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Abstract
Persistent inflammation is described in people with HIV (PWH) on antiretroviral treatment (ART). Early ART initiation is 
associated with reduced inflammation. We aimed to evaluate neuroinflammation, using translocator protein (TSPO) [11C]
PBR28 PET neuroimaging in PWH who initiated ART during acute HIV (aPWH) versus chronic HIV infection (cPWH) 
versus a control population. This was a cross-sectional, observational study. All participants underwent [11C]PBR28 PET-CT 
neuroimaging. Using a two-tissue compartment model, total volume of distribution (VT) and distribution volume ratios (DVR) 
using cortical grey matter as a pseudo-reference region at 20 regions of interest (ROIs) were calculated. Differences in VT 
and DVR were compared between groups using the Kruskall-Wallis test. Seventeen neuro-asymptomatic male PWH on ART 
(9 aPWH, 8 cPWH) and 8 male control participants (CPs) were included. Median (interquartile range, IQR) age was 40 (30, 
46), 44 (41, 47) and 21 (20, 25) years in aPWH, cPWH and CPs, respectively. Median (IQR) CD4 (cells/µL) and CD4:CD8 
were 687 (652, 1014) and 1.37 (1.24, 1.42), and 700 (500, 720) and 0.67 (0.64, 0.82) in aPWH and cPWH, respectively. 
Overall, no significant difference in VT and DVR were observed between the three groups at any ROIs. cPWH demonstrated 
a trend towards higher mean VT compared with aPWH and CPs at most ROIs. No significant differences in neuroinflamma-
tion, using [11C]PBR28 binding as a proxy, were identified between cPWH, aPWH and CPs. A trend towards lower absolute 
[11C]PBR28 binding was seen amongst aPWH and CPs, suggesting early ART may mitigate neuroinflammation.
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Introduction

With the widespread implementation of modern antiretro-
viral treatment (ART), the prognosis and life expectancy 
for people with HIV has significantly improved (Hogg 
et al. 1998; May et al. 2014). However, people with HIV 

on virologically suppressive ART remain at increased risk 
of non-AIDS co-morbidities including cognitive impair-
ment (Robertson et al. 2007; Schouten et al. 2014; Simioni  
et al. 2010). The underlying mechanisms are likely multi-
factorial; persistent microglial activation (Anthony et al. 
2005; Minagar et  al. 2002) and neuroinflammation in 
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people with HIV on virological suppressive ART (Edén 
et al. 2016) is postulated to be a contributor.

The 18kDa Translocator protein (TSPO), located on the 
outer mitochondrial membrane, is highly expressed in acti-
vated microglia (Banati et al. 2004; Liu et al. 2014) and is 
associated with neuroinflammation (Liu et al. 2014). Syn-
thetic radiolabelled ligands that selectively bind to TSPO  
have been developed and can be utilised to image dynamic 
microglial activation in the human brain in vivo, using 
positron emission tomography (PET) imaging (Stephenson  
et  al. 1995). The first-generation TSPO radiotracer, 
[11C]-PK11195 was limited by low blood–brain barrier pen-
etration and high nonspecific binding. Second-generation 
radiotracers such as [11C]PBR28 and [11C]DPA-713 have 
improved blood–brain barrier penetration and signal-to-
noise ratios, however binding affinity is dependent on single-
nucleotide polymorphism rs6971, whereby genotypic testing 
must be carried out to ascertain whether an individual is a 
low-, medium- or high-affinity binder.

TSPO PET brain imaging has been used to investigate 
neuroinflammation in people with HIV (Boerwinkle et al. 
2020; Coughlin et al. 2014; Garvey et al. 2014; Hammoud 
et al. 2005; Vera et al. 2016; Wiley et al. 2006), with con-
flicting results. While higher TSPO binding in people with 
HIV has generally been reported compared with persons 
without HIV, the precise anatomical locations have varied 
between studies. These inconsistencies are likely related to 
(1) different methodologies used to quantify TSPO radi-
otracer uptake, (2) cohort differences (inclusion or exclu-
sion of people with HIV with cognitive impairment), (3) 
differences in criteria for defining cognitive impairment 
(Nightingale et al. 2021) and (4) small sample sizes.

