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THE PSEUDOSPECTRUM OF AN OPERATOR WITH

BESSEL-TYPE SINGULARITIES

LYONELL BOULTONβ AND MARCO MARLETTAµ

Abstract. In this paper we examine the asymptotic structure of the pseu-

dospectrum of the singular Sturm-Liouville operator L = ∂x(f∂x)+∂x subject
to periodic boundary conditions on a symmetric interval, where the coefficient

f is a regular odd function that has only a simple zero at the origin. The op-

erator L is closely related to a remarkable model examined by Davies in 2007,
which exhibits surprising spectral properties balancing symmetries and strong

non-self-adjoitness. In our main result, we derive a concrete construction of

classical pseudo-modes for L and give explicit exponential bounds of growth
for the resolvent norm in rays away from the spectrum.

This paper is dedicated to Professor E. Brian Davies FRS on the occasion

of his 80th birthday.

1. Introduction

Let f ∈ C2([−1, 1];R) be an odd function such that f ′(0) ̸= 0 and f(x) > 0
for x > 0. We associate with f a second order differential expression l defined on
suitable functions u by

(lu)(x) = (f(x)u′(x) + u(x))′.

Note that l has an interior singularity at x = 0.
In this paper we shall study the pseudospectra of a closed operator realisation

L of l, specified by periodic boundary conditions and regularity at x = 0. We
focus particularly on the asymptotic behaviour of the resolvent norm far from the
spectrum. The fact that the numerical range of L is easily shown to be the whole
complex plane means that there is no ‘direction of escape’ to infinity in which the
behaviour of the pseudospectra can easily be foreseen.

Interest in this type of operator seems to have started with an idealised model
for a thin layer of viscous fluid inside a rotating cylinder, examined by Benilov,
O’Brien and Sazonov [4]; their case corresponds to f(x) = 2ε

π sin(πx) (0 < ε < 1),
resulting in additional singularities at the endpoints. Benilov et al. presented
various observations concerning the spectrum and the associated time-evolution
linear problem - most prominently, they noted that the spectrum appeared to be
purely imaginary. Their conjectures have been systematically addressed in recent
years for various trigonometric f , resulting in several articles concerning both the
spectrum and the ill-posedness of the corresponding evolution equation, e.g. [12,
8, 7, 9, 34, 35, 15]. Some of these results were generalised in [5] to a wider class

Date: 16th April 2024.

2020 Mathematics Subject Classification. 47E05.
Key words and phrases. Spectrum and pseudospectrum, ordinary differential operators,

pseudo-modes.

1



2 L. BOULTON AND M. MARLETTA

of f (odd, positive on (0, π) and 2π-periodic, with various regularity assumptions),
where it is shown that the eigenvalues are always purely imaginary; and also in
[6], where it is shown that the spectrum is discrete and infinite, the resolvent is of
Schatten class Cp for p > 2

3 , but the eigenfunctions do not form an unconditional
basis.

Beyond these results, for f(x) = 2ε
π sin(πx), Figure 6 of [4] shows a numerically

computed graph of the pseudospectrum, rotated by π
2 , for one (unspecified) value

of ε. The pseudospectral level sets appear qualitatively to be curves asymptotically
close to parabolas fitting the symmetry of the spectrum, though to the best of our
knowledge this has never been proved. Similar pictures appear for a related operator
on pages 124–125 and 406–408 of [32], again obtained by numerical methods.

Most rigorous results that we know concerning pseudospectra of differential op-
erators such as L, depend upon the construction of pseudo-modes. We shall give a
review of some of these immediately after the statement of Theorem 3 below, but
broadly they are either semi-classical [17] or an evolved form of WKB-type [25].
The pseudo-modes that they generate are localised functions, and no boundary
conditions need be accommodated. By contrast, below we construct pseudo-modes
for the operator L by modifying the unique regular-at-the-origin solution of the
differential equation lϕ = Eϕ using a ‘periodiser’, to satisfy periodic boundary con-
ditions. We analyse the behaviour of these resulting pseudo-modes as the spectral
parameter E escapes to infinity on rays. The spectrum of L would be quite different
were the boundary conditions not periodic: a fortiori, these boundary conditions
therefore play a crucial role in determining the pseudospectra, despite the fact that
resolvents corresponding to different boundary conditions only differ by finite rank
terms.

For f(x) = 2εx, the regular-at-the-origin solution is given explicitly in terms of
Bessel functions. This yields a direct construction of our pseudo-modes. For general
f we use special transformators [24, 33] to show that the underlying linearised f still
determines the dominant behaviour of our pseudo-modes for large E. As always
for transformators, it is the E-independence of the underlying kernel which makes
them so well adapted to asymptotic analysis.

2. Summary of main results and scope of the work

Throughout this paper, the function f : [−1, 1] −→ R is twice continuously
differentiable with f(−x) = −f(x) and sgn(f(x)) = sgn(x). Additionally,

f(x) =
2εx

1 + xr(x)

where ε ∈ (0, 1) is a fixed parameter and r is a fixed, twice continuously differen-
tiable function, which is odd and analytic at x = 0. Note that

1

f(x)
=

1

2εx
+

r(x)

2ε

and f(x) = 2εx+O(x3) as x → 0; also f(±1) ̸= 0.
We define a differential operator L on a domain in L2(−1, 1) by

Dom(L) =

{
u ∈ C([−1, 1]) :

fu′ + u ∈ AC(−1, 1)

u(−1) = u(1)

}
,
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with

(Lu)(x) = (lu)(x) = (f(x)u′(x) + u(x))′

for u ∈ Dom(L). Note in particular that any u ∈ Dom(L) must be continuous at
the origin, and 2-periodic in the sense that u(−1) = u(1).

The following lemma is proved at the end of Section 3; although its proof involves
classical arguments, the result is not an immediate consequence of existing theory,
hence we give full details of its validity.

Lemma 1. The densely defined linear operator L : Dom(L) −→ L2(−1, 1) is closed
and has compact resolvent.

It is convenient to introduce two symmetries commuting with L. Let

Pu(x) = u(−x) and T u(x) = u(x),

be the parity and transposition isometries (note that T is conjugate linear). Then
P2u(x) = T 2u(x) = u(x), and P and T leave invariant the subspace Dom(L).
Moreover

LPu = −PLu and LT u = T Lu,

for all u ∈ Dom(L).
Let ϕ ∈ AC(−1, 0) ∩AC(0, 1) and E ∈ C be such that

(1) (fϕ′ + ϕ)′ = Eϕ.

Then, (f(ϕ̃)′ + ϕ̃)′ = −Eϕ̃ for ϕ̃ = Pϕ and (fϕ
′
+ ϕ)′ = E ϕ for ϕ = T ϕ. Hence, if

E is an eigenvalue of L (which additionally requires that ϕ ∈ Dom(L) \ {0}), then
also −E and ±E will be eigenvalues of L. Thus, the spectrum of L is symmetric
under reflection with respect to the real and imaginary axes. Note that 0 is always
an eigenvalue with corresponding eigenfunction the constant function. Moreover,
we have the following analogue of similar results reported in [5] and [6] for the case
when f(±1) = 0.

Theorem 1. The spectrum of L is purely discrete and purely imaginary.

The first statement is immediately implied by Lemma 1. The proof of the second
statement will be given in Section 5.

The pseudospectrum of L is also symmetric with respect to the axes. This follows
from the fact that

P(L− E)−1P = −(L+ E)−1 and T (L− E)−1T = (L− E)−1.

Indeed, these identities imply that

∥(L− E)−1∥ = ∥(L+ E)−1∥ = ∥(L∓ E)−1∥

for all E in the resolvent set of L.
The upper bound on the resolvent norm given in the next theorem, which we will

prove at the end of the paper in Section 7, is a consequence of general Carleman-
type bounds and the fact that the resolvent of L is in the Schatten classes Cp for
all p > 2

3 .

Theorem 2. Let α ̸∈
{

(2k+1)π
2

}
k∈Z

be fixed. For all p > 2
3 , there exist constants

a, c > 0 such that

∥(L− |E|eiα)−1∥ < c exp [a|E|p]
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for all |E| ≥ 1. The constants a and c can be chosen uniformly for α on a compact
set. Both depend on f(·).

The main result of this paper is the next theorem, which confirms that the
resolvent norm is indeed exponentially large away from the spectrum. It also gives
concrete evidence about the shape of the pseudospectrum of L.

Theorem 3. Let α ̸∈ {kπ
2 }k∈Z be fixed. There exist constants a, c > 0 such that

∥(L− |E|eiα)−1∥ > c exp
[
a|E| 12

∣∣∣sin α

2

∣∣∣]
for all |E| ≥ 1. The constant a is independent of α and the constant c can be chosen
uniformly for α on a compact set. Both depend on f(·).

By making |E| 12 sin α
2 equal to a constant, then solving for α in terms of |E|, we

observe that if E = |E|eiα, then

|Re(E)| ∼ k1|E| and | Im(E)| ∼ k2|E| 12

as |E| → ∞ for the exponential term to become constant on the right hand side.
This provides further evidence that the pseudospectra of the operator L include
regions that, in the regime |E| → ∞, have boundaries asymptotic to parabolas with
directrices the imaginary line and axes of symmetry the real line. This is consistent
with the graphs reported in the Figure 6 of [4] for f(x) = 2ε

π sin(x) and those
included in pages 124-125 and 406-408 of [32] for a perturbation of the operator.
It also confirms the phenomenon observed in those graphs that the spacing of the
pseudospectral boundaries for level lines 10−n is close to linear in n.

