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Abstract
Recovering 3D human meshes from monocular images is an inherently ill‐posed and
challenging task due to depth ambiguity, joint occlusion, and truncation. However, most
existing approaches do not model such uncertainties, typically yielding a single recon-
struction for one input. In contrast, the ambiguity of the reconstruction is embraced and
the problem is considered as an inverse problem for which multiple feasible solutions
exist. To address these issues, the authors propose a multi‐hypothesis approach, multi‐
hypothesis human mesh recovery (MH‐HMR), to efficiently model the multi‐
hypothesis representation and build strong relationships among the hypothetical fea-
tures. Specifically, the task is decomposed into three stages: (1) generating a reasonable set
of initial recovery results (i.e., multiple hypotheses) given a single colour image; (2)
modelling intra‐hypothesis refinement to enhance every single‐hypothesis feature; and (3)
establishing inter‐hypothesis communication and regressing the final human meshes.
Meanwhile, the authors take further advantage of multiple hypotheses and the recovery
process to achieve human mesh recovery from multiple uncalibrated views. Compared
with state‐of‐the‐art methods, the MH‐HMR approach achieves superior performance
and recovers more accurate human meshes on challenging benchmark datasets, such as
Human3.6M and 3DPW, while demonstrating the effectiveness across a variety of set-
tings. The code will be publicly available at https://cic.tju.edu.cn/faculty/likun/projects/
MH‐HMR.
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1 | INTRODUCTION

3D human mesh recovery from monocular images is a widely
studied problem and a popular research topic in computer
vision, which can be the cornerstone for numerous applica-
tions including action recognition [1–3], human–computer
interaction [4], augmented/virtual reality [5] etc. However, it
remains a challenging task and an inherently ill‐posed problem
due to issues, such as depth ambiguity in lifting 2D observation
to 3D space, joint occlusion caused by flexible body structures,
and truncation regarding insufficient input.

Given an input image, existing works for 3D human mesh
recovery [6–9] typically return a single 3D mesh output in a

deterministic manner, largely due to its convenience in network
designs, benchmark comparisons and downstream applica-
tions. But this often produces unsatisfactory results, especially
for challenging input images. On the other hand, few methods
recognise the ill‐posedness and uncertainty of this problem,
and successively propose to estimate probability distributions
or explicitly generate multi‐hypotheses [10–13]. Despite their
impressive performance, they tend to share feature extractors
and add multiple output heads to existing architectures for
one‐to‐many mappings, which leads to potentially non‐scalable
and inadequately expressive multi‐hypothesis output. Apart
from this, they fail to establish relationships among features of
different hypotheses, which is a major problem that can
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significantly affect the performance and expressiveness of the
model.

Motivated by the above observation, we propose a novel
multi‐hypothesis approach, multi‐hypothesis human mesh re-
covery (MH‐HMR), to exploit image features and enhance
feature learning for more accurate human mesh recovery. The
central idea of our approach is to generate multiple feasible
hypotheses from a single input image, progressively construct
their relationships and integrate their respective feature
expressiveness. In MH‐HMR, a 3D human evidence is initially
extracted from the monocular image by a probabilistic model
based on normalising flow, and then fed into a feasible pose
distribution regressor to obtain multiple initial hypotheses as
shown in Figure 1. In order to model multi‐hypothesis con-
sistencies and enhance those coarse representations, two
transformer‐based modules, namely the Intra‐hypothesis
refinement module and the Inter‐hypothesis communication
module, are proposed to construct hypothetical relationships
and enhance feature learning. The former module focuses on
refining every single‐hypothesis feature, which models each
hypothesis feature separately, enabling message passing within
each hypothesis for feature enhancement. To exchange infor-
mation across hypotheses, those multiple hypotheses are
merged into a single fusion representation, and then parti-
tioned into several divergent hypotheses. Meanwhile, the latter
module is introduced to capture relationships and pass infor-
mation among hypotheses so that our model can be aware of
more accurate and plausible mesh features. Finally, we regress
multiple feasible results or one definite result from the final
multi‐hypothesis features.

A preliminary version of our work has been presented in a
conference paper [14]. In this paper, our work is extended
from the following aspects: (1) Considering the important role

of multi‐hypothesis fusion and communication effects on our
model performance, we propose the Hypothesis‐Mixing Multi‐
Layer Perceptron (MLP) to explore the relationship between
channels with different hypotheses, and a new configuration of
the Multi‐Head Cross‐Attention (MHCA) to achieve more
thorough information exchanges among multi‐hypotheses; (2)
We demonstrate that our module designs and multi‐hypothesis
nature can effectively facilitate the multi‐view fusion task by
leveraging information from different views better; (3) We
provide more details, more comprehensive experiments, and
more thorough discussions to validate our performance.