Strategies to reduce persistent immune activation and 
inflammation include the early initiation of ART, soon 
after HIV acquisition (Pace & Frater 2014). Early ART 
initiation may partly mitigate the effects uncontrolled 
HIV replication has on the central nervous system and 
thereby reduce the persistent neuroinflammation which 
has been observed in ART-treated individuals. Early evi-
dence supports a reduction in cerebrospinal fluid biomark-
ers of inflammation when ART is initiated during acute 
HIV infection (Hellmuth et al. 2019; Oliveira et al. 2017), 
however, long-term data on brain parenchymal inflamma-
tion and neurological sequelae are lacking.

The aim of this study was to evaluate neuroinflamma-
tion, measured using TSPO [11C]PBR28 radiotracer bind-
ing, in people with HIV who initiated ART during acute 
versus chronic HIV infection, and compared with control 
individuals, using volume of distribution (VT) as a primary 
outcome and distribution volume ratio (DVR) as a second-
ary outcome.

Methods

All participants underwent structural cerebral magnetic 
resonance imaging (MRI) and cerebral positron emission 
tomography-computed tomography (PET-CT) imaging 
with [11C]PBR28 ligand at the Imanova Centre for Imag-
ing Sciences, London, UK.

Participants living with HIV

Individuals attending HIV outpatient services at Imperial 
College Healthcare NHS Trust, London, UK, were invited 
to enrol into the study. Eligible participants were adult 
males ≥ 18 years of age, receiving ART for ≥ 3 months with 
plasma HIV RNA < 50 copies/mL, high affinity binders 
to [11C] PBR28 on TSPO genotypic testing and in good 
health. Exclusion criteria included significant neurological 
comorbidities, alcohol or recreational drug use disorder, 
contraindication to arterial cannulation, lumbar puncture or 
magnetic resonance (MR) imaging, body mass index > 30 
kg/m2 and participation in another research study involving 
ionising radiation such that the subject would be exposed to 
a cumulative dose of > 10 mSv in the previous 12 months. 
Participants with HIV were assigned into two cohorts: par-
ticipants who initiated ART during acute HIV infection 
were defined as people who had started ART within three 
months of confirmed primary HIV infection, based on one 
of the following six criteria: a) positive HIV-1 serology 
within a maximum of 24 weeks of a documented nega-
tive HIV-1 serology test result (can include point of care 
test (POCT) using blood for both tests), b) a positive p24 
antigen result and a negative HIV antibody test, c) negative 
antibody test with either detectable HIV RNA or proviral 
DNA, d) Recent Infection Testing Algorithm (RITA) test 
reported as “Incident” confirming the HIV-1 antibody avid-
ity is consistent with recent infection (within the preceding 
16 weeks), e) weakly reactive or equivocal 4th generation 
HIV antibody-antigen test and f) equivocal or reactive anti-
body test with < 4 bands on western blot. Participants who 
initiated ART during chronic HIV infection were defined 
as people who had started ART more than six months after 
known or presumed date of HIV acquisition.

The studies were approved by UK Research Ethics Com-
mittees (REC) (reference numbers 16/LO/0096 and 12/
LO/1570). Permission was obtained from the UK Admin-
istration of Radioactive Substances Advisory Committee 
(ARSAC) (reference numbers: RPC 630/3764/34269 and 
630/3764/ 29,163) for the administration of [11C] PBR28. 
All participants provided written informed consent prior 
to commencing any study procedures.
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Control participants

Brain [11C] PBR28 PET-CT imaging data for the control 
participants were obtained from participants enrolled into 
either a human pharmacological blocking study to deter-
mine brain [11C] PBR28 binding potential in vivo(Owen 
et al. 2014) or enrolled into a brain [11C] PBR28 PET-CT 
imaging database for healthy volunteers supported by Glax-
oSmithKline plc. The eligibility criteria to enrol into the 
pharmacological blocking study and the GlaxoSmithKline 
plc healthy volunteers’ database were similar to the criteria 
for the studies for persons with HIV.

Brain magnetic resonance imaging (MRI)

T1-weighted whole brain structural images were obtained on 
a Siemens MAGNETOM® Verio 3.0 Tesla magnetic reso-
nance scanner (Siemens Healthineers, Munich, Germany).