Davies and Kuijlaars were the first to observe exponential growth of the coeffi-
cients in spectral projections for Schrödinger operators with complex potential on
R, for the complex harmonic oscillator [14]. This work was extended and refined by
Henry [21, 22]. Davies [11] later used semi-group methods to offer a semi-classical
analysis of resolvent growth for families of operators at fixed spectral parameter
which, for the particular case of the complex harmonic oscillator, may be combined
with a dilation trick to recover exponential resolvent growth results for a fixed op-
erator at large energies. In fact the semi-classical study of pseudospectra at fixed
energy had already been taken up independently by Dencker, Sjöstrand and Zworski
[17] and became a topic of active research with contributions by Dencker [16], Helf-
fer [20], Pravda-Starov [29], Hitrik, Sjöstrand and Viola [23], Galkowski [19] and
Almog and Henry [1], among others. More recently, for problems in which there is
no semi-classical parameter but the energy goes to infinity, Krejčǐŕık, Siegl, Tater
and Viola [26], and Arnal and Siegl [2] have shown that the exponential growth of
the resolvent norm is sharp and prevalent. Their methods do not require smooth
potentials, but rather a sufficiently rapid growth of the potential at infinity. Mitya-
gin, Siegl and Viola have also returned to the spectral projection results in [14] and
generalised them to a wider class of 1D operators [27].

For periodic boundary conditions, the numerical evidence presented by Trefethen
in [31] indicates that similar resolvent-norm-growth behaviour also holds for classes
of semi-classical Schrödinger operators on finite intervals. The article also gives
some insights into the shape of the pseudo-modes which might be used to try to
prove such a result rigorously.
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Our results are not semi-classical. The nature of our problem is such that we
are not aware of any simple, rigorous argument that might be used to obtain large-
energy results from fixed-energy semi-classical results for a suitable family of op-
erators. The proof of Theorem 3 below involves constructing pseudo-modes which
look similar to those in [31] away from x = 0. However, they have the property
that there is a jump in the derivatives of order three near the singularity at x = 0.
In Section 4 we present this construction and establish Theorem 3, for leading or-
der coefficient f(x) = 2εx. In the Appendix A we include graphs illustrating the
different shapes of these pseudo-modes in terms of E.

For general f , we first transform the differential equation into a Schrödinger
equation (Section 4) with singularity of Calogero-type at the origin and a bounded
potential. Unfortunately the role of this transformed equation in the analysis is
such that we cannot use the pseudo-mode constructions of Krejčǐŕık and Siegl [25].
The singular part is already present for the special case f(x) = 2εx; the bounded
potential comes from the difference f(x)−2εx. The transformation of the differen-
tial equation involves a number of intermediate steps, so to aid the reader we have
included a summary of the variables used and relations between them in Table 1
at the end of the paper. Having performed these transformations, we use special
transformator kernels from [24] in Section 5 to quantify rather precisely the effect of
the presence of the bounded potential upon the solutions, and complete the proof
of Theorem 3 in Section 6.

3. The closed operator L

In the first part of this section, we show that the solutions to (1) for any fixed
E ∈ C are characterised via a change of variables by an ODE whose asymptotic
behaviour is driven by Bessel’s equation. From this, we will eventually identify a
solution which is bounded. In the forthcoming sections, this bounded solution will
determine eigenfunctions and pseudo-modes associated with L.

In order to describe the solutions ϕ for E ∈ C, without loss of generality we
restrict the variable to x > 0, then invoke the symmetry P to determine ϕ(x) for
x < 0 from the solution for −E. So, set ϕ(x) = F (g(x)) for x ∈ [0, 1] where g(·),
independent of E and ε, is determined up to a scaling by

(2) f(x)g′(x) = εg(x).

Then, with b1 = g(1), it follows that F : [0, b1] −→ R must solve

(3) (εyF ′(y))′ + F ′(y) = Eh(y)F (y) where h(y) =
f
(
g−1(y)

)
εy

is independent of E and ε. Indeed, observe that f(x)ϕ′(x) = εg(x)F ′(g(x)) and
that (f(x)ϕ′(x))′ = εg′(x)[yF ′(y)]′y=g(x). As

Eϕ(x) = (f(x)ϕ′(x))′ + ϕ′(x) = g′(x)[(εyF ′(y))′ + F ′(y)]y=g(x),

re-ordering this and writing everything in terms of the variable y shows that F (y)
satisfies (3). Here and elsewhere the variable y ∈ [0, b1]. The constant b1 is fixed
by Lemma 2 below and depends on r(·) but not on E or ε: for example, b1 = 1 for
r(x) = 0.

The following lemma fixes the scaling of g and gives its asymptotic behaviour
near the origin.
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Lemma 2. The equation (2) has a positive, increasing solution g ∈ C3((0, 1]), such

that1 g(x) ∼ x
1
2 and g′(x) ∼ 1

2x
− 1

2 as x → 0.

Proof. A solution to (2) is g(x) = g̃(x) such that

(log g̃)′(x) =
1

2x
+

r(x)

2
.

Hence we may choose

log g̃(x) = log x
1
2 + r2(x) where r2(x) =

1

2

∫ x

1

r(s) ds

so that r2(x) ∼ a1

4 x2 + a2 and r2(x) is an even analytic function at x = 0. This,
and the fact that (2) is homogeneous, give a solution

(4) g(x) = x
1
2 er2(x)−a2 .

The latter is such that, g(x) ∼ x
1
2 and g′(x) ∼ 1

2x
− 1

2 as x → 0. Moreover, g(x) is

C3, increasing and positive. This follows from the equation and the fact that f(x)
is positive for x > 0 and twice continuously differentiable. □

If we pick g(x) as in this lemma to determine the equation (3), then h(y) on the
right hand side there is well defined, twice continuously differentiable and

(5) h(y) = 2y +O(y3), y → 0.

Indeed, set x = g−1(g(x)) ∼ g−1(x
1
2 ). From (4) and the fact that r2(x) is even and

analytic near x = 0, we have

g(x) = x
1
2 (1 + a2x

2 + a4x
4 + · · · )

in a neighbourhood of x = 0. Calling x = z2 and y = z(1 + a2z
4 + a4z

8 + · · · ),
gives z2 = y2 +O(y4). Therefore,

g−1(y) = y2 + ρ1(y) where ρ1(y) = O(y4).

Thus, the asymptotic behaviour of f(x) and a substitution into the expression for
h(y) gives (5).

As we shall see later, from (5) it follows that the behaviour of ϕ(x) near x = 0
will be driven by a Bessel function. This should be expected by re-writing (3) as

(6) ε(yF ′(y))′ + F ′(y) = 2E(y + ρ3(y))F (y)

where ρ3(y) = O(y3) as y → 0.
Without further mention, everywhere below we will denote by g : [−1, 1] −→ R

the following function. For x ≥ 0, g(x) will be the solution to (2) with the behaviour
near x = 0 as in Lemma 2. For x < 0, g(−x) = g(x). In this convention, we then
have

g ∈ C([−1, 1]) ∩ C3
(
[−1, 0) ∪ (0, 1]

)
.

In the remaining part of this section we give the proof of Lemma 1. It will follow
from the next statement characterising Dom(L).

1Here and in all places below, the expression a(w) ∼ b(w) as w → c means that lim
w→c

a(w)

b(w)
= 1.

The limit is taken in context, depending on whether w lies in a real or complex set.
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Lemma 3. The function u lies in Dom(L) and satisfies

(7) (fu′ + u)′ = v

for v ∈ L2(−1, 1) if and only if

(8)

∫ 1

−1

(
g

1
ε (1)− g

1
ε (z)

)
v(z)dz = 0

and

(9) u(x) = k +

∫ x

0

(
1− g

1
ε (z)

g
1
ε (x)

)
v(z)dz

for some k ∈ C.

Proof. We begin the proof by describing the solutions to the homogeneous equation
(fϕ′ + ϕ)′ = 0. Putting E = 0 in (3), then substituting back ϕ(x) = F (g(x)), gives
a general solution of the form

ϕ(x) = Ag−
1
ε (x) +B

for all x ∈ (0, 1). Now Pϕ(x) = ϕ(−x) must also solve this homogeneous equation.
Thus a full solution such that ϕ, fϕ′ + ϕ ∈ AC(−1, 0) ∪AC(0, 1) is

ϕ(x) =

{
A+g−

1
ε (x) +B+, x ∈ (0, 1),

A−g−
1
ε (x) +B−, x ∈ (−1, 0).

Now, by variation of parameters, we have that for any v ∈ L1
loc((−1, 0) ∪ (0, 1)),

the solution to (7) will have to be

(10) u(x) = −g−
1
ε (x)

(∫ x

±1

v(z)g(z)
1
ε dz + k±2

)
+

(∫ x

±1

v(z) dz + k±1

)
where the sign is chosen as ‘+’ for x ∈ (0, 1) and as ‘−’ for x ∈ (−1, 0). With this
formula at hand, consider the claim of the lemma.

Let us show the ‘only if’ direction first. Let v ∈ L2(−1, 1) and u ∈ Dom(L) be
related by the identity (7). By virtue of Lemma 2, and since 1

ε > 1, we know that

g−
1
ε ̸∈ L2(0, δ)

for any δ > 0. Since Dom(L) ⊂ L2(−1, 1), then necessarily∫ 0

±1

v(z)g(±z)
1
ε dz + k±2 = 0.

Hence,

u(x) = −g−
1
ε (x)

∫ x

0

v(z)g
1
ε (z) dz +

∫ x

0

v(z) dz + k±.

