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Synopsis

Motivated by the challenge of enhancing the robustness of deep neural network decisions against
variable noise in MRI-based brain tumor segmentation, this study aims to evaluate the efficacy of
probabilistic bottlenecks. Our approach simulates structured perturbations at increasing strength
to assess their impact on segmentation performance utilizing the Wasserstein distance between
per-sample Dice score distributions and the sensitivity with respect to the perturbation strength.
Results show probabilistic bottlenecks significantly increase robustness to Gaussian noise, yet
offer limited improvement towards Gaussian blur, with varying results for other perturbations,
highlighting the perturbation-specific nature of network resilience.

Impact

This study provides a tool to assess and guard against various perturbations in deep learning.
It specifically demonstrates that probabilistic bottlenecks boost robustness of performance with
respect to certain noise types, but not all.

Abstract

1. Introduction

Advances in deep learning for medical image segmentation have greatly enhanced diagnosis,
yet issues of confidence and robustness persist due to variabilities in MRI imaging [1]. Our
study examines whether a probabilistic bottleneck embedded within our lightweight deep neural
network LATUP-Net (see Figure 1) designed for brain tumor segmentation [2] can bolster the
robustness of its decisions. A method to compare the robustness with respect to structured
perturbations is introduced to achieve this. Model performance robustness under naturally-
induced image variations, rather than adversarial learning, is a particular important, but a less
studied factor in image-based and medical decision-making [3]. Our results are critical for brain
tumor segmentation and may extend to other medical imaging analyses.
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Figure 1: The LATUP-Net Model Architecture [2] Enhanced with Probabilistic Bottleneck [4].

2. Methods

To study robustness, we introduce structured perturbations describing different types of pertur-
bation to MR images at increasing strength to the validation set for deep learning. Examples
of perturbations are Gaussian noise at increasing variance, and Gaussian blur with increasing
kernel size. Other perturbations, such as elastic deformation, scale, shift, and rotation, are also
applied. Performance is measured by the per-sample Dice score distribution. The Wasserstein
distance between consecutive distributions indicates performance deterioration as perturbation
strength increases. Moreover, overall robustness is assessed using a box-spline fit to the per-
formance distribution means and its sensitivity, i.e., the derivative with respect to perturbation
strength.

This is employed to compare model robustness of our LATUP-Net architecture for brain
cancer segmentation [2] with and without incorporating a probabilistic bottleneck, inspired by
the successful application in variational autoencoders [4], using the BraTS 2020 dataset [5].

3. Results

Figures 2 to 4 show the results of our robustness analysis for Gaussian noise and blur on LATUP-
Net. Figures 2 and 3 illustrate the model’s Dice scores with and without the probabilistic bottle-
neck under varying levels of Gaussian noise. For both we observe a robustness plateau—a range
of perturbation strengths where the model’s performance remains relatively unaffected, followed
by a performance drop. The model without probabilistic bottleneck (Figure 2) demonstrates an
abrupt descent in Dice scores beyond the plateau, indicating a limited range of noise tolerance.
Conversely, the incorporation of the probabilistic bottleneck (Figure 3) revealed a more substan-
tial plateau with a lower slope of the drop, suggesting the model can sustain high accuracy across



a wider spectrum of noise before performance wanes.

The segmentation performance under Gaussian blur is captured in Figures 4 and 5. While a
similar robustness plateau is observed, the probabilistic bottleneck’s advantage is less pronounced
(Figure 4), particularly at higher levels of blur where feature distortion is more severe. Despite
this, the probabilistic model still outperforms the standard model at lower levels of blur (Fig-
ure 5), although the overall trend confirms that both models’ performance inevitably declined
once the noise exceeded a critical threshold.

Moreover, in both scenarios a jump in the Wasserstein distance indicates a change in behavior,
which can be categorized by sections of constant or linear change at an approximately fixed slope
(sensitivity).

Collectively, this underscores the nuanced influence of the probabilistic bottleneck on model
robustness against Gaussian perturbations and reveals the limits of robustness. Similar behaviors
are observed for other perturbations.

4. Discussion

Generally we observe a robustness plateau followed by one or two approximately linear sec-
tions. The plateau radius and slope (sensitivity) of the subsequent performance drop offer two
critical parameters for evaluating model robustness, characterized by jumps in the Wasserstein
distance. The plateau radius signifies the model’s capacity to withstand noise without significant
performance degradation. The slope characterizes the model’s ability to resist noise influences
beyond the plateau. Due to the approximate linear behavior seen empirically, the slope appears
to be sufficient. Generally, behavior at higher perturbation strengths at low performance is not
interesting.

Moreover, we found that robustness differs greatly depending on the perturbation type, as
indicated by the reduced efficacy of the probabilistic bottleneck against Gaussian blur. This ob-
servation emphasizes the need for a differentiated approach to enhancing robustness, with specific
requirements for training data and potentially augmentation, depending on specific perturbation
characteristics.

5. Conclusion

Our research evaluates the robustness of a novel lightweight deep neural network (DNN) with
probabilistic bottleneck for brain tumor segmentation on the BraTS2020 dataset. Introducing
structured perturbations, we assess model performance using per-sample Dice score distribu-
tions, which demonstrate a robustness plateau radius and a subsequent linear performance drop.
This yields two effective measures for robustness comparison. The study is constrained by not
employing fully realistic MRI perturbations, relying instead on augmentation transforms. This
limitation guides future work towards integrating more authentic perturbations to refine the
DNN's reliability for clinical imaging applications.
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Figure 2: Comparative robustness of LATUP-Net, our proposed deep learning model, without
a probabilistic bottleneck is shown through average per-sample Dice scores for the whole tumor
segmentation class across various strengths of Gaussian noise. The green dots represent the

Wasserstein distance between the current per-sample Dice score distribution and the next.
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Figure 3: Comparative robustness of LATUP-Net, our proposed deep learning model, enhanced
with probabilistic bottleneck is shown through average per-sample Dice scores for the whole
tumor segmentation class across various strengths of Gaussian noise. The green dots represent
the Wasserstein distance between the current per-sample Dice score distribution and the next.



Average Dice Score

20.0

90 88¢SZ 88¢52 87.‘75 kc=0, Darivative al x=0: -0.2052
~..,\~ F17.5
a3
80 - mb\\
J.E’éﬂ F15.0
?0690
07 5675 o 125
® 63,=66 62166
)
60 r 10.0
6911 7.5
50 -
5311
4621 | ]
» 41514 50
40 - L]
l._Df + 2.5
1264
304 oent T 1121
| ]
0.00 L
- T T T T T T T T T 0.0
0 0.2 0.5 0.8 1 1.3 1.6 1.8 2 2.2

Blur Strength Level

Wasserstein distance

Average Dice Score

Box Spline Interpolation
Wasserstein Distance
End of Plateau

Slope After Plateau: -5.77

Figure 4: Comparative robustness of LATUP-Net, our proposed deep learning model, without
a probabilistic bottleneck is shown through average per-sample Dice scores for the whole tumor
segmentation class across various strengths of Gaussian blur. The green dots represent the
Wasserstein distance between the current per-sample Dice score distribution and the next.
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Figure 5: Comparative robustness of LATUP-Net, our proposed deep learning model, enhanced
with probabilistic bottleneck is shown through average per-sample Dice scores for the whole
tumor segmentation class across various strengths of Gaussian blur. The green dots represent
the Wasserstein distance between the current per-sample Dice score distribution and the next.
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