Experimental results demonstrate our model has more
learning ability for feature representation and can generate
more accurate recovery results, especially for challenging
monocular image inputs including cases with depth ambiguity,
joint occlusion, and truncation, which demonstrates the
robustness of our model. Figure 1 gives an example. The code
will be publicly available for research purposes.

Our contributions can be summarised as follows:

� We propose a novel multi‐hypothesis approach, MH‐HMR,
for human mesh recovery, which can efficiently and
adequately learn the feature representation of multiple
hypotheses.

� We propose two transformer‐based modules, the intra‐
hypothesis refinement module and the inter‐hypothesis
communication module, to achieve a better representation
of image features and model the relationship among multi‐
hypotheses.

� Our MH‐HMR achieves superior performance on chal-
lenging benchmark datasets, such as Human3.6M and
3DPW, even for the cases with depth ambiguity, joint oc-
clusion, and truncation.

F I GURE 1 We propose, MH‐HMR, to accurately recover a 3D human mesh given an input image. Right: results of the probabilistic method ProHMR [11],
the state‐of‐the‐art method PARE [9] and our approach for a challenging image. MH‐HMR, multi‐hypothesis human mesh recovery.
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� We demonstrate that our model can elegantly and efficiently
leverage additional image information and handle the multi‐
view fusion task.

2 | RELATED WORK

In this section, we first mainly discuss the most relevant
methods about human mesh recovery from monocular images
and refer interested readers to the recent surveys [15, 16].
Then, we present the recent multi‐hypothesis methods that
have been introduced into human pose estimation and mesh
reconstruction, and conclude with a brief introduction to
transformers in computer vision.

2.1 | Human mesh recovery from monocular
images

Recovering 3D human meshes from monocular images is
challenging because of the ambiguity in lifting 2D information
into 3D space and the uncertainty caused by complex body
variations and insufficient 3D annotations.

Recent works have made significant progress by using the
pre‐trained parametric human model such as SMPL [17] and
estimating its hyper‐parameters to represent the human body
mesh. The optimisation‐based methods estimate the parame-
ters of the body model iteratively, such that it is consistent with
a set of features, such as 2D keypoints, silhouettes and part
segmentation. For example, Bogo et al. [18] propose SMPLify,
a multi‐stage optimisation method that iteratively fits the
SMPL model with 2D keypoints and minimises the repro-
jection error to estimate a 3D human mesh. Lassner et al. [19]
employ silhouettes together with 2D keypoints in the optimi-
sation procedure. Despite the well‐aligned results can be ob-
tained, these methods are sensitive to initialisation, require
additional data, and suffer from time‐consuming fitting and
inefficient inference. In contrast, taking advantage of the
powerful non‐linear mapping capability of neural networks,
regression‐based methods [7–9, 20–26] train deep neural net-
works for regressing hyper‐parameters directly from pixels. A
canonical example is HMR [20], an end‐to‐end trainable hu-
man mesh recovery framework that utilises the unpaired 3D
annotations and penalises implausible 3D human meshes with
adversarial training. SPIN [7] combines HMR and SMPLify
[18] in the training loop, resulting in better supervision for the
network. PyMAF [8] proposes a mesh alignment feedback that
leverages mesh‐aligned evidence sampled from spatial feature
maps to correct parameters in each loop. Unlike them, PARE
[9] focuses on the partial occlusion problem, proposes a novel
attention mechanism to predict body‐part‐guided attention
masks, and uses information from neighbouring body parts to
improve predictions for occluded parts.

Despite the promising results achieved by these methods,
assuming only a single solution might be sub‐optimal and
becomes the bottleneck in this task. In our solution, multiple
plausible hypotheses are generated from image features using

probabilistic models and are enhanced to achieve a high‐level
and comprehensive perception.

2.2 | Multi‐hypothesis methods

To cope with the inherent ambiguities of the reconstructions
described earlier, multiple hypothesis methods have been
gradually introduced into 3D human pose estimation and mesh
reconstruction and achieve substantial performance gains.

Recently, a few approaches [10–13, 27–30] are proposed that
generate different hypotheses using generative networks to
cover the ambiguous nature. For instance, Li et al. [27] propose a
mixture density network and learn the multi‐modal posterior
distribution to generate multiple feasible 3D pose parameters
that are plausible estimates consistent with the ambiguous in-
puts, while Sengupta et al. [31] tackle this problem using simple
multivariate Gaussian distributions. By contrast,
Kolotouros et al. [11] model the conditional probability distri-
bution using conditional normalising flows, which makes the
network even more powerful and expressive. Li et al. [13] design
a multi‐hypothesis transformer to exploit the spatio‐temporal
representation of multiple plausible pose hypotheses from
monocular videos. Zheng et al. [29] take human silhouettes as
input under the constraints of 2D joints and relative depth, and
propose a two‐stage weakly supervised method to solve the
multi‐hypothesis problem of human pose and mesh. Holmquist
et al. [30] introduce diffusion models into the multi‐hypothesis
method and combine an embedding transformer to represent
the uncertainty in the 2D joint heatmaps.