Now, the integrals on the right hand side of this expression are absolutely continuous
functions of x ∈ [−1, 1]. Moreover,

(11)

∣∣∣∣g− 1
ε (x)

∫ x

0

v(z)g(z)
1
ε dz

∣∣∣∣ ≤ |g(x)|− 1
ε ∥v∥

(∫ x

0

|g(z)| 2ε dz
) 1

2

≤ c3∥v∥ |x|
1
2

as x → 0. Therefore, since u is continuous, k+ = k−. This yields (9). Finally, since
u(−1) = u(1) and g is an even function, it follows that (8) should hold true.
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Now let us show the ‘if’ part. Assume that v ∈ L2(−1, 1) satisfies (8) and that
u(x) is given by (9). As the integral is absolutely continuous for all x ∈ [−1, 1]
and g is continuous and non-vanishing for x ̸= 0, then u is a function absolutely
continuous on any closed sub-interval of [−1, 0)∪ (0, 1]. But, since (11) holds true,
u is also continuous at x = 0 with u(0) = k. That is, u ∈ C([−1, 1]).

Having shown continuity, the identity (8) implies that u(−1) = u(1). Moreover,
the construction of the integral representation (10), of which (9) is a particular
case, was such that (7) holds true in the distributional sense. But (fu′ + u)′ = v ∈
L2(−1, 1), so indeed fu′ + u ∈ AC(−1, 1). This yields u ∈ Dom(L) and completes
the proof of Lemma 3. □

In this lemma, the conditions (8) and (9) are compatible with those given in [7,
Proposition 2.2] or the more general [6, Lemma 4]. Indeed, whenever f(±1) = 0,
which is not covered in the present paper, periodicity of the functions in the domain
would require2 ⟨v⟩ = 0 instead of (8) due to the fact that g(x) would also vanish at
x = ±1. Note that we only require u(−1) = u(1) in the domain, irrrespectively of
whether f(±1) vanishes, since the endpoints ±1 are of limit-circle type for f(±1) =
0.

We now show that Dom(L) is indeed a domain of closure for L and that the
resolvent of L is compact.

Proof of Lemma 1. According to Lemma 3, we know that

Ker(L) = Span{1} ⊂ L2(−1, 1).

We show that the reduced operator

L̃ : Dom(L̃) = Dom(L) ∩ {1}⊥ −→ Ran(L)

is invertible and its inverse is compact.
Firstly, note that v ∈ Ran(L) if and only if (8) holds true. Then

Ran(L) = {g 1
ε (1)− g

1
ε (x)}⊥.

Therefore, Ran(L) is a closed subspace of L2(−1, 1) with codimension 1. Let S :
Ran(L) −→ Dom(L) be given by

Sv(x) =

∫ 1

−1

H(x, z)v(z)dz

where

(12) H(x, z) = sgn(x)

(
1− g

1
ε (z)

g
1
ε (x)

)
1(0,|x|](sgn(x)z).

That is, Sv(x) = u(x) in formula (9) with the constant k = 0. By virtue of
Lemma 2, we know that

sup
−1≤x,z≤1

|H(x, z)| < ∞.

Thus, S is a compact operator.
Let

S̃v(x) = Sv(x)− ⟨Sv⟩.
Then, S̃ : Ran(L) −→ Dom(L̃). Indeed, by virtue of (9), for all v satisfying (8) we

have S̃v = u ∈ Dom(L) and ⟨S̃v⟩ = 0. Moreover, S̃ is the inverse of L̃. Indeed,

2Here and everywhere below, ⟨v⟩ = 1
2

∫ 1
−1 v(x) dx.
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according to Lemma 3, L̃S̃v = LS̃v = v for all v satisfying (8) and S̃L̃ = S̃(Lu) = u

for all u ∈ Dom(L̃) ⊂ Dom(L). This confirms that L̃ is invertible. Finally, as S̃ is
a rank one perturbation of S, then it is also a compact operator. □

4. Proof of theorems 1 and 3 for leading order

In this section we describe the spectrum and pseudospectrum of L in the specific
case r(x) = 0; that is, f(x) = 2εx. We begin by finding a regular-at-the-origin
solution to (1), denoted Φ(x;E) or just Φ(x), such that Φ(0) = 1.

Since r(x) = 0 yields g(x) = |x| 12 and h(y) = 2y in (3), the latter reduces to
Bessel’s equation

ε(yF ′(y))′ + F ′(y) = 2EyF (y).

Let

(13) G(y) = yβF (y) for β =
1

2ε
+

1

2
.

Since

G′(y) = βyβ−1F (y) + yβF ′(y) and

G′′(y) = yβ−1
(
(yF ′(y))′ + (2β − 1)F ′(y) +

β(β − 1)

y
F (y)

)
,

it follows that

(14) G′′(y) +

(
λ2 −

m2 − 1
4

y2

)
G(y) = 0

where, from now on, we set the parameters

(15) m =
1

2ε
and λ2 = −4mE.

An unscaled solution to (14) is [28, 10.13.1]

G̃(y) = y
1
2 Jm(λy),

giving F̃ (y) = y−mJm(λy). Since near y = 0

F̃ (y) =
λmJm(λy)

(λy)m
∼ λm

2mΓ(m+ 1)
= F̃ (0),

we obtain that

F (y) =
2mΓ(m+ 1)

λm
y−mJm(λy)

is such that F (0) = 1. Since Φ should be analytic at x = 0, then irrespective of
whether x > 0 or x < 0,

(16) Φ(x) =
2mΓ(m+ 1)

λm
x−m

2 Jm(λx
1
2 ), x ∈ [−1, 1],

is a solution to (1) for r(x) = 0 such that Φ(0) = 1. Expanding the Bessel function
in a power series gives

(17) Φ(x;E) = Φ(x) =

∞∑
k=0

(−1)k
Γ(m+ 1)

k!Γ(m+ k + 1)

(
λ

2

)2k

xk

which converges for all x ∈ [−1, 1] (in fact, for all x ∈ C). This is the regular
solution required.
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Re(Φ(x))

Im(Φ(x))
-1.0 -0.5 0.5 1.0

-3

-2

-1

1

Figure 1. For f(x) = x
2 , the graphs show the eigenfunction Φ(x)

associated with the first non-zero eigenvalue E ≈ 47.8853i.

The proof of the next particular case of Theorem 1 follows the same argument
as the proof of [5, Theorem 2.1], but in this case f(±1) ̸= 0.

Lemma 4. Let f(x) = 2εx for 0 < ε < 1. Then, the spectrum of L is purely
imaginary.

Proof. The complex number E is an eigenvalue of L if and only if Φ(−1;E) =
Φ(1;E). This is equivalent to

e
imπ
2 Jm(iλ) = Jm(λ).

Hence, a necessary condition for E to be an eigenvalue is that

(18)

∣∣∣∣Jm(iλ)

Jm(λ)

∣∣∣∣ = 1.

Now, we know that Jm(z) = Jm(z) and Jm(zeiπ) = eiπmJm(z) for all z ∈ C. Then,
(18) holds true for all λ such that arg(λ) ∈ {±π

4 , ±
3π
4 }. The proof of the lemma

will follow from the fact that the latter is also necessary for the identity (18).
Indeed, according to [28, 10.9.4],

Jm(z) =
2
(
1
2z
)m

√
πΓ
(
m+ 1

2

) ∫ 1

0

(1− t2)m− 1
2 cos(zt)dt.

Recall that m > 1
2 , | cos(zt)| ≤ exp(|z|) for 0 ≤ t ≤ 1 and

∫ 1

0
(1 − t2)m− 1

2 dt ≤ 1.
Then

(19) |Jm(z)| ≤ 21−m|z|m exp(|z|)
√
πΓ
(
m+ 1

2

) .

Hence, the analytic function Jm(z) has growth order 1. The function

λ 7−→ e
imπ
2 Jm(iλ)

Jm(λ)

is therefore a meromorphic function with poles on the real axis (the Bessel zeros),
zeros on the imaginary axis and it has growth order less than or equal to 1 in
suitable sectors of the plane. By the Phragmén-Lindelöf Principle and the fact that
(18) holds for all λ with arg(λ) ∈ {±π

4 , ±
3π
4 },∣∣∣∣Jm(iλ)

Jm(λ)

∣∣∣∣ < 1 for
π

4
< arg(±λ) <

3π

4
.
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Moreover, replacing λ by iλ, necessarily the opposite inequality holds,∣∣∣∣Jm(iλ)

Jm(λ)

∣∣∣∣ > 1 for − π

4
< arg(±λ) <

π

4
.

Hence, (18) is only possible when arg(λ) ∈ {±π
4 , ±

3π
4 }. This completes the proof

of the lemma. □

We now develop asymptotic resolvent norm estimates for L. These describe the
pseudospectrum of L away from the spectrum. Since L and the symmetries P and
T commute, without loss of generality we can assume that E is in the open first
quadrant. Recalling (15), we therefore set

(20) λ = |λ|ei(
π
2 +θ) for θ ∈

(
0,

π

4

)
.

Then,

Φ(−1)

Φ(1)
= e−

iπm
2

Jm(−|λ|eiθ)
Jm(i|λ|eiθ)

.

Now, we recall [28, 10.7.8] that

(21) Jm(z) =
ei(z−

π
4 −mπ

2 ) + e−i(z−π
4 −mπ

2 )

√
2πz

1
2

+

√
2e| Im z|
√
πz

1
2

o(1)

as z → ∞ in sectors | arg(z)| ≤ π − δ, where the limit is uniform for any fixed
0 < δ < π. Thus, for all τ > 0 and θ ∈

(
0, π

4

)
fixed,

(22)
∣∣Jm(−|λ|τeiθ)

∣∣ ∼ e|λ|τ sin θ

√
2π|λ| 12 τ 1

2

and
∣∣Jm(i|λ|τeiθ)

∣∣ ∼ e|λ|τ cos θ

√
2π|λ| 12 τ 1

2

as |λ| → ∞. Moreover, these limits are uniform in θ; for all θ ∈
[
δ, π

4

]
on the left

hand side and for all θ ∈
[
0, π

4 − δ
]
on the right hand side. Hence, for θ ∈ (0, π

4 ),

uniformly in
[
δ, π

4 − δ
]
, we know that∣∣∣∣Φ(−1)

Φ(1)

∣∣∣∣ ∼ e|λ|(sin θ−cos θ)

as |λ| → ∞. Note that, this estimate is always decaying in |λ|. We also remark

at this stage that we know that |Φ(−1)
Φ(1) | < 1 for all |λ| > 0 and θ in the sector

considered here, from the proof of Lemma 4.
The following proposition gives Theorem 3 for linear f(x). The constant R below

is independent of λ, m and δ.