Brain [11C] PBR28 positron emission 
tomography‑computed tomography  
(PET‑CT) imaging

1	 Radiotracer synthesis
	   [11C] PBR28 was produced on site at the Imanova 

Centre for Imaging Sciences immediately before use, 
according to local standard operating procedures. Qual-
ity assurance assessments were made using validated 
procedures in accordance with good manufacturing 
practices before injection to ensure the manufactured 
[11C] PBR28 met the prerequisite specifications

2	 Arterial blood sampling and processing
	   Following skin infiltration with 1% lidocaine as local 

anaesthetic, a cannula was inserted into the participant’s 
radial artery to enable regular arterial blood sampling 
throughout the cerebral PET-CT imaging procedure.

3	 PET imaging data acquisition
	   The cerebral [11C] PBR28 PET-CT images were 

acquired using a Biograph 6 PET-CT scanner (Siemens 
Healthcare). Participants were injected with an intrave-
nous bolus of [11C] PBR28 over 20 s at the beginning 
of the 90-min 3D-mode of dynamic PET acquisition; 
injected activities ranged from 120.45 to 374.45 MBq.

4	 Blood data processing
	   Arterial blood was sampled to enable generation of an 

arterial plasma input function. A continuous sampling 
system (ABSS Allogg, Mariefred, Sweden) was used to 
measure whole blood activity each second for the first 
15 min of each scan. Discrete arterial blood samples 
were manually withdrawn at 5, 10, 15, 20, 30, 50, 70 and 
90 min time points after the scan commenced to measure 
whole blood and plasma activity. Samples obtained at 
5, 10, 20, 30, 50, 70 and 90 min time points after the 

scan commenced were analysed using high-performance 
liquid chromatography (HPLC) to determine the frac-
tion of parent radioactivity in the arterial plasma. The 
first three discrete blood samples were used to calibrate 
the continuous blood data, then the continuous and dis-
crete datasets were used to form a whole blood activity 
curve, covering the duration of the scan. Discrete plasma 
samples were divided by the corresponding whole blood 
samples to obtain the plasma-over-blood (POB) data.

An exponential approach to a constant POB model was 
fitted (Gunn et al. 2000), to generate the metabolite-corrected 
plasma input function. This POB value was then multiplied 
by the whole blood curve to generate a total plasma curve.  
A sigmoid model was used to fit the parent fraction data.

The resulting fitted parent fraction profile was multi-
plied by the total plasma curve and then smoothed post-
peak using a tri-exponential fit to derive the required parent 
plasma input function. For each scan, a time delay correction 
was fitted and applied to the input function to account for 
any time delay between blood sample measurement and the 
tomographic measurements of the tissue data. Free fraction 
in plasma (fp) was measured through ultrafiltration (Amicon 
Ultra regenerated cellulose MWCO 30 kDa, Millex, Ireland) 
in triplicate using Tris buffer (0.1M, pH = 7.4) to determine 
and enable correction for non-specific binding.

[11C] PBR28 positron emission 
tomography‑computed tomography  
(PET‑CT) data processing

All brain [11C] PBR28 PET-CT data from the participants 
were analysed using the MIAKAT™ v4.3.17 pipeline via 
the same process. PET data were reconstructed using fil-
tered back projection, corrected for attenuation and scat-
ter (based on low-dose CT acquisition scan). Dynamic data 
were binned into 26 frames (durations: 8 × 15 s, 3 × 1 min, 
5 × 2 min, 5 × 5 min and 5 × 10 min). Motion correction in 
the dynamic PET data was performed via frame-to-frame 
image registration of the non-attenuation corrected PET 
image to the participants’ structural T1-magnetic resonance 
image using SPM5 (Wellcome Trust Centre for Neuroimag-
ing), with a mutual information cost function.

The CIC neuroanatomical atlas version 2.0 was nonlin-
early deformed into the participant’s space, via structural 
T1-MRI data mapping, to obtain a personalised anatomi-
cal parcellation of regions of interest (ROIs). The follow-
ing ROIs were chosen to assess levels of binding based on 
regions investigated in previously published TSPO PET stud-
ies in people with HIV (Boerwinkle et al. 2020; Coughlin  
et al. 2014; Garvey et al. 2014; Hammoud et al. 2005; Rubin 
et al. 2018; Vera et al. 2016; Wiley et al. 2006): whole brain, 
frontal lobe, occipital lobe, temporal lobe, parietal lobe, 
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amygdala, hippocampus, posterior cingulate gyrus, anterior 
cingulate, basal ganglia, globus pallidus, striatum, caudate, 
putamen, thalamus, cerebellum, brainstem, midbrain, pons 
and medulla. Each ROI was then applied to the dynamic 
PET data to derive regional time-activity curves.

