a frame rate of 60 FPS and are accurately registered using
the publicly available generic FLAME model [24]. All facial
meshes in the dataset are in a standardized “zero pose” state.

Public Multiface dataset [5] contains a collection of audio-
4D scan pairs captured from 13 subjects, one subject speaks
12 sentences and others speak 50 sentences, and 3D facial
movements are captured at a frame rate of 30FPS. However,
neither of these datasets has variations in the head posture.

A. Audio-driven 3D facial animation

In this section, we compare the performance of audio-driven
3D facial animation with “zero pose” against state-of-the-art
methods, VOCA [2], GDPnet [3], MeshTalk [4], FaceFormer
[31] and CodeTalker [32] on both VOCASET [2] and Mul-
tiface [5] datasets. Note that, we randomly choose speaking
styles for VOCA, GDPnet, FaceFormer and CodeTalker meth-
ods. As done in the baselines [2]–[4], we use the mean of the
maximum error in all frames for the lip and eye regions as
the evaluation metrics, denoted as Evl and Eve, respectively.
Specifically, Evl can be written in the following form:

Evl =
1

T

T∑
i=1

max
j∈Mlip

(∥ŷji − yji ∥2), (8)

where ŷji denotes the jth vertex coordinates in the predicted
ith frame, yji denotes the ground true position, || · |||2 denotes

the Euclidean distance, Mlip denotes the mask of lips, and T
denotes the total number of frames. Eve is similarly defined.

As discussed in related work, CodeTalker [32], L2 distance
with ground truth vertices Eve cannot assess the accuracy
of expressions within eye regions completely. Therefore, we
also used the Upper Face Dynamics Deviation (FDD) metric
proposed in CodeTalker to evaluate the performance of eye
movements.

FDD(M1:T , M̂1:T ) =

∑
v∈SU

(dyn(Mv
1:T )− dyn(M̂v

1:T ))

|SU |
,

(9)
where Mv

1:T , M̂
v
1:T ∈ R3×T denote the ground truth and

predicted motions of the v-th vertex respectively, and SU is the
index set of upper-face vertices. dyn(·) denotes the standard
deviation along the temporal axis.

FDD is proposed to measure the distribution consistency
between the predicted and ground truth eye motion space.
However, we found some potential issues in Eq. 9 may
limit the effectiveness of FDD. First, the deviation dyn(·)
in Eq. 9 is defined based on the element-wise L2 norm of
each motion vector Mv

1:T ∈ R3, which result in the loss
of the direction of the motion. Second, the motion deviation
dyn(Mv

1:T )− dyn(M̂v
1:T ) is summed directly within the eye

regions. As the motion deviation is a signed value, some real
motion statistics cannot be computed accurately (as positive
and negative values may unintentionally cancel each other).
Based on the above analysis, we proposed an improved
axis-based upper-face dynamics deviation (AFDD). First, we
propose to compute the standard deviation along each axis
x, y and z, and then we summarize the absolute value of
the difference of the standard deviation within the eye regions
along each axis. The formula of the proposed AFDD is defined
as follows,

AFDD =

∑
v∈SU

∑
i∈{x,y,z}(|dyn(M

vi

1:T )− dyn(M̂vi
1:T )|)

3 ∗ |SU |
.

(10)

Furthermore, we also employ qualitative visual perception
as a criterion. Qualitative results are shown in Fig. 5 and
Fig. 6, while quantitative errors are shown in Table I. Note
that, the results of GDPnet [3] for the Multiface dataset are
not included as the authors have not released the training
code. In Fig. 5, we can find that other methods produce
more obvious and larger errors than the proposed method
around the mouth regions. Compared with VOCASET, the
Multiface dataset provides training data with more detailed
expressions, and the experimental results as shown in Fig. 6
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Fig. 7. Synthesized head meshes with audio-related poses and the correspond-
ing pose-vertices attention maps. The visual pose attention map is obtained
from the last row of the attention map output by the third attention module,
where each value in the last row is assigned to the corresponding vertex.

highlight the superiority of the proposed method in predicting
movement details. Benefiting from the hierarchical feature
extraction strategy and audio-vertices attention mechanism,
the accuracy of the proposed method is significantly superior
to other methods in detailed expression synthesis and eye
movements. See the supplementary video for a more detailed
comparison. An experiment is designed in Sec. IV-C to vali-
date the effectiveness of the proposed hierarchical feature and
attention mechanism respectively.

Table I further illustrates the quantitative errors around the
lip and eye regions. Compared with the previous methods,
the error of our approach is reduced by at least 0.19mm in
terms of Evl. The proposed method also gains competitive
performance in the prediction of eye regions. The L2 error Eve

quantifies the absolute variance in comparison to the actual
movement, whereas FDD and AFDD evaluate how well the
predicted motion space aligns with the actual motion space in
terms of distribution consistency. From Table I, we can find
that the proposed method achieved superior performance in
most cases.