Proposition 1. Let f(x) = x
m where m > 1

2 . Let λ ∈ C, lie in the sector prescribed

by (20) and set E ≡ Eλ = − λ2

4m . Let 0 < δ < π
8 be fixed. There exists a constant

R > 0 ensuring the following. For all |λ| ≥ R and θ ∈
[
δ, π

4 − δ
]
, we can find a

pseudo-mode u ≡ uλ ∈ Dom(L) such that

(23)
∥(L− Eλ)uλ∥

∥uλ∥
≤

2
√
2πe

1
2

(
32
m + 4

)
2mΓ(m+ 1)

|λ|m+ 3
2 e

− |λ|√
2
sin θ

.

Proof. The proof is split into three main steps.
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(a)

Re(Φ(x))

Im(Φ(x))

-1.0 -0.5 0.5 1.0

-20

-10

10

Re(u(x))

Im(u(x))

-1.0 -0.5 0.5 1.0

-4

-2

2

4

6

(c)

(b)

Re(χ(x))

Im(χ(x))

-0.020 -0.015 -0.010 -0.005

0.2

0.4

0.6

0.8

1.0

Re(u(x))

Im(u(x))
-0.020 -0.015 -0.010 -0.005

-0.2

0.2

0.4

0.6

0.8

1.0

(d)

Figure 2. Illustration of the construction of the pseudo-mode for
f(x) = x

2 and λ = −7 + 9i. (a) Solution Φ(x), (b) periodiser χ(x)

in the vicinity of [− 2
|λ|2 ,−

1
|λ|2 ], pseudo-mode u(x) (c) in [−1, 1]

and (d) in the vicinity of [− 2
|λ|2 ,−

1
|λ|2 ].

Step 1: construction of u. We write u(x) as the product of a periodiser χ(x) and
the bounded solution Φ(x) as follows, see Figure 2. Let

p(x) =

∫ 1

x
t2(1− t)2 dt∫ 1

0
t2(1− t)2 dt

= 1− 10x3 + 15x4 − 6x5.

Then, p(0) = 1, p′(0) = p′′(0) = 0, p(1) = p′(1) = p′′(1) = 0 and p(x) is decreasing
on [0, 1]. Moreover,

sup
x∈[0,1]

|p′(x)| = 15

8
< 2 and sup

x∈[0,1]

|p′′(x)| < 6

where the latter supremum is achieved at x = 3±
√
3

6 . Let

(24) χ(x) =



1, −1 ≤ x ≤ − 2
|λ|2 ,[(

1− Φ(−1)
Φ(1)

)
p
(
|λ|2x+ 2

)
+ Φ(−1)

Φ(1)

]
, − 2

|λ|2 ≤ x ≤ − 1
|λ|2 ,

Φ(−1)
Φ(1) , − 1

|λ|2 ≤ x ≤ 1.

Then χ ∈ C2([−1, 1]). Moreover, from the upper bounds on the derivatives of p(x)
above, we get that for all x ∈ [−1, 1],

(25) |χ′(x)| ≤ 15

4
|λ|2 and |χ′′(x)| ≤ 12|λ|4.

Now, set u(x) = χ(x)Φ(x). Note that by construction u ∈ C2([−1, 1]) and u(−1) =
u(1) so u ∈ Dom(L).
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Step 2: lower bound on the denominator of (23). We now show that there exists
R > 0 such that

(26) ∥u∥ ≥ 2mΓ(m+ 1)

2
√
2π|λ|m+ 1

2

e
|λ| sin θ√

2

for all |λ| ≥ R. Indeed, let x ∈ [−1,− 1
2 ]. From the expression for Φ(x) in (16) and

the restriction on the argument of λ from (20), it follows that

|Φ(x)| ≥ 2mΓ(m+ 1)

|λ|m
∣∣∣Jm (−|λ||x| 12 eiθ

)∣∣∣ .
According to the first identity in (22), the right hand side of this is

∼ 2mΓ(m+ 1)√
2π|λ|m+ 1

2 |x| 14
e|λ||x|

1
2 sin θ

for |λ| → ∞ and fixed x ∈ [−1,− 1
2 ]. Then, for all c > 1, there is a sufficiently large

R > 0 such that

|Φ(x)| ≥ c
2mΓ(m+ 1)√
2π|λ|m+ 1

2

e
|λ| sin θ√

2

for all x ∈
[
−1,− 1

2

]
and |λ| > R. Integrating in mean square and taking square

roots, gives (26).
Step 3: upper bound on the numerator of (23). We now show that

(27) ∥(L− E)u∥ ≤ |λ|e 1
2

(
32

m
+ 4

)
for all |λ| ≥ 2. For this, we begin by noting that

(L− E)u = χ(L− E)Φ + Φ[Lχ] + 2fχ′Φ′ = Φ[Lχ] + 2fχ′Φ′.

From the Maclaurin expansion (17) of Φ(x), it follows that,

|Φ(x)| ≤
∞∑
r=0

2r

22rr!
= e

1
2

for all x ∈
[
− 2

|λ|2 ,−
1

|λ|2

]
whenever |λ| ≥ 2. Now

Φ′(x) =

∞∑
r=0

(−1)r+1 Γ(m+ 1)

r!Γ(m+ r + 2)

(
λ2

4

)r+1

xr.

Then,

|Φ′(x)| ≤
∞∑
r=0

(
|λ|2

4

)r+1
1

r!

(
2

|λ|2

)r

=
|λ|2

4
e

1
2

for all such x and λ too. Next, using 2ε|x| ≤ 2ε 2
|λ|2 , along with (25), we obtain

|L[χ](x)| = |2εxχ′′(x) + (2ε+ 1)χ′(x)| ≤ 2ε
2

|λ|2
12|λ|4 + (2ε+ 1)

15

4
|λ|2

=

(
55

1

2
ε+

15

4

)
|λ|2 =

(
27 3

4

m
+

15

4

)
|λ|2.



14 L. BOULTON AND M. MARLETTA

Therefore, integrating in the segment where χ(x) is not constant gives the following:

∥(L− E)u∥ ≤ ∥ΦL[χ]∥+ ∥2fχ′Φ′∥

≤ 1

|λ|

(
∥ΦL[χ]∥∞ +

4

m|λ|2
∥χ′Φ′∥∞

)
≤ e

1
2

(
27 3

4

m
+

15

4

)
|λ|+

15
4 |λ|
m

e
1
2 ≤ |λ|e 1

2

(
32

m
+ 4

)
,

for |λ| ≥ 2.
Combining steps 2 and 3, the statement in the proposition is confirmed. Note

that the claim that R can be chosen uniform in θ ∈ [δ, π
4 − δ], follows from the

analogous property already confirmed for (22). □

As a consequence of the above, we see that for E ∈ C with fixed arg(E) ̸∈
{kπ

2 }k∈Z, the resolvent norm ∥(L− E)−1∥ → ∞ in the context of Theorem 3 with

a = ε
1
2

4 .

5. Integral representation of the solution and proof of Theorem 1

For the remainder of this paper we return to general f . Applying several changes
of variables, whose parameters are summarised in Table 1, we re-write (3) as a
Schrödinger equation with a perturbed Calogero potential on a finite segment.
We derive an integral representation of the regular-at-zero solution, by applying
the theory of transformators to this Schrödinger equation. We will then see that
the growth-order 1 of Jm(z) (see (19)) carries over to the solutions for general f ,
allowing us to show that the spectrum of L is purely imaginary. The integral repre-
sentation of solutions also carries over the finer asymptotic estimates from the case
f(x) = 2εx. Therefore, the properties of a pseudo-mode constructed in the same
fashion as in Propopsition 1 are preserved, as we shall see in Section 6.

For non-linear f , the change of variables (13) leads to

(28) G′′(y)−
m2 − 1

4

y2
G(y) = 4mE(1 + ρ(y))G(y)

where y ∈ [0, b1] and ρ(y) ̸≡ 0 is given by

ρ(y) =
ρ3(y)

y
=

h(y)

y
− 2 = O(y2)

as y → 0. The function h is given in (3) and satisfies (5), and recall that b1 = g(1).
This intermediate problem can now be re-written in Liouville normal form, as
follows.

Lemma 5. The change of variables

(29) t =

∫ y

0

(1 + ρ(s))
1
2 ds and Z(t) = (1 + ρ(y))

1
4G(y),

transforms the equation (28) into the equation

(30) −Z ′′(t) + q(t)Z(t) +
ℓ(ℓ+ 1)

t2
Z(t) = −4mEZ(t)

for t ∈ (0, b2] and

ℓ =
1

2ε
− 1

2
= m− 1

2
> 0,



THE PSEUDOSPECTRUM OF AN OPERATOR WITH BESSEL-TYPE SINGULARITIES 15

where b2 =
∫ b1
0
(1 + ρ(s))

1
2 ds and the potential q : [0, b2] −→ R is continuous and

bounded.

Proof. Firstly note that

Z ′′(t)−
m2 − 1

4

y2
Z(t) = 4mEZ(t) +

(
ρ′(y)
4 (1 + ρ(y))−

5
4

)′
(1 + ρ(y))

3
4

−
(m2 − 1

4 )ρ(y)

y2(1 + ρ(y))

Z(t).