Model fitting and parameter estimation was performed 
using the MIAKAT™ pipeline, implemented in MATLAB™ 
R2019b (The MathWorks, Natick, MA, USA). A two- 
tissue compartment model using the metabolite-corrected 
plasma input function was applied to the dynamic PET data 
using a fixed blood volume correction of 5%. For each ROI 
evaluated, the main outcome measured was the total vol-
ume of distribution (VT) estimated from the rate constant 
as described previously (Gunn et al. 2000). The secondary 
outcome, distribution volume ratio (DVR), was calculated 
by normalising the VT at each ROI to cortical grey matter, 
a pseudo-reference region previously investigated in a [11C] 
PBR28PET study in people with HIV (Vera et al. 2016).

Statistical analysis

Participant demographics and clinical parameters were 
described using median (interquartile range) and total (per-
centage), as appropriate. Differences in variables between 
participants who started ART during acute HIV infec-
tion and chronic HIV infection were analysed using the 
Mann–Whitney U test and Fisher’s exact test, as appropri-
ate. Difference in variables between participants who started 
ART during acute HIV infection, participants who started 
ART during chronic HIV infection and control participants 
were analysed using the Kruskall-Wallis test. Statistical 
analyses were conducted using SPSS version 25 (IBM Corp, 
Armonk, NY, US) and p-values < 0.05 were considered sta-
tistically significant throughout.

Differences in VT and DVR at the pre-selected ROIs 
between the participants who started ART during acute HIV 
infection, participants who started ART during chronic HIV 

Table 1   Demographics and clinical parameters (where available) of participants who underwent brain [11C] PBR28 PET imaging

Values are median (interquartile range) or n (%). Differences in variables between participants who initiated ART during acute HIV infection 
versus chronic HIV infection were analysed using the Mann Whitney U test and Fisher’s exact test, as appropriate, unless stated otherwise
ART antiretroviral treatment, PI protease inhibitor, NNRTI non-nucleoside reverse transcriptase inhibitor, INSTI integrase strand transferase inhibitor
a Differences in age and bodyweight were analysed between participants who initiated ART during acute HIV infection, participants who initi-
ated ART during chronic HIV infection and control participants using the Kruskall-Wallis test

Variables Participants who initiated 
ART during acute HIV 
infection
n = 9

Participants who initiated ART 
during chronic HIV infection
n = 8

Control participants
n = 8

p-value

Age, years 40 (30, 46) 43.5 (41, 47) 20.5 (20, 25) 0.001a

Body weight, kg 74.7 (69.1, 74.9) 82.0 (65.4, 96.4) 79.8 (75.7, 89.2) 0.167a

Ethnicity not available  < 0.001
White 6 (66.7) 5 (63)
Mixed white and Asian 3 (33.3) 0
Black African 0 2 (25)
Hispanic 0 1 (12)
Duration since HIV diagnosis, years 3.3 (2.6, 4.5) 15.0 (3.0, 15.5) not applicable 0.041
Duration on ART, years 3.2 (2.5, 4.4) 4.0 (3.0, 13.5) not applicable 0.052
Duration between HIV diagnosis and ART 

initiation, weeks
3.6 (3.3, 4.9) 16.0 (7.1, 182.0) not applicable 0.010

Pre-treatment HIV RNA, log10 copies/mL 4.4 (3.2, 5.7) 5.3 (4.8, 5.4) not applicable 0.606
Current CD4+ T-cell count, cells/µL 687 (652, 1014) 700 (500, 720) not available 0.321
Nadir CD4+ T-cell count, cells/µL 586 (370, 687) 228 (160, 250) not available 0.002
Current CD4+:CD8+ T-cell ratio 1.37 (1.24, 1.42) 0.67 (0.64, 0.82) not available  < 0.001
Current CD8+ T-cell count, cells/µL 553 (462, 779) 850 (800, 1380) not available 0.046
ART regimens not applicable 0.011
PI-based 2 (22) 4 (50)
NNRTI-based 1 (11) 4 (50)
INSTI-based 6 (67) 0 (0)
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infection and control participants were compared using the 
Kruskall-Wallis and Mann–Whitney U-tests, as appropriate.