Different from these methods, the goal of MH‐HMR is
not only to generate plausible hypotheses (i.e. one‐to‐many
mappings), but also to establish strong relationships between
hypothesis features and improve the representation ability (i.e.
many‐to‐one mappings). Therefore, MH‐HMR can handle
more ambiguous and complex images, and obtain stronger
hypothesis features compared to existing methods, allowing for
many downstream applications.

2.3 | Transformer in computer vision

Transformer [32], an encoder‐decoder model is first proposed
in the natural language processing field. Motivated by the
achievements, various works start to apply transformer
equipped with a powerful Multi‐Head Self‐Attention (MHSA)
mechanism to the computer vision tasks. Vision Transformer
[33] treats an image as a 16 � 16 patch sequence, and apply a
standard transformer architecture directly for image classifi-
cation task. METRO [34] leverages a multi‐level transformer to
achieve progressive dimensionality reduction for pose estima-
tion task. GLAMR [35] proposes a transformer‐based motion‐
filling method to aid in global mesh recovery from monocular
videos. In addition, the transformer has also achieved
impressive results in many downstream tasks, including image
generation [36], denoising [37], object detection [38], video
inpainting [39] etc.

XUAN ET AL. - 3
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3 | METHOD

Our goal is to leverage multi‐hypothesis properties and re-
lationships and recover a more accurate human mesh consis-
tent with 2D image evidence. The overall framework of our
approach, MH‐HMR is depicted in Figure 2. Our approach,
MH‐HMR, consists of three steps: (1) probabilistic modelling
and initial hypothesis generation (Section 3.2); (2) intra‐
hypothesis refinement (Section 3.3); and (3) inter‐hypothesis
communication (Section 3.4). We discuss each component in
more detail below.

3.1 | Preliminary

3.1.1 | SMPL model

SMPL [17] is a classical parametric human body model. It
defines a differentiable function Mðθ; βÞ that takes the pose
parameters θ ∈ R72 and the shape parameters β ∈ R10 as in-
puts and returns the body mesh M ∈ R6890�3. θ represents the
global body rotation and the relative rotation of 23 joints in
axis‐angle format, and β represents the first 10 coefficients of a
PCA shape space, controlling the shape of the body. Given the
mesh M, the SMPL 3D joint locations can be obtained using a
pre‐trained linear regressor, J3D ¼ JM, where J ∈ RK�6890 is
a regression matrix for K joints.

3.1.2 | Transformer

The transformer architecture is used for multi‐hypothesis
refinement and communication modules because it works
well in feature representation and information stabilisation in
propagation. Here, we briefly describe MHSA and MLP.

MHSA. Given the inputs X ∈ Rn�d where d is the hidden
size, MHSA first linearly projects X to queries Q ∈ Rn�d , keys
K ∈ Rn�d , and values V ∈ Rn�d , where n is the sequence
length and d is the dimension. The scaled dot‐product atten-
tion can be expressed as follows:

AttentionðQ;K;V Þ ¼ softmax
QKT
ffiffiffi
d
p

 !

V : ð1Þ

Then, MHSA splits the queries Q, keys K, and values V into h
different subspaces as well as performs the attention in parallel.
Finally, the outputs from the h different subspaces are
concatenated to form the final result Y ∈ Rn�d .

MLP. The MLP used in our work consists of two linear
layers (along with a non‐linear activation function between
them), which are used for non‐linearity and feature
transformation:

MLPðXÞ ¼ σ XW1 þ b1ð ÞW2 þ b2; ð2Þ

where σ is the GELU activation function, and b1 ∈ Rdm and
b2 ∈ Rd are the bias terms. W1 ∈ Rd�dm and W2 ∈ Rdm�d are
the weights of the two linear layers respectively.