In addition to the closed-form metrics, we also conducted
subjective user study experiments to evaluate lip synchro-
nization and realism on both datasets. We randomly select
20 pieces of audio, and generate the corresponding facial
animation using all of the comparison methods. Then, a
random pair of the synthesized videos are shown to the user
to determine which method performs better on high-quality
animation generation with lip synchronization and realism.
80 participants were invited to join the user study, and each
user gave their judgment on each pair of videos. The final
quantitative results are shown in Table II. It is easy to find that
the proposed method outperformed other methods in terms of
both lip synchronization and realism.

Fig. 8. Comparison of pose variation amplitude between ours and Yi et
al. [37]. The horizontal axis represents the frames and the vertical axis
represents the norm of the head pose rotation vector.

B. Pose attribute evaluation

Benefiting from the proposed pose attribute augmentation
approach and the attention-based pose estimation algorithm,
our method can predict realistic and diverse pose movements
rather than merely “zero pose” as done in baselines [2]–
[4]. From Fig. 7, we can find that the proposed method can
generate realistic and fluent head pose movements with the
given audio, and the changes of pose tend to align with tone
transitions. In addition, the pose-vertices attention map is also
demonstrated to evaluate the importance of each vertex to the
final pose estimation. It is obvious that the pose estimation
network has learned to pay appropriate attention to the vertices
which play more important roles in pose prediction. For ex-
ample, when there is an obvious pose variation, the estimation
network will attend to most of the vertices on the head (2nd
column in the last row). It implies that the global pose can be
estimated by the salient vertices with larger attention values.
When there is only a small pose variation around some regions,
the network will pay less attention to these vertices, such as
the chin regions in the 4th column of the last row of Fig. 7.
The phenomenon is in line with human intuition and validates
the effectiveness of the proposed pose estimation strategy to
some extent.

Recently, Yi et al. [37] proposed a parametric method to
synthesize talking face videos. Their intermediate process is
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TABLE II
USER STUDY RESULTS FOR LIP SYNCHRONIZATION AND REALISM.

Competitors VOCASET [2] Multiface [5]
Lip Sync Realism Lip Sync Realism

Ours vs. VOCA 78.06 83.79 75.88 80.20
Ours vs. GDPnet 79.11 82.61 - -

Ours vs. MeshTalk 95.35 96.96 71.47 72.75
Ours vs. FaceFormer 57.77 61.08 94.55 96.76
Ours vs. CodeTalker 57.42 59.04 80.29 83.14

Ours vs. GT 47.42 41.34 41.96 43.24

TABLE III
POSE USER STUDY RESULTS.

Competitors VOCASET [2] Multiface [5]
Smoothness Realism Smoothness Realism

Ours vs. Yi et al. 81.13 71.17 84.91 73.58

able to predict the 3D head poses of 3DMM. Therefore,
we compare the performance of head pose estimation of
the proposed non-parametric method against the parametric
method [37] in this section. The pose estimation results of
both methods on a speech of about one second (with audio
content ‘Severe myopia’) are shown in Fig. 8. We can find
that the variation of the head poses in Yi et al. [37] is drastic
in a very short interval as highlighted by the marked circle and
its corresponding facial animations in Fig. 8. The head turns
from right to left several times in less than 1 second, leading to
an unacceptable experience. In contrast, our method produces
a more consistent, downward facial motion to the left.

In addition to visual inspection, a subjective user study
was conducted to compare the performance of both methods.
Twenty video clips were randomly selected from each dataset.
53 users between the ages of 20 and 50 were invited to
participate in the user study. For each individual, 40 pairs of
short clips were randomly shown. Participants were asked to
evaluate which video clip demonstrated superior smoothness
and realism in head pose. The results of the study are presented
in Table III. We can find that over 70% of participants
preferred the smooth and realistic poses produced by the
proposed technique, while others favored those of Yi et al.
[37].

C. Ablation experiments

There are two key modules in the proposed framework,
i.e., hierarchical feature and geometry-guided audio-vertices
attention. In this section, we conduct experiments to validate
the effectiveness of each module. To eliminate the influence
of some unnecessary factors, we removed the pose module
during the ablation experiments. See Supplementary Material
for more details of ablation experiments on the pose audio.

As discussed in Sec. III, global feature G encodes the
holistic attribute of audio, and is adopted in most of the
previous work [2]–[4]. Local features L indicate the localized
vertex-wise movement under the global attribute G. In this
paper, we propose to build hierarchical audio features (LG)
by combining the global attribute feature G and the vertex-
wise local latent movement features L. We conduct two groups
of experiments for various features with global MLP and the

TABLE IV
ABLATION EXPERIMENTAL RESULTS.