Results

Participant characteristics

Participant demographics and clinical parameters are 
described in Table 1. Seventeen participants living with HIV 
(9 who initiated ART during acute HIV infection and 8 who 
initiated ART during chronic HIV infection) and 8 control 
participants completed [11C] PBR28 PET brain imaging and 
were included. All participants included in the study were 
male and high-affinity binders on TSPO genotypic testing. 
Apart from age and bodyweight, no additional demographic 
or clinical data were available for the control participants.

Overall, the control participants were younger (median 
(IQR) 21 years (20, 25)) compared with participants who 
initiated ART during acute HIV infection (median (IQR) 
40 years (30, 46)), who were in turn, younger than the par-
ticipants who initiated ART during chronic HIV infection 
(median (IQR) 44 years (41, 47)) (Table 1). Of the three 
groups, participants who initiated ART during acute HIV 
infection had the lowest median bodyweight (median (IQR) 
74.7 kg (69.1, 74.9)).

Participants living with HIV were predominantly of white 
ethnicity (Table 1). Overall, participants who initiated ART 
during acute HIV infection versus chronic HIV infection 
had a shorter duration since HIV diagnosis (median (IQR) 
3.3 years (2.6, 4.5) vs 15.0 years (3.0, 15.5), p = 0.04) and 
shorter duration on ART (median (IQR) 3.2 years (2.5, 4.4) 
vs 4.0 years (3.0, 13.5), p = 0.05) (Table 1).

Median pre-treatment HIV RNA load was numerically 
lower in participants who initiated ART during acute HIV 
infection compared with chronic HIV infection (median (IQR) 
4.4 (3.2, 5.7) vs 5.3 (4.8, 5.4) log10 HIV RNA copies/mL, 
p = 0.61) and current CD4+ T-cell count was similar between 
the two HIV-positive groups (Table 1). Participants who initi-
ated ART during acute HIV infection had higher nadir CD4+ 
T-cell count, higher current CD4+/CD8+ T-cell ratio and 
lower current CD8+ T-cell count compared to participants 
who initiated ART during chronic HIV infection (Table 1).

At the point when the brain PET-CT scan was performed, 
the majority of participants who initiated ART during acute 
HIV infection were on INSTI-based ART regimens (67%), 
whereas for the participants who initiated ART during 
chronic HIV infection, equal numbers of participants were 
on protease inhibitor (PI)-based and non-nucleoside reverse 
transcriptase inhibitor (NNRTI)-based ART regimens.

[11C] PBR28 total volume of distribution (VT) results

Table 2 describes the mean (standard deviation) [11C] 
PBR VT binding at the selected brain regions, stratified 
according to the study groups. Overall, no statistically 
significant differences in [11C] PBR28 (VT) binding 
between the three groups of participants at any of the 
selected regions of interest were observed (unadjusted 
p-value > 0.05 by the Kruskall-Wallis test for differences 
between the three groups at all 20 pre-selected ROIs) 
(Table 2).

Between the three groups, participants who initiated 
ART during chronic HIV infection demonstrated a trend 
towards higher mean [11C] PBR28 (VT) binding followed 
by control participants, with participants who initiated 

Table 2   Differences in regional brain [11C] PBR VT binding at 20 
pre-selected anatomical brain regions of interest between participants 
who initiated ART during acute HIV infection (aPWH), participants 
who initiated ART during chronic HIV infection (cPWH) and control 
participants

Values reported are mean (standard deviation)
ROI region of interest, ART antiretroviral treatment, aPWH people who 
initiated ART during acute HIV infection, cPWH  participants who 
initiated ART during chronic HIV infection, CP  control participants, 
VT total volume of distribution
P-values calculated using the Kruskall-Wallis test