3.2 | Probabilistic modelling

Given a monocular RGB image I as input, our approach learns
a distribution of plausible poses conditioned on I to obtain
initial multiple plausible hypotheses. Inspired by ProHMR [11],
we first encode the input image I using a Convolutional Neural
Network g and obtain image features fI. Then, the Conditional
Normalising Flow is applied to model the probability distri-
bution of the human pose pΘ∣I(θ∣fI = g(I)), due to their
expressiveness and modelling capabilities. In contrast to

F I GURE 2 Overview of the proposed approach. Given an input monocular image I, we perform probabilistic modelling (a) with normalising flows to
extract image features, predict a pose distribution and generate multiple initial human mesh hypotheses (where N indicates the number of hypotheses), input
these multi‐hypotheses into the Intra‐hypothesis refinement module (b) for independent refinement and feature enhancement, use the Inter‐hypothesis
communication module (c) to implement their mutual communication, and finally regress to obtain the recovered human meshM.
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ProHMR, we employ probabilistic modelling to extract image
features and obtain multiple initial hypotheses that are both
feasible to a certain extent and reflect different detailed fea-
tures, rather than focussing on one‐to‐many mappings.

The normalising flow is a series of reversible trans-
formations that transforms arbitrary complex distributions
into a simple base distribution pZ(z) (typically a standard
multivariate Gaussian distribution). We combine four building
blocks to obtain our flow model. Each building block fi con-
sists of three basic transformations:

f i ¼ fAC◦ fLT◦ f IN; ð3Þ

where fIN(z) = a ⊙z þ b (Instance Normalisation), fLT(z) =
Wz þ b (Linear Transformation) and fAC ¼ z1:k; zkþ1:d þ½

t z1:d; cð Þ� (Additive Coupling).
Moreover, the flow model provides fast computing of

probability distributions as well as fast sampling from the
distributions to produce multi‐hypotheses. To ensure generality
and robustness, we consider the case where no additional in-
formation is available. Thus, instead of taking a direct mode
computation from the output probability distribution with
θ∗
I ¼ argmaxθpΘ∣fI θ ∣ fIð Þ, we sample the distribution to select

N hypotheses with larger probabilities. The samples θif gN1
drawn from the output distribution are as follows:

θi � pΘ∣I θ ∣ fIð Þ: ð4Þ

Then, we use an MLP to regress the SMPL shape βif g
N
1 and

the camera parameters πi ∈ R3� �N
1 taking image features fI

and poses θif gN1 as input:

βi;πi½ � ¼MLP f I ; θið Þ: ð5Þ

In summary, the probabilistic model based on the nor-
malising flow is used to construct conditional probability dis-
tributions of poses consistent with the input image, and then
the initial N human mesh hypotheses {Mi(θi, βi, πi)} are
produced by sampling and regression. However, these hy-
potheses, which include diverse and different image informa-
tion, are not sufficient to represent the image features
completely and accurately and therefore need further
enhancement.

3.3 | Intra‐hypothesis refinement

After obtaining multiple human mesh recovery hypotheses
{Mi(θi, βi, πi)}, we first adopt a learnable positional embedding
inspired by ref. [40] to maintain each mesh information,
instead of using spatial information‐dependent positional

embedding. Then, we encode its features Xi ∈ RC� �N
1 as

subsequent inputs, where C is the embedding dimension.
The enhancement and information transfer of hypothesis

features play an important role in achieving expressiveness and
accuracy of the model. To refine the single‐hypothesis feature

and enhance those coarse representations independently, the
Intra‐hypothesis refinement module feeds the encoded hy-
pothesis features Xif gN1 into several parallel MHSA blocks (the
structure of the MHSA block is shown in Figure 3), which can
be represented as follows:

X 0li ¼ X
l−1
i þMHSA LN Xl−1i

� �� �
; ð6Þ

where LN(⋅) is the LayerNorm layer, and l ∈ [1, 2, …, L1] is
the index of L1 Intra‐hypothesis refinement modules.

However, it is not enough to process each hypothesis
independently, and the respective feature enhancements need
to be shared. Thus, the hypothesis features are concatenated
and fed into the Hypothesis‐Mixing MLP (HM‐MLP) to mix
themselves and form the refined hypothesis representations.

The procedure can be represented as follows:

X 0lconcat ¼ Concat X
0l
1 ;X

0l
2 ;…;X 0lN

� �

Xlconcat ¼ X
0l
concat þHM −MLP LN X 0lconcat

� �� �
;

Y l1;Y
l
2;…;Y lN

� �
¼Diverge Xlconcat

� �
;

ð7Þ

where X 0lconcat ∈ RC�N , and Concat(⋅) and Diverge(⋅) are
concatenation and division operations, respectively. HM‐MLP
(⋅) is the function of HM‐MLP modified for the hypothetical
features (as shown in Figure 4), which explores the relationship
between channels with different hypotheses.

3.4 | Inter‐hypothesis communication

To more explicitly incorporate differentiated feature repre-
sentations and capture multi‐hypothesis relationships mutually,
we inherit the cross‐attention mechanism from refs. [41–43]
and apply multiple MHCA components in parallel. Note that

F I GURE 3 Multi‐head self‐attention.