We wish to replace the coefficient
m2 − 1

4

y2
by

m2 − 1
4

t2
on the left hand side. Write

q(t) =

(
m2 − 1

4

)(
1

t2
− 1

y2

)
+


(

ρ′(y)
4 (1 + ρ(y))−

5
4

)′
(1 + ρ(y))

3
4

−
(m2 − 1

4 )ρ(y)

y2(1 + ρ(y))

 .

Since f is twice continuously differentiable, ρ′′ and hence q are continuous (and
thus bounded) outside any neighbourhood of the origin.

To show that q is bounded for all t ∈ [0, b2], therefore, we need only check that
it is bounded at t = 0. For ρ(y) ∼ αy2, where y is small,

t = y +
α

6
y3 + · · · and y = t− α

6
t3 + · · ·

where t is small. Then,

1

y2
=

1

t2

(
1− α

6
t2 + · · ·

)−2

=
1

t2

(
1 +

α

3
t2 +O(t4)

)
=

1

t2
+

α

3
+O(t2).

Hence,
1

t2
− 1

y2
is O(1) for small t. Moreover, for small y, ρ(y)

y2 = α = O(1).

Furthermore, all other terms in the expression for q(t) are O(1) for small t. Thus
q is indeed bounded.

Finally, since

m2 − 1

4
=

(
1

2ε
− 1

2

)(
1

2ε
+

1

2

)
= ℓ(ℓ+ 1),

the expression (30) is confirmed. □

Remark 1. Denote Z(t) and Φ(x) by Z(t;E) and Φ(x;E), to indicate explicitly the
dependence on E. In the proof of Theorem 1 below, we shall study the zeros of the
map E 7→ Φ(1;E). These will be expressed in terms of the eigenvalues of (30) on
(0, b2] with Dirichlet boundary condition Z(b2;E) = 0. The associated operator is
self-adjoint when m ≥ 1 since the singularity at the origin is then of limit-point type
[10]. For 1

2 < m < 1 the singularity at the origin is of limit-circle-nonoscillatory
type; its unique self-adjoint Friedrichs extension has eigenfunctions which are the
‘principal solutions’ at the origin [30] and so coincide with the transformation of
Φ(x;E).

We now proceed to wrap up all the transformations by expressing Φ(x) in terms
of Z(t). Since Φ(x) = F (g(x)) and G(y) = yβF (y), we have

Φ(x) = g(x)−βG(g(x)).
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Since (29) gives

G(y) =
(
1 + ρ(y)

)− 1
4 Z

(∫ y

0

√
1 + ρ(s)

)
,

then, as β = 1
2 + 1

2ε = ℓ+ 1,

(32) Φ(x) = (1 + ρ(g(x)))−
1
4 g(x)−(ℓ+1) Z

(∫ g(x)

0

√
1 + ρ(s)ds

)
.

In order to ensure Φ(0) = 1, here and everywhere below we choose a solution Z(t)
of (30) such that

Z(t) = tℓ+1 + o(tℓ+
5
2 )

as t → 0 (a ‘principal solution’). It is straightforward to see that this solution
exists.

Indicating the dependence on q(·) and E explicitly, we use Zq(·;E) to denote the
solution of (30). In this notation,

(33) Z0(t;E) =
2mΓ(m+ 1)

λm
t
1
2 Jm(λt)

is the solution for q(t) = 0. Recall that λ2 = −4mE. Let

τ(x) =

∫ g(x)

0

√
1 + ρ(s) ds,

so that τ(x) ∼ |x| 12 as x → 0. It will be convenient to re-write (32) as

(32′) Φ(x;E) = ρ4(g(x))Zq(τ(x);E) for ρ4(y) = (1 + ρ(y))−
1
4 y−(ℓ+1).

Note that ρ4(y) = O(y−(ℓ+1)) as y → 0.
Our final task in this section before proving Theorem 1, is to write Zq(t;E) in

terms of Z0(t;E). For this, we shall need the ‘transformator equation’

(34) Zq(t;E) = Z0(t;E) +

∫ t

0

Kq(t, s)Z0(s;E)ds

in which Kq is an E-independent kernel, described in [24] and dating back to [33],
to map the known asymptotic results on Z0 to corresponding results for Zq. Before
doing so, we note the following properties of Kq.

i) If q is continuous including at 0, then a solution Zq(t;E) of (30) is given
by (34).

ii)

sup
0≤s≤t≤b2

|Kq(t, s)| < ∞.

iii) Kq(t, s) solves(
∂2
t − ∂2

s − ℓ(ℓ+ 1)

t2
+

ℓ(ℓ+ 1)

s2
− q(t)

)
Kq = 0

in the region 0 < s < t with boundary conditions Kq(t, 0) = 0 for t ≥ 0

and 2 d
dtKq(t, t) = q(t).

In the sequel, we shall only use the properties i) and ii). The property i) follows
from Lemma 5.
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Proof of Theorem 1. Firstly, recall that that E ∈ Spec(L) if and only if

Φ(−1;E) = Φ(1;E).

Next, we claim that the function E 7→ Φ(1;E) is an entire function of order 1
2

in E. The fact that the function is entire follows from the expression (33), the
representation (34) and the fact that Kq(t, s), g(x) and ρ(y) are independent of E.
To show that the order is 1

2 , note that

|Zq(t;E)| ≤ 2Γ(m+ 1)tm+ 1
2 e|λ|t

√
πΓ
(
m+ 1

2

) (
1 +

∫ t

0

|Kq(t, s)|ds
)

as a consequence of (19) and (34). Then,

|Φ(x;E)| ≤ A(x) exp(|λ|τ(x)),
in which

A(x) = ρ4(g(x))
2Γ(m+ 1)τ(x)m+ 1

2

√
πΓ
(
m+ 1

2

) (
1 +

∫ τ(x)

0

|Kq(τ(x), s)|ds

)
is independent of λ. Since |λ| = O(|E| 12 ), it follows that E 7→ Φ(x;E) has indeed
order 1

2 .

Now, we show that the function E 7→ Φ(1;E) has purely real zeros, Ẽn, satisfying

Ẽn ≤ −c1n
2 for n ∈ N and suitable constant c1 > 0. Indeed, from (30′), one has

Φ(1;E) = 0 if and only if Zq(b2;E) = 0 where b2 = τ(1). In the framework
of Lemma 5, Zq is an eigenfunction of the eigenvalue equation (30). The zeros

of Φ(1; ·) are given by −4mẼn = λ2
n, in which the λ2

n are the eigenvalues of the
self-adjoint problem

−Z ′′(t) +
m2 − 1

4

t2
Z(t) + q(t)Z(t) = λ2Z(t), Z(b2) = 0,

with Friedrichs condition at t = 0 if required (see Remark 1). The Ẽn are therefore
purely real. They will satisfy the required asymptotics, if the correponding λn

are ≥ O(n) for large n. The latter follows from the fact that q is bounded, via
a comparison result, removing the term q(t)Z(t) and reducing the question to the
corresponding one for Bessel zeros already considered in the proof of Lemma 4.

We complete the proof as follows. Let φ(λ) = Φ
(
1,− λ2

2m

)
. Then,

φ(iλ) = Φ(1;−E) = Φ(−1;E)

and so the condition for the matching of the boundary values of Φ is

φ(iλ)

φ(λ)
= 1.

Expanding Φ(1;E) as a Weierstrass product, using Hadamard’s Theorem, gives

Φ(1;E) = eγ(E)
∞∏

n=1

(
1− E

Ẽn

)
for an entire function γ(E), where the convergence of the product is ensured by

the fact that |Ẽn| ≥ c1n
2. The fact that Φ(1;E) has order 1

2 means that γ(E) is
constant. Thus

φ(iλ)

φ(λ)
=

∞∏
n=1

1− λ2

λ2
n

1 + λ2

λ2
n

.
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Since the λ2
n are on the real line and arg(±λ) ∈

(
−π

4 ,
π
4

)
,∣∣∣∣1− λ2

λ2
n

∣∣∣∣ < ∣∣∣∣1 + λ2

λ2
n

∣∣∣∣
whence

(35)

∣∣∣∣φ(iλ)φ(λ)

∣∣∣∣ < 1

for arg(±λ) ∈
(
−π

4 ,
π
4

)
. These inequalities are swapped in the complementary

λ-region arg(±λ) ∈
(
π
4 ,

3π
4

)
. Hence,

φ(iλ)

φ(λ)
= 1

is only possible for arg(±λ) = ±π
4 , which corresponds to purely imaginary E. □

6. Proof of Theorem 3

The construction of the pseudo-modes in Proposition 1 consisted of three steps,
which we now generalise. In order to complete steps 2 and 3, we shall need re-
placements for the inequalities which were proved in Section 4 using explicit Bessel
function expressions. The idea is to consider the solution for general f as a pertur-
bation of these, via the expression of Φ(x;E) in (32) and the integral representation
(34). We perform this task in the first part of this section and complete the proof
in the second part.

We refer to Table 1 for a summary of the specific relations between the different
parameters appearing in the various statements below.

Lemma 6. Let E ∈ C be such that arg(E) ̸∈ {kπ
2 : k ∈ Z}. The solution of (30)

satisfies the following estimate. There exist a constant R > 0 independent of q(·)
and a constant Cq > 0, such that

(36) Zq(t;E) = Z0(t;E) (1 +Wq(t;E))

where

(37) |Wq(t;E)| ≤ Cq

|E| 12

for all |E| > R and t ∈ [0, b2]. For each sufficiently large R and sufficiently small
α, the estimate on Wq holds uniformly in the region

(38)

{
E ∈ C : |E| > R, inf

k=0,1,2,3

∣∣∣∣arg(E)− kπ

2

∣∣∣∣ ≥ α

}
.