VOCASET [2] Multiface [5]
Evl Eve Evl Eve

L+MLP 5.739 1.972 4.962 3.111
G+MLP 6.571 2.112 5.785 3.219

LG+MLP 5.814 1.969 5.081 3.177
L+GAVA 5.602 1.915 4.662 3.045
G+GAVA 6.393 2.084 5.596 3.572
LG+SA 5.718 1.997 4.849 3.138

LG+GAVA 5.322 1.864 4.495 3.030

proposed geometry-guided audio-vertices attention (GAVA)
module. On the one hand, we evaluate the performance of
different features under the same mapping network. On the
other hand, we compare the performance of MLP and the
proposed GAVA with the same features.

The qualitative results are shown in Fig. 9. From the visual
inspection and error maps, we can find that method G+MLP
can capture the rough global movement but cannot produce de-
tailed expressions, especially around mouth regions as shown
in magnified views. 1. The global feature is copied N times
in the proposed GAVA module, and cannot produce discrim-
inative features for each vertex. Therefore, G+GAVA can-
not generate meaningful expressions. Compared with global
features, local features (L+MLP) can produce more detailed
expressions, such as mouth movements. L+GAVA can alleviate
the artifacts generated by global MLP with the proposed
attention to geometry prior, such as the wrinkle in the cheek.
However, local features cannot capture the global seman-
tics well, such as the range of mouth opening in the first
frame. Compared with the local feature or global feature, the
proposed hierarchical feature (LG+MLP) can produce audio-
related global movement with detailed expressions. Benefiting
from the geometry-prior attention mechanism, LG+GAVA can
generate more realistic expressions with geometry consistency,
such as the corner of mouth regions in the third frame.

The quantitative measurements are shown in Table IV. We
calculate the maximum value of the vertex-to-vertex squared
error in the lip and eye regions per frame and use the average
of the maximum values across all frames to evaluate the error.
The quantitative results are in line with the visual analysis
and demonstrate the effectiveness of the proposed hierarchical
feature and GAVA module.

In this experiment, we also evaluate the performance of
the proposed GAVA against traditional self-attention (SA).
In contrast to SA, our proposed GAVA uses the adjacency
matrix of the mesh to constrain the span of attention, while
SA does not take into account the local manifold structure
of 3D models. Fig. 10 demonstrates the synthesized results
by GAVA and SA with the same hierarchical feature input.
The method based on SA achieves similar performance as
LG+MLP in both visual inspections (corners of the mouth
in the third frame) and quantitative metrics (Table IV) due

1It is noted that VOCA and GDPNet can generate smooth expressions with
global features and MLP due to that they both use some prior knowledge of
facial movements. VOCA uses the PCA coefficient of facial movements to
initialize the decoder, and GDPnet constrains the consistency of intermediate
features with those of the facial mesh autoencoder reconstruction network.
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Fig. 9. Effectiveness of the proposed hierarchical feature and GAVA module. The color maps give the distribution of vertex-to-vertex distance errors (unit:
millimeter).

to its global mechanism. Instead, the proposed GAVA can
produce more consistent animation (1st frame) and detailed
and realistic geometric deformation (corners of mouth and chin
regions) by incorporating geometry priors into the attention
module. From the attention map, we can also find that GAVA
can capture more accurate and localized attention against the
blind SA. To further validate the performance of GAVA, we
show the attention maps at different layers of both methods
in Fig. 11. We can find that the proposed GAVA is indeed a
geometry-guided propagation process.

D. Generalization

To validate the robust performance of the proposed method,
the synthesized results based on noisy audio signals and
generalization across unseen subjects and across languages are
shown in the supplementary document.

V. CONCLUSION AND FUTURE WORK

In this paper, we present a novel approach for pose-aware
life-like 3D talking face synthesis. A novel hierarchical feature
integrated by a global attribute feature and a series of vertex-
wise local latent movement features is proposed to capture
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Fig. 10. Comparisons of SA and GAVA modules. The color maps give the distribution of vertex-to-vertex distance errors (unit: millimeter) and the attention
maps show the motivation amplitude distribution of correspondence mesh vertices. The audio attention map is derived from the first N rows and N columns
of the attention map generated by the final attention module. In this process, the maximum values of each column are attributed to their corresponding vertices,
which are then depicted in different hues corresponding to these values.

Fig. 11. Audio attention output in different layers.

more intricate facial expressions. To generate more realistic
and geometry-consistent facial animation, we propose a novel
geometry-guided audio-vertices attention module. Finally, to
accomplish pose-aware animation, we expand the existing
database with an additional pose attribute by the proposed
3D pose estimation method. Quantitative and qualitative ex-
periments validate the effectiveness of the proposed method
on realistic expression and head movements against state-of-
the-art methods. A limitation of the proposed method is that
it does not explicitly incorporate emotion as input to guide
the generation of emotional animation. This might cause the
creation of fixed sequences of actions with a given audio,
leading to the lack of diverse outcomes. In the future, we
anticipate making significant advancements in the field of
audio-driven emotional 3D face animation.
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