XUAN ET AL. - 5
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although HM‐MLP also plays a role in exchange, its more
primary purpose is to fuse and repartition features. Thus, this
communication module using cross‐attention is still needed to
achieve more effective message passing and stronger
relationships.

The MHCA used in our conference version (denoted as
MHCA‐Conf) follows the common configuration of using the
same input between keys and values. However, this configu-
ration tends to lead to inadequate communication between
hypotheses and information transfer being trapped in localised
areas. In addition to this, when the number of hypotheses is
high, the need for more blocks takes up a larger number of
parameters, affecting the efficiency of the model. Considering
the above problems, we modify the conference version and
adopt a more efficient strategy using different inputs (as shown
in Figure 5), to reduce the number of parameters and enhance
the communication and transfer.

The multi‐hypothesis features Yi ∈ RC� �N
1 are alternately

regarded as queries and keys, and fed into the MHCA:

Y 0li ¼ Y
l−1
i þMHCA LN Y l−1i1

� �
;LN Y l−1i2

� �
;LN Y l−1i

� �� �
;

ð8Þ

where Yi1 and Yi2 are the other two corresponding hypotheses,
l ∈ [1, 2, …, L2] is the index of L2 Inter‐hypothesis commu‐
nication modules, and Y 0

i ¼ X
L1
i . Finally, MHCA passes in-

formation among hypotheses in a crossing way to significantly
enhance feature representation and modelling capabilities.

Similarly, we proceed to mix the obtained hypothesis fea-
tures, and form the hypothesis representations after
communication:

Y 0lconcat ¼ Concat Y
0l
1 ;Y

0l
2 ;…;Y 0lN

� �
;

Y lconcat ¼ Y
0l
concat þHM −MLP LN Y 0lconcat

� �� �
;

Zl1;Z
l
2;…;ZlN

� �
¼Diverge Y lconcat

� �
;

ð9Þ

where Y 0lconcat ∈ RC�N , and Concat(⋅) and Diverge(⋅) are
concatenation and division operations, respectively. We can
choose whether to divide the hypothetical features in the last
MLP to obtain multiple plausible results or a single final
estimate.

Finally, a regressor is applied to the output feature
ZL2 ∈ RC�N to produce the 3D human mesh M(θ, β, π).

3.5 | Loss function

To train our model, we apply multiple losses as supervision.

3.5.1 | NLL loss

As with typical probabilistic models, our normalising flow
models are trained to minimise the negative log‐likelihood of
the ground truth θgt, that is, the loss function is as follows:

Lnll ¼ −ln pΘ∣I θgt ∣ fI
� �

: ð10Þ

3.5.2 | 2D loss

To penalise misalignment between the 2D projection and image
evidences, we apply a squared reprojection error loss between
the ground truth J2D ∈ RK�2 and the estimated 2D keypoints
Ĵ2D ∈ RK�2, where K is the number of joints of a person:

L2Dðθ; β;πÞ ¼ kJ2D − Ĵ2Dk2: ð11Þ

3.5.3 | 3D loss

Additional 3D supervisions are added when 3D annotations
(3D joints J3D ∈ RK�3 and/or SMPL parameters θ, β) are
available:

L3Dðθ; βÞ ¼ kJ3D − Ĵ3Dk2 þ kθ − θ̂k2 þ kβ − β̂k2: ð12Þ

F I GURE 4 Hypothesis‐mixing MLP.

F I GURE 5 Multi‐Head Cross‐Attention.
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3.5.4 | Orthonormal loss

The 6D representation [44] is used to model rotations in our
approach. Without any constraint restriction on the 6D rep-
resentation, it would lead to a large difference between ex-
amples with full 3D SMPL parameter supervision and those
with only 2D keypoint annotations. Thus, we use Lorth to force
the 6D representation of the recovered samples to be close to
the orthogonal 6D representation.

Our overall objective function is formulated as follows:

L ¼ λnllLnll þ λ2DL2D þ λ3DL3D þ λorthLorth; ð13Þ

where λnll, λ2D, λ3D and λorth stand for the weights of the
corresponding losses respectively.

4 | APPLICATION: MULTI‐VIEW
FUSION

Multi‐view fusion is a key technology for human mesh re-
covery from multi‐view images. The ultimate goal is to recover
a 3D body mesh in a world coordinate system from multiple
cameras placed in natural environments. Although our model
has been trained for single‐image reconstruction, we can utilise
existing module designs and multi‐hypothesis features to
obtain the refined pose and shape estimations of a person
under multiple views. We address this problem with multi‐
hypothesis modelling, refinement and communication, which
make the model pay attention to the consistency of body poses
and shapes corresponding to different views.