Proof. Without loss of generality we assume that arg(E) ∈ (0, π
2 ). Recall the cor-

respondence λ2 = −4mE, for λ = |λ|ei(θ+π
2 ) and θ ∈ (0, π

4 ). Fixing θ is equivalent
to fixing arg(E).

Let δ > 0 be small. We use (34), splitting the integral as

Zq(t;E) = Z0(t;E)

1 +

∫ min(t, δ√
|E|

)

0

+

∫ t

min(t, δ√
|E|

)

Kq(t, s)
Z0(s;E)

Z0(t;E)
ds
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and we show that both integrals are O(|λ|−1). Note that 0 < s
t < 1 in both

integrals. From (33) we have

Z0(s;E)

Z0(t;E)
=
(s
t

) 1
2 Jm(λs)

Jm(λt)
.

For the first integral, we have to estimate the quotient Jm(λs)
Jm(λt) either in the

triangle

T =

{
(s, t) ∈ R2 : 0 < s < t <

2δm
1
2

|λ|

}
,

whenever t < 2δm
1
2

|λ| , or in the strip

S =

{
(s, t) ∈ R2 : 0 < s <

2δm
1
2

|λ|

}

whenever t ≥ 2δm
1
2

|λ| . Since Jm(α)
Jm(β) is bounded uniformly for all |α| ≤ |β| ≤ 2δm

1
2 ,

provided δ is chosen sufficiently small to avoid the first zero of Jm, we know that

sup
(s,t)∈T

∣∣∣∣Jm(λs)

Jm(λt)

∣∣∣∣ < c1

where the constant c1 is independent of |λ|. On S, the numerator Jm(λs) is bounded
independently of λ because |λs| is bounded, while in the denominator the term
Jm(λt) is bounded away from zero by (21) and the fact that arg(λt) ∈

(
π
2 ,

3π
4

)
.

Note that, by hypothesis, λt lies on a fixed ray λt = |λt| exp(i(θ + π
2 )), away from

Bessel zeros. The above, together with the property ii), that the sup-norm of the
transformator kernel Kq is finite, implies that∣∣∣∣∣

∫ δ√
|E|

0

Kq(t, s)
Z0(s;E)

Z0(t;E)
ds

∣∣∣∣∣ ≤ c2|λ|−1,

for a constant c2 > 0 depending only upon arg(λ). This gives the estimate for the
first integral.

For the second integral, first recall the right hand side of (22). Then, we have∣∣∣∣Z0(s;E)

Z0(t;E)

∣∣∣∣ = (st) 1
2 Jm(λs)

Jm(λt)

=
(s
t

) 1
2 |Jm(i|λ|seiθ)|
|Jm(i|λ|teiθ)|

∼ e|λ|(s−t) cos θ

where the limit is uniform for θ ∈ [0, π
4 − δ]. Therefore, there exists a constant

c3 > 0, such that ∣∣∣∣Z0(s;E)

Z0(t;E)

∣∣∣∣ ≤ c3 exp(|λ|(s− t) cos θ),

for all θ ∈ [0, π
4 − δ] and |λ| > 1. Hence, the second integral is bounded by

c4

∫ t

δ√
|E|

exp(−|λ|(t− s) cos θ) ds ≤ c4
|λ| cos θ

,

which is O(|λ|−1) for large |λ|.
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This ensures the existence of R > 0 and Cq > 0 satisfying (36). Note that c1,
c2 and c4 depend on q(·), but we can choose R > 0 independent of q(·). Also note
that all the estimates above are unform with respect to θ and t. □

By (36), the solution Φ(x;E) is such that

(39)

Φ(x;E) = ρ4(g(x))
2mΓ(m+ 1)

λm
τ(x)

1
2 Jm(λτ(x))

(
1 +O(|λ|−1)

)
Φ(x;−E) = ρ4(g(x))

2mΓ(m+ 1)

(iλ)m
τ(x)

1
2 Jm(iλτ(x))

(
1 +O(|λ|−1)

)
as |λ| → ∞, where the O(|λ|−1) bounds are uniform for E = − λ2

4m in the region
(38) of Lemma 6.

Now we consider estimates leading to upper bounds for the norm of the action
of (L− E) on the pseudo-modes constructed below.

Lemma 7. Let λ = |λ|ei(
π
2 +θ) where θ ∈

(
0, π

4

)
and |λ| >

√
2. Set E ≡ Eλ =

− λ2

4m . Let 0 < δ < π
8 be fixed. Then, there exists a constant Cf > 0 only depending

on f(·) and δ, such that

(40) |Φ(x;E)| ≤ Cf

and

(41) |Φ′(x;E)| ≤ Cf |λ|2,

for all x ∈
[
− 2

|λ|2 ,−
1

|λ|2

]
and θ ∈ [δ, π

4 − δ].

Proof. Everywhere in this proof |λ| >
√
2 is fixed and none of the constants cj

depends on |λ| or θ. Whenever this is not obvious, we will explain the reason for
this independence.

First, let us show (40). From Lemma 2 and the definition of τ(x), we have that

τ(x) ∼ g(x) ∼ |x| 12 as x → 0. Also, recall that ρ4(y) = O(y−(ℓ+1)) as y → 0.
We remark here that these functions are independent of θ. Then, from the second
equation in (39) it follows that,

|Φ(x;E)| = ρ4(g(x))

[
2mΓ(m+ 1)

|λ|m

]
τ(x)

1
2

∣∣∣Jm(−|λ|τ(x)eiθ)
∣∣∣(1 +O(|λ|−1))

= 2mΓ(m+ 1)ρ4(g(x))τ(x)
m+ 1

2

∣∣Jm(−|λ|τ(x)eiθ)
∣∣

(|λ|τ(x))m
(1 +O(|λ|−1))

≤ c1 sup
|z|≤

√
2+ 1

2

∣∣∣∣Jm(z)

zm

∣∣∣∣ (1 +O(|λ|−1))

≤ c2,

for all x ∈
[
− 2

|λ|2 ,−
1

|λ|2

]
and θ ∈ [δ, π

4 − δ]. Here the constants c1 > 0 depends

only on f(·) and, according to Lemma 6, c2 > 0 can be chosen to depend only on
f(·) and δ. This gives (40) as required in the statement.
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Now, consider (41). The expression (30′) and a straightforward calculation, give

Φ′(x;E) = −ρ′(g(x))g′(x)

4
[1 + ρ(g(x))]−

5
4
Zq(τ(x);E)

g(x)ℓ+1

− (ℓ+ 1)
g′(x)

g(x)
[1 + ρ(g(x))]−

1
4
Zq(τ(x);E)

g(x)ℓ+1

+
g′(x)

g(x)
[1 + ρ(g(x))]

1
4
Z ′
q(τ(x);E)

g(x)ℓ

= A(x) +B(x) +D(x).

We provide estimates for the modulus of these three quantities, that lead to (41).
Estimates for |A(x)| and |B(x)|. Recall the asymptotics in the regime x → 0:

g(x) ∼ |x| 12 , ρ(g(x)) = O(x) and ρ′(g(x))g′(x) = O(1), where the quantities in-
volved only depend on f(·). By writing Zq(τ(x);E) in terms of Φ(x;E) using (30′),
and by applying (40), we then know that there exists a constant c3 > 0, only
depending on f(·) and δ, such that

|A(x)| = |ρ′(g(x))g′(x)|
4

[1 + ρ(g(x))]−1|Φ(x;E)| ≤ c3

for all x ∈
[
− 2

|λ|2 ,−
1

|λ|2

]
and θ ∈ [δ, π

4 − δ]. Similarly, since g′(x)
g(x) ∼ 1

2x
−1 as x → 0,

there exists a constant c4 > 0, only depending on f(·) and δ, such that

|B(x)| = (ℓ+ 1)

∣∣∣∣g′(x)g(x)

∣∣∣∣ |Φ(x;E)| ≤ c4|λ|2

for all x ∈
[
− 2

|λ|2 ,−
1

|λ|2

]
and θ ∈ [δ, π

4 − δ].

Estimate for |D(x)|. By integrating, we obtain,

Z ′
q(τ(x);E) =

∫ τ(x)

0

Z ′′
q (s;E) ds =

∫ τ(x)

0

(
m2 − 1

4

s2
− q(s)− λ2

)
Zq(s;E)ds.

According to Lemma 6 and (33), we have

Zq(t;E) = Z0(t;E)
(
1 +O(|E|− 1

2 )
)

= 2mΓ(m+ 1)tm+ 1
2
Jm(λt)

(λt)m

(
1 +O(|λ|−1)

)
where, for fixed q(·), m and δ, the O(|λ|−1) bound is uniform for all θ ∈ [δ, π

4 − δ]
as |λ| → ∞. Since

|Jm(z)|
|z|m

∼ 1

2mΓ(m+ 1)

for |z| → 0, then there exists a constant c5 > 0 such that

|Z ′
q(τ(x);E)| ≤ c5

∫ τ(x)

0

(
m2 − 1

4

s2
+ |q(s)|+ |λ|2

)
sm+ 1

2 2mΓ(m+ 1)
|Jm(λs)|
(|λ|s)m

ds

≤ c5

∫ τ(x)

0

(
m2 − 1

4

s2
+ ∥q∥∞ + |λ|2

)
sm+ 1

2 ds
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for all x ∈
[
− 2

|λ|2 ,−
1

|λ|2
]
and θ ∈ [δ, π

4 − δ]. Moreover, for all such (x, θ),∫ τ(x)

0

m2 − 1
4

s2
sm+ 1

2 ds =

(
m+

1

2

)
τ(x)m− 1

2 ≤ c6|λ|
1
2−m

and ∫ τ(x)

0

|λ|2sm+ 1
2 ds = |λ|2 τ(x)

m+ 3
2

m+ 3
2

≤ c7|λ|
1
2−m,

where c6, c7 > 0 depend only on m. Since m > 1
2 and 1

2 −m = −ℓ, we then can
conclude that there exists a constant c8 > 0 only depending on f(·) and δ, such
that

|Z ′
q(τ(x);E)|
g(x)ℓ

≤ c8

for all x ∈
[
− 2

|λ|2 ,−
1

|λ|2

]
and θ ∈ [δ, π

4 − δ]. Thus, for a suitable constant c9 > 0

only depending on f(·) and δ,

|D(x)| =
∣∣∣∣g′(x)g(x)

∣∣∣∣ [1 + ρ(g(x))]
1
4

∣∣∣∣ |Z ′
q(τ(x);E)|
g(x)ℓ

∣∣∣∣ ≤ c9|λ|2

for all x ∈
[
− 2

|λ|2 ,−
1

|λ|2

]
and θ ∈ [δ, π

4 − δ].