Given uncalibrated multi‐view images Iif g
N
1 of the same

subject, we input them separately into probabilistic modelling
(in Section 3.2) to obtain the initial SMPL body parameters and
then partition those vectors of each frame as

Θn ¼ θgn; θ
b
n; βn

n o
, where θgn corresponds to the global rotation

of the model, θbn is the body pose and βn is the body shape.
Subsequently, the corresponding hypotheses for each frame are
fed into the Intra‐hypothesis refinementmodule (in Section 3.3)
and the Inter‐hypothesis communicationmodule (in Section 3.4)
in parallel, allowing the exchanges and fusion of image features in
different views. Figure 6 shows the overview of our proposed
approach for the multi‐view fusion task.

We refine and fuse multiple view information by mini-
mising the following loss:

Lmvf ¼ −
XN

n¼1
ln p θn∣f Inð Þ

þ λθ
XN

n¼1
θbn − ~θb
�
�
�

�
�
�
2

2
þ λβ

XN

n¼1
βn − ~β
�
�

�
�2
2;

ð14Þ

where ~θb ¼ 1
N
PN

n¼1θ
b
n and ~βb ¼ 1

N
PN

n¼1βn. The last two terms
of the loss represent the squared distances between all the pose
pairs and shape pairs, respectively.

5 | EXPERIMENTS

5.1 | Datasets and metrics

5.1.1 | Training

Following previous works [7, 20], our approach uses mixed
datasets with 3D and 2D annotations for training, including
Human3.6M [45], MPI‐INF‐3DHP [46], 3DPW [47], LSP [48],
MPII [49] and COCO [50].

5.1.2 | Evaluation

We report the experiment results on the Human3.6M [45] and
3DPW [47] evaluation sets. We adopt the widely used evalua-
tion metrics for quantitative comparisons with previous
methods including Mean Per Joint Position Error (MPJPE),
Procrustes‐Aligned Mean Per Joint Position Error (PA‐
MPJPE), and Per Vertex Error (PVE).

5.2 | Implementation details

The proposed MH‐HMR model is implemented in PyTorch
framework on a single NVIDIARTX2080TiGPU and validated
on the ResNet‐50 [51] backbone pre‐trained on ImageNet [52].
We train our model with a batch size of 64 using the Adam
optimiser [53] with the learning rate 0.0001 and the weight decay
0.0001. MH‐HMR generates 8 initial hypotheses and contains 2
refinement modules and 2 communication modules. The loss
weights are: λnll = 0.001, λ2D = 0.01, λ3D = 0.05, and λorth = 0.1.
For the multi‐view fusion task, we set λθ to 0.00 1 and λβ to
0.0005. Our proposed method, MH‐HMR, takes about 1.724 s
to process one sample on the machine with an NVIDIA RTX
2080Ti GPU. For multi‐view fusion task, MH‐HMR takes about
2.131 s to process one sample.

5.3 | Comparison

We qualitatively and quantitatively compare our approach with
the state‐of‐the‐art (SOTA) temporal and frame‐basedmethods,

F I GURE 6 Our pipeline for the multiple view fusion task.
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including MAED [25], SPIN [7], ProHMR [11], PyMAF [8], and
PARE [9].

We present quantitative comparison results on Human3.6M
and 3DPW datasets in Table 1. Our MH‐HMR achieves
competitive or superior results compared with previous ap-
proaches. The methods reported in Table 1 are not strictly
comparable because they may use different training data,
learning rate schedules, or training epochs etc., which could
affect their performance. For a fair comparison, we report the
results of our baseline in Table 1, which is trained under the same
setting as MH‐HMR and has the same network architecture as
ProHMR [11]. In comparison with the baseline, MH‐HMR re-
duces theMPJPE by 2.6 and 4.7mmonHuman3.6M and 3DPW
datasets, respectively. From Table 1, we can see that MH‐HMR
has more notable improvements on the metrics MPJPE and
PVE. It is worth noting that, our MH‐HMR outperforms the
SOTA temporal method MAED [25], despite the fact that our
approach is frame‐based.

Recovery results on the LSP [48] dataset are depicted in
Figure 7 for qualitative comparison, where MH‐HMR
convincingly performs better than the probabilistic method
ProHMR [11], and the SOTA methods PyMAF [8] and PARE
[9] by producing better aligned and more natural results.

As shown in Table 1, compared to the conference version,
we reduce the MPJPE by 1.2 and 1.5 mm on Human3.6M and
3DPW datasets, respectively. In addition to this, qualitative re-
sults are shown in Figure 8. They both demonstrate the validity
and importance of the proposed extension HM‐MLP and the
new configuration of the MHCA.

Moreover, we show more recovery results of our model for
challenging monocular image inputs including depth ambiguity,
joint occlusion, and truncation, in Figure 9. It can be seen that
our model is able to handle these cases well by refining and
communicating multi‐hypotheses.

More qualitative results can be found in the demo video.1

5.4 | Ablation study

We conduct several ablation studies to evaluate our approach
in different settings and validate our contributions. All ablation
approaches are trained and tested on Human3.6M [45], as it
includes ground‐truth 3D labels and is the most widely‐used
benchmark for 3D human mesh recovery.

5.4.1 | Number of initial hypotheses

In MH‐HMR, a larger number of initial hypotheses can pro-
vide more information on image features and more room for
improvement subsequently, which is essential for better mesh
recovery. However, an excessive number of initial hypotheses
also tend to affect network efficiency and prevent adequate
communication. To verify this, we report the performance of
different variants with different numbers of hypotheses in

TABLE 1 Quantitative comparison with the state‐of‐the‐art temporal and frame‐based methods on Human3.6M [45] and 3DPW [47] datasets.

Method

Human3.6M 3DPW

MPJPE↓ PA‐MPJPE↓ MPJPE↓ PA‐MPJPE↓ PVE↓

Temporal

VIBE [23] 65.9 41.5 93.5 56.5 113.4

TCMR [54] 62.3 41.1 95.0 55.8 111.3

Lee et al. [24] 58.4 38.4 92.8 52.2 106.1

MAED [25] 56.3 38.7 88.8 50.7 104.5

Frame‐based

SPIN [7] 62.5 41.1 96.9 59.2 135.1

I2L‐MeshNet [22] 55.7 41.1 93.2 57.7 ‐

ProHMR [11] ‐ 41.2 ‐ 59.8 ‐

ROMP [55] ‐ ‐ 89.3 53.5 103.1

THUNDR [56] 55.0 39.8 ‐ ‐ ‐

PyMAF [8] 57.7 40.5 92.8 58.9 110.1

PARE [9] ‐ ‐ 84.3 51.2 101.2

Baseline 56.2 40.6 86.9 53.1 100.2

Ours‐conf 54.8 38.1 83.7 50.5 94.4

Ours 53.6 37.4 82.2 49.6 93.3

Note: The best results are highlighted in bold and ‘‐’ represents that the results are not available.
Abbreviations: MPJPE, Mean Per Joint Position Error; PA‐MPJPE, Procrustes‐Aligned Mean Per Joint Position Error; PVE, Per Vertex Error.

1Our demo video at http://cic.tju.edu.cn/faculty/likun/projects/MH‐HMR/imgs/
demo.mp4.
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probabilistic modelling in Table 2a. Experiments show that
generating more hypotheses improves performance with a
small increase in parameters, but becomes worse instead for

more than eight hypotheses. Therefore, in our main experi-
ments, we choose to use eight initial assumptions as a good
tradeoff between performance and complexity. Note that the
performance of our approach can remain stable and advanta-
geous with a small number of hypotheses.

5.4.2 | Number of layers of two modules

Table 2B,C report how the different numbers of layers of
refinement and communication modules impact the perfor-
mance of our model. The results show that expanding the
number of layers to two improves the performance, but
stacking more modules does not lead to further improvements.
Therefore, the optimal parameters for our model are L1 = 2
and L2 = 2.

5.4.3 | Impact of HM‐MLP

Reasonable hypothesis fusion settings help to fully utilise the
capability of multiple hypotheses and improve the reliability of
the mesh extracted from the hypothetical features. For deeper
analysis and better quality of mesh recovery, we improve the
MLP as HM‐MLP for concatenation and division in modules,
which is better adapted to the hypothetical features. As shown
in Table 3, when applying HM‐MLP, the errors are reduced by
0.5 and 0.3 mm in MPJPE and PA‐MPJPE, respectively.
Meanwhile, HM‐MLP is helpful in outputting reconstruction
results that match the images in Figure 10, especially on the
joints of the hands and feet.

F I GURE 7 Qualitative results on LSP [48] dataset. From left to right
shows the input images, and the results of ProHMR [11], PyMAF [8],
PARE [9] and Ours.

F I GURE 8 Qualitative results on LSP [48] dataset and Human3.6M
[45] dataset. From left to right shows the input images, and the results of
Ours‐conf and Ours.

F I GURE 9 Plausible human mesh recovery results generated by our
approach, especially for ambiguous parts with depth ambiguity, joint
occlusion, and truncation.

TABLE 2 Ablation study on different parameters of our model.