These estimates for |A(x)|, |B(x)| and |D(x)|, directly imply (41) and confirm
the validity of the lemma. □

We are now ready to complete the proof of Theorem 3, which will be a direct
corollary of the next proposition. Similarly to Proposition 1, here we can choose
the constant R > 0 independent of λ, δ, ε and r(·). The constant Cf > 0 on the
other hand, is independent of λ and δ, but depends on r(·) and ε.

Proposition 2. Let λ ∈ C be given by (20) and set E ≡ Eλ = − λ2

4m . Let 0 < δ < π
8

be fixed. There exists a constant R > 0 and a constant Cf > 0, depending only
upon f(·), such that for all |λ| ≥ R and θ ∈ [δ, π

4 − δ], we can find a pseudo-mode
u ≡ uλ ∈ Dom(L) satisfying the inequality

(42)
∥(L− Eλ)uλ∥

∥uλ∥
≤ Cf |λ|m+ 3

2 e−τ( 1
2 )|λ| sin θ.

Proof. As in the proof of Proposition 1, we construct the pseudo-mode u(x) as the
product of the periodiser χ(x) and the regular solution Φ(x,E).

Step 1: construction of u. Let χ(x) be given by (24). Note that in the expression

for χ(x), the term Φ(−1;E)
Φ(1;E) appears. According to (35) in the proof of Theorem 1

we know that
∣∣∣Φ(−1;E)

Φ(1;E)

∣∣∣ < 1 for all E = Eλ. So the bounds (25) on the derivatives

of χ(x) continue to be valid.
Step 2: lower bound on the denominator of (42). This extends (26). We show

that, for a suitable constant c1 > 0 and sufficiently large R > 0, we have

(43) ∥u∥ ≥ c1
2mΓ(m+ 1)

|λ|m+ 1
2

eτ(
1
2 )|λ| sin θ

for all |λ| ≥ R. For this purpose, we first show that

(44) |Φ(−x;E)| ≥ c1
2mΓ(m+ 1)

|λ|m+ 1
2

eτ(
1
2 )|λ| sin θ
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for all x ∈ [ 12 , 1] and |λ| ≥ R. By virtue of the symmetry P, (30′), Lemma 6 and
(33), we have

|Φ(−x;E)| = |Φ(x;−E)|
= ρ4(g(x))Zq(τ(x);E)

= ρ4(g(x))Z0(τ(x);E) (1 +Wq(τ(x);E))

= ρ4(g(x))
2mΓ(m+ 1)

|λ|m
τ(x)

1
2 Jm(−|λ|τ(x)eiθ) (1 +Wq(τ(x);E))

in which x > 0 and |Wq(τ(x);E)| = O(|λ|−1) satisfies (37). Hence, from the left
hand side of (22),

|Φ(−x;E)| ∼ |ρ4(g(x))|
2mΓ(m+ 1)√
2π|λ|m+ 1

2

e|λ|τ(x) sin θ

for |E| → ∞. From the fact that g(x) is increasing (Lemma 2) and C3((0, 1]), it
follows that there exists c2 > 0 such that

|ρ4(g(x))| =
∣∣∣(1 + ρ(g(x)))−

1
4 g(x)−(m+ 1

2 )
∣∣∣ ≥ c2

for all x ∈ [ 12 , 1]. Therefore, since τ(x) is increasing with x, then (44) follows. Here,
note that c2 is independent of ε; also that R > 0 can be chosen independent of
r(·) or ε, by making c1 > 0 dependent on q(·) following Lemma 6. By integrating
|u(x)|2 over [−1,− 1

2 ] and taking square roots, the proof of (43) follows.
Step 3: upper bound on the numerator of (42). We complete the proof, by

showing that there exists a constant c3 > 0 such that for all |λ| >
√
2,

(45) ∥(L− E)u∥ ≤ c3|λ|.

We aim for an upper bound analogous to (27) in the proof of Proposition 1. Recall
that

(L− E)u = Φ[Lχ] + 2fχ′Φ′.

Hence

∥(L− E)u∥ ≤ ∥ΦL[χ]∥+ ∥2fχ′Φ′∥

≤ 1

|λ|

(
∥ΦL[χ]∥∞ + 2∥fχ′Φ′∥∞

)
Consider the second term. We know that

sup
x∈

[
1

|λ|2
, 2
|λ|2

] |f(x)| ≤ 2∥f ′∥∞
|λ|2

for |λ| >
√
2. From the bound for |χ′(x)| in (25) and from (41), we then have

(46) 2∥fχ′Φ′∥∞ ≤ c4|λ|2

for |λ| >
√
2.

Now, consider the first term. The bounds for |χ′(x)| and |χ′′(x)| from (25), and

the fact that their supports lie in
[
− 2

|λ|2 ,−
1

|λ|2

]
, give

|L[χ](x)| =
∣∣f(x)χ′′(x) + (f ′(x) + 1)χ′(x)

∣∣ ≤ c5|λ|2
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for a constant c5 > 0 only dependant on r(·). According to (40),

sup[
− 2

|λ|2
,− 1

|λ|2

] |Φ(x;E)| ≤ c6.

Then,

(47) ∥ΦL[χ]∥∞ ≤ c7|λ|2

for |λ| >
√
2.

Estimates (46) and (47) imply (45). □

7. Proof of Theorem 2

In this final section we show that the uper bound given in Theorem 2 is valid,
by first showing that the resolvent of L is in a suitable Schatten class. The next
lemma follows similar results established in [7, Proposition 4.3] and [6, Theorem 8].
We have not found any evidence suggesting that the threshold 2

3 in the lemma is
not optimal.

Lemma 8. For all p > 2
3 and E ̸∈ Spec(L), we have (L− E)−1 ∈ Cp.

Proof. Consider the reduced operator L̃ : Dom(L̃) −→ Ran(L) introduced in the
proof of Lemma 1 at the end of Section 3. Since both, domain and range, are
closed subspaces of co-dimension 1, it is enough to show that the inverse, S̃, lies in
the required Schatten class. Now, S̃ is the compression to Ran(L), of a rank-one
perturbation of the integral operator S : L2(−1, 1) −→ L2(−1, 1),

Sw(z) =

∫ z

0

H(x, z)w(z) dz,

where H(x, z) is the kernel from the expression (12). Therefore, it is enough to
show that S ∈ Cp for p > 2

3 . We split the proof of this into four steps.
Step 1. Note that∫ 1

−1

H(x, z)w(z) dz =

∫ 1

−1

H(x, z)

(
d

dz

∫ z

0

w(t) dt

)
dz

=

[
H(x, z)

∫ z

0

w(t) dt

]z=1

z=−1

−
∫ 1

−1

∂zH(x, z)

∫ z

0

w(t) dt dz

=

∫ 1

−1

H̃(x, z)

(∫ z

0

|z|−γw(t) dt

)
dz,

where γ ∈ (0, 1
2 ) and

H̃(x, z) = sgn(x)
|z|γg 1

ε (z)

g
1
ε (x)f(z)

1[0,|x|)(sgn(x)z).

Therefore, S = TV where T is the integral operator associated with the kernel
H̃(x, z) and V the integral operator associated with the kernel

v(z, t) = sgn(z)|z|−γ1[0,|z|)(sgn(z)t).

Step 2. We show that T ∈ C2. Indeed,∫ 1

−1

∫ 1

−1

|H̃(x, z)|2dzdx =

∫ 1

−1

1

g
2
ε (x)

(
sgn(x)

∫ x

0

|z|2γ
∣∣∣∣∣g

2
ε (z)

f2(z)

∣∣∣∣∣dz
)
dx.



THE PSEUDOSPECTRUM OF AN OPERATOR WITH BESSEL-TYPE SINGULARITIES 25

The only singularity of the integrand occurs at the origin. Now, since

|z|2γ
∣∣∣∣∣g

2
ε (z)

f2(z)

∣∣∣∣∣ = O(|z|2γ+ 1
ε−2),

as |z| → 0, then ∫ x

0

|z|2γ
∣∣∣∣∣g

2
ε (z)

f2(z)

∣∣∣∣∣ dz = O(|x|2γ+ 1
ε−1)

as |x| → 0. Then ∫ 1

−1

∫ 1

−1

|H̃(x, z)|2dzdx =

∫ 1

−1

h̃(x) dx

where the function h̃(x) is continuous in [−1, 0) ∪ (0, 1] and |h̃(x)| = O(|x|2γ−1) as
|x| → 0. Therefore, the double integral is finite, so T ∈ C2.