N L1 L2 MPJPE↓ PA‐MPJPE↓

A 6 2 2 59.9 43.0

8 2 2 53.6 37.4

12 2 2 55.7 39.5

20 2 2 60.3 40.6

B 8 2 0 67.8 46.4

8 2 1 63.4 40.2

8 2 2 53.6 37.4

8 2 3 55.3 41.2

C 8 0 2 63.8 44.7

8 1 2 56.1 39.6

8 2 2 53.6 37.4

8 3 2 55.9 42.0

Note: N is the number of hypotheses, L1 is the number of Intra‐hypothesis refinement
modules and L2 is the number of Inter‐hypothesis communication modules. And the
best results are highlighted in bold.
Abbreviations: MPJPE, Mean Per Joint Position Error; PA‐MPJPE, Procrustes‐Aligned
Mean Per Joint Position Error.

XUAN ET AL. - 9
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5.4.4 | Impact of configurations in MHCA

As described in Section 3.4, the common configuration tends
to lead to inadequate communication between hypotheses and
information transfer being trapped in localised areas. We adopt
a more efficient configuration by using different inputs among
queries, keys, and values. We can see from Table 4 that using
the same input between keys and values in MHCA (i.e. with
MHCA‐Conf) requires more parameters but cannot bring
further performance gains. It illustrates the effectiveness of our
efficient strategy in MHCA.

5.5 | Application: Multi‐view fusion

We also perform quantitative and qualitative evaluations to
validate the effectiveness of MH‐HMR for the multi‐view
fusion task. We present quantitative comparison results on
Human3.6M [45] dataset in Table 5. Compared to Li et al. [58]
and ProHMR [11], our approach outperforms them in both

MPJPE and PA‐MPJPE. In Figure 11, we show that the
refinement and communication modules based on our multi‐
hypotheses can be used to obtain more accurate mesh recov-
ery by fusing information from multiple views. As shown in
Figure 11, problems such as the upper limbs in the first view
being largely occluded and the body in the other views having
depth ambiguity, result in a less accurate recovered mesh.
However, with the fusion of multiple views, the recovered
mesh captures the real and natural pose and shape more
faithfully.

6 | CONCLUSION

This paper presents MH‐HMR, a novel multi‐hypothesis
approach that addresses the inverse problem of human mesh
recovery from a monocular image by leveraging differential
feature representations learnt from image information and a
series of feature enhancements to hypotheses, resulting in better
accuracy and enhanced robustness. Unlike existing multi‐
hypothesis methods, we first employ a probabilistic model to
generate multiple initial hypotheses, and further propose two
transformer‐based refinement and communication modules to

F I GURE 1 0 Ablation study on Hypothesis‐Mixing MLP (HM‐MLP).

TABLE 4 Ablation study on different configurations in MHCA.

Params (M)↓ MPJPE↓

Ours (w/MHCA‐Conf) 25.32 54.3

Ours (w/MHCA) 20.58 53.6

Note: The best results are highlighted in bold.
Abbreviations: MHCA, Multi‐Head Cross‐Attention; MPJPE, Mean Per Joint Position
Error.

TABLE 3 Ablation study on HM‐MLP.

MPJPE↓ PA‐MPJPE↓

Ours (w/MLP) 54.1 37.7

Ours (w/HM‐MLP) 53.6 37.4

Note: The best results are highlighted in bold.
Abbreviations: HM‐MLP, Hypothesis‐Mixing Multi‐Layer Perceptron; MLP,
Multi‐Layer Perceptron; MPJPE, Mean Per Joint Position Error; PA‐MPJPE,
Procrustes‐Aligned Mean Per Joint Position Error.

TABLE 5 Quantitative comparison with the state‐of‐the‐art methods
on Human3.6M [45] for the multi‐view fusion task.

Method MPJPE↓ PA‐MPJPE↓

Liang et al. [57] 79.8 45.1

Li et al. [58] 64.8 43.8

ProHMR [11] 62.2 34.5

Ours 53.8 32.7

Note: The best results are highlighted in bold.
Abbreviations: MPJPE, Mean Per Joint Position Error; PA‐MPJPE, Procrustes‐Aligned
Mean Per Joint Position Error.

F I GURE 1 1 Recovery results for the multi‐view fusion task.

10 - XUAN ET AL.
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establish information transfer and strong relationships among
the hypotheses. Meanwhile, benefiting from the multi‐
hypothesis properties and our module designs, we demon-
strate the effectiveness of our model in the multi‐view fusion
downstream task. We conduct extensive comparative experi-
ments to demonstrate that MH‐HMR achieves superior per-
formance and can better handle challenging images, together
with detailed ablation studies showing that each design con-
tributes to our performance on the benchmark datasets.

Future work could consider continually extending and
incorporating MH‐HMR with recent progress to better exploit
multi‐hypothesis relationships and promote recovery accuracy
while considering various ambiguities.
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