Step 3. We now show that V ∈ C 1
1−γ

. For this, see [18, p.1117], it is enough to

show that the kernel v(z, t) satisfies the Hölder condition,

(48) δγ−
1
2

[∫ 1

−1

|v(z, t+ δ)− v(z, t)|2 dz
] 1

2

≤ Γ

for all −1 ≤ t ≤ 1 and δ > 0 small enough. To show this, note that the square of
the left hand side is bounded by∫ 1

0

∣∣v(|z|, |t|+ δ)− v(|z|, |t|)
∣∣2

δ1−2γ
dz =

1

δ1−2γ

∫ |t|+δ

|t|

dz

|z|2γ
=

(|t|+ δ)1−2γ − |t|1−2γ

(1− 2γ)δ1−2γ
.

But since the function y 7→ y1−2γ is Hölder continuous of order 1−2γ for y ∈ (0, 1),
indeed, there exists Γ > 0 such that (48) holds true. Then, V ∈ C 1

1−γ
.

Step 4. We conclude the proof of the lemma as follows. The previous two steps
and the interpolation inequality of the Schatten classes [18, Lemma XI.9.9], give

∥S∥Cp ≤ 2
1
p ∥T∥C2∥V ∥C 1

1−γ

for 1
p = 1

2 +1− γ = 3
2 − γ. But, since γ here can be made arbitrarily close to 0, we

have that, indeed, p > 2
3 can be made arbitrarily close to 2

3 . □

The Carleman-type inequality we apply next was recently implemented in [2],
in order to derive optimal asymptotic estimates for the resolvent norm of complex
potential Schrödinger operators.

Proof of Theorem 2. Let

η =
1

2
min

{
|λ| : λ ∈ SpecL \ {0}

}
> 0.

Without loss of generality, we will prove that the inequality in the conclusion of
the theorem,

∥(L− |E|eiα)−1∥ < c exp [a|E|p]
holds true for all |E| ≥ 2η. If it happens that 1 < 2η < ∞, the same conclusion
holds for 1 ≤ |E| ≤ 2η, by continuity and compactness. If η = ∞ (which has not
been ruled out in our results above), we can take η = 1 in the next steps of this
proof. Moreover, without loss of generality we will assume that the spectrum of L
is unbounded. Otherwise, the proof follows simpler arguments.
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Our goal is to apply the next remarkable estimate from [3, (1.2)]. If an operator
B ∈ Cp, then

(49) ∥(B − z)−1∥ ≤ 1

dist(z,SpecB)
exp

[
a1

distp(z,SpecB)
+ d1

]
for suitable constants a1 > 0 and d1 > 0, independent of z. Here, we let B =
(L− iη)−1 ∈ Cp. By Theorem 1, we know that

SpecB =

{
1

λ− iη
: λ ∈ SpecL

}
∪ {0}

is purely imaginary.
First, let us show that there exist constants c3 > c2 > 0, which can be chosen

uniformly in α on compact sets, such that

(50)
c2
|E|

≤ dist

(
1

E − iη
,SpecB

)
≤ c3

|E|

for |E| ≥ 2η. Let Ẽ = E − iη = |Ẽ|eiα̃. Then eiα̃ ̸∈ iR,

|E|
2

< |Ẽ| < 3|E|
2

and

dist

(
1

E − iη
,SpecB

)
= inf

λ∈SpecL

∣∣∣∣ 1Ẽ − 1

λ− iη

∣∣∣∣ = 1

|Ẽ|
inf

λ∈SpecL

∣∣∣∣∣1− |Ẽ|eiα̃

λ− iη

∣∣∣∣∣ .
We estimate bounds for this infimum. On the one hand,

inf
λ∈SpecL

∣∣∣∣∣1− |Ẽ|eiα̃

λ− iη

∣∣∣∣∣ ≤ lim inf
|λ|→∞

λ∈SpecL

∣∣∣∣∣1− |Ẽ|eiα̃

λ− iη

∣∣∣∣∣ = 1.

Thus, the second inequality in (50) holds true for c3 = 2. On the other hand, since
λ ∈ SpecL implies λ ∈ i(−∞,−2η] ∪ i[2η,∞) ∪ {0},

inf
λ∈SpecL

∣∣∣∣∣1− |Ẽ|eiα̃

λ− iη

∣∣∣∣∣ ≥ inf
w∈(−∞,−η]∪[η,∞)

∣∣∣∣∣1− i|Ẽ|eiα̃

w

∣∣∣∣∣ ≥ dist(1, {µieiα̃ : µ ∈ R}).

Since ieiα̃ ̸∈ R, then the right hand side is positive, and there exists c2 > 0 such
that the first inequality in (50) is also valid.

We complete the proof of the theorem as follows. Since,

(L− E)−1 = B(I − (E − iη)B)−1 =
1

Ẽ
B
(
(E − iη)−1 −B

)−1
,

then

∥(L− E)−1∥ ≤ 2

|E|

∥∥∥(B − (E − iη)−1
)−1
∥∥∥

for all |E| ≥ 2η. Hence, substituting z = 1
E−iη and (50) into (49), yields

∥(L− E)−1∥ < exp(a2|E|p + d1)

ensuring the validity of Theorem 2. □
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Figure 3. Here f(x) = x
2 and λ = |λ|ei 9π

16 . We show the pseudo-
mode uλ(x) from Proposition 1 normalised to ∥uλ∥ = 1 for |λ|
increasing.

Appendix A. The shape of the pseudo-modes as |E| increases

The purpose of this appendix is to illustrate the evolution of the shape of the
pseudo-modes constructed in this paper. We consider those in the proof of Propo-
sition 1. Below we show two figures with graphs of uλ(x) and |uλ(x)|, normalised
by ∥uλ∥ = 1, for different values of λ. We have produce these figures by plotting
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θ = π
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Figure 4. Here f(x) = x
2 and λ = 25ei(

π
2 +θ) for θ increasing. We

show the modulus of the pseudo-mode |uλ(x)| from Proposition 1
normalised to ∥uλ∥ = 1. For θ = π

16 see Figure 3.

on a computer the exact formula

uλ(x) =
1

∥χΦ∥
χ(x)Φ(x)

where Φ(x) is the expression (16) and χ(x) is as in (24).
In Step 2 of the proof of Proposition 1, we have used the crucial fact that the

total mass of uλ in [−1,− 1
2 ] is exponentially large compared to the norm ∥(L −

E)uλ∥. See the proof of (26) and the bound (27) as |λ| increases. Figure 3 shows
this phenomenon in action. As |λ| increases from 10 to 100, the pseudomode has
a transitional phase from being concentrated near the origin (|λ| = 10, 25), to
accumulating most of the mass in [−1,− 1

2 ] (|λ| = 50, 75, 100).
We also see in the same figure (left) that the quasi-mode developes an oscillatory

behaviour of its real and imaginary parts. Remarkably (right) this oscillatory be-
haviour completely dissapears in the modulus |uλ(x)|. This phenomenon has been
observed numerically in the semi-classical regime for related operators, c.f. [31].

In Figure 4 we fix |λ| = 25 and change θ ∈ (0, π
4 ) in the expression λ = |λ|ei(π

2 +θ).
When θ is close to 0, we see that the mass of the pseudo-mode is mostly accumulated
at the origin (this mass will migrate to [−1,− 1

2 ] eventually as |λ| increases). This
corresponds to E near the real axis. As θ increases, E gets closer to the imaginary
axis, where the spectrum lies, and we see that |uλ(x)| now concentrates towards
±1 with most of the mass in [−1,− 1

2 ] ∪ [ 12 , 1].
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Appendix B. Notation used in the paper

Identities Parameter Constraint or definition

x −1 ≤ x ≤ 1
ε 0 < ε < 1

(f(x)ϕ′(x) + ϕ(x))′ = Eϕ(x) f(x) Twice continuously differentiable, odd,
analytic at x = 0, sgn(f(x)) = sgn(x).

(1), (2), (7), (32) f(x) = 2εx
1+xr(x)

= 2εx+O(x3)

r(x) Odd, analytic at x = 0.
E E ∈ C
ϕ(x) Solution, no prescription of BC.
Φ(x;E) Scaled solution, Φ(0;E) = 1.

y y = g(x), 0 ≤ y ≤ b1
(εyF ′(y))′ + F ′(y) = Eh(y)F (y) b1 b1 = g(1)

g(x) f(x)g′(x) = εg(x), g(x) ∼ |x|
1
2 .

(2), (3), (6) F (y) ϕ(x) = F (g(x))

h(y) h(y) = f(g−1(y))
εy

= 2y +O(y3)

G(y) G(y) = yβF (y)

G′′(y)− m2− 1
4

y2 G(y) = β β = 2
ε
+ 1

2

4mE(1 + ρ(y))G(y) λ, θ λ2 = −4mE

λ = |λ|ei(
π
2
+θ) for 0 < θ < π

4

m m = 1
2ε

(14), (28) ρ(y) ρ(y) = h(y)
y

− 2 = O(y2)

ρ3(y) ρ3(y) = yρ(y)

(30′) ρ4(y) ρ4(y) = (1+ρ(y))−
1
4 y−(m+ 1

2
) ∼ y−(m+ 1

2
)

t 0 < t < b2, t =
∫ y

0

√
1 + ρ(s) ds

−Z′′(t) + q(t)Z(t)+ b2 b2 =
∫ b1
0

√
1 + ρ(s) ds

ℓ(ℓ+1)

t2
Z(t) = λ2Z(t) Z(t;E) Z(t;E) = (1 + ρ(y))

1
4G(y)

ℓ ℓ = 1
2ε

− 1
2
= m− 1

2

(30), (31), (34) q(t) q : [0, b2] −→ R is continuous and
bounded. See Lemma 5.

τ(x) τ(x) =
∫ g(x)

0

√
1 + ρ(s) ds ∼ |x|

1
2

Table 1. Relation between the notation and changes of variables
used through the paper.
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