Regions of interest aPWH
n = 9

cPWH
n = 8

CP
n = 8

p-value

Whole brain 3.9 (1.27) 4.4 (1.11) 4.2 (1.16) 0.611
Frontal lobe 3.8 (1.29) 4.5 (1.31) 4.3 (1.25) 0.548
Occipital lobe 4.0 (1.24) 4.6 (1.06) 4.2 (1.20) 0.398
Temporal lobe 4.1 (1.32) 4.4 (1.05) 4.24 (1.14) 0.709
Parietal lobe 3.8 (1.20) 4.4 (1.13) 4.4 (1.22) 0.594
Amygdala 4.8 (1.71) 5.1 (1.31) 4.9 (1.58) 0.834
Hippocampus 4.5 (1.46) 4.9 (1.23) 4.7 (1.34) 0.650
Posterior cingulate 

gyrus
4.1 (1.44) 4.7 (1.39) 4.2 (1.21) 0.552

Anterior cingulate 4.1 (1.48) 4.8 (1.54) 4.2 (1.17) 0.552
Basal ganglia 3.8 (1.29) 4.4 (1.22) 3.8 (1.10) 0.574
Globus pallidus 4.5 (1.83) 5.5 (1.78) 4.4 (1.55) 0.405
Striatum 3.7 (1.27) 4.2 (1.14) 3.7 (1.03) 0.532
Caudate 3.0 (1.14) 4.3 (2.38) 3.6 (1.15) 0.522
Putamen 4.0 (1.31) 4.6 (1.49) 3.9 (1.07) 0.531
Thalamus 4.3 (1.73) 5.0 (1.50) 4.8 (1.52) 0.486
Cerebellum 4.1 (1.45) 4.6 (1.13) 4.2 (1.14) 0.685
Brainstem 4.9 (1.76) 5.3 (1.24) 5.0 (1.32) 0.672
Midbrain 5.5 (2.21) 5.7 (1.41) 5.6 (1.35) 0.852
Pons 4.8 (1.81) 5.4 (1.30) 4.9 (1.45) 0.572
Medulla 5.0 (1.97) 4.7 (0.91) 4.5 (1.26) 0.736
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ART during acute HIV infection displaying lowest mean 
[11C] PBR28 (VT) binding at the majority of the ROIs: 
whole brain, frontal lobe, occipital lobe, temporal lobe, 

amygdala, hippocampus, posterior cingulate gyrus, anterior 
cingulate gyrus, caudate, thalamus, cerebellum, brainstem, 
midbrain and pons (Table 2 and Fig. 1).

Fig. 1   [11C] PBR28 VT binding in selected brain regions, stratified according to stage when ART was initiated and control participants

Table 3   Differences in regional 
brain [11C] PBR DVR binding 
at 20 pre-selected anatomical 
brain regions of interest 
between participants who 
initiated ART during acute HIV 
infection (aPWH), participants 
who initiated ART during 
chronic HIV infection (cPWH) 
and control participants

Values are mean (standard deviation)
ROI  region of interest, ART antiretroviral treatment, aPWH people who initiated ART during acute HIV 
infection, cPWH  participants who initiated ART during chronic HIV infection, CP  control participants, 
DVR distribution of volume ratio
P-values calculated using the Kruskall-Wallis test

Regions of interest aPWH
n = 9

cPWH
n = 8

CP
n = 8

p-value

Whole brain 0.97 (0.025) 0.97 (0.027) 0.99 (0.022) 0.155
Frontal lobe 0.95 (0.058) 0.99 (0.083) 1.00 (0.046) 0.119
Occipital lobe 1.00 (0.043) 1.03 (0.066) 1.01 (0.056) 0.759
Temporal lobe 1.03 (0.038) 0.97 (0.064) 1.01 (0.017) 0.070
Parietal lobe 0.96 (0.055) 0.98 (0.086) 1.04 (0.118) 0.139
Amygdala 1.21 (0.076) 1.12 (0.170) 1.17 (0.114) 0.188
Hippocampus 1.13 (0.080) 1.10 (0.156) 1.12 (0.061) 0.735
Posterior cingulate gyrus 1.02 (0.019) 1.03 (0.090) 1.00 (0.053) 0.505
Anterior cingulate 1.03 (0.031) 1.04 (0.085) 1.01 (0.052) 0.215
Basal ganglia 0.94 (0.048) 0.96 (0.098) 0.90 (0.031) 0.069
Globus pallidus 1.11 (0.277) 1.20 (0.197) 1.02 (0.112) 0.120
Striatum 0.91 (0.053) 0.92 (0.093) 0.88 (0.025) 0.103
Caudate 0.76 (0.113) 1.00 (0.734) 0.83 (0.138) 0.379
Putamen 0.99 (0.055) 1.00 (0.113) 0.93 (0.051) 0.081
Thalamus 1.07 (0.080) 1.09 (0.137) 1.11 (0.055) 0.411
Cerebellum 1.01 (0.070) 1.01 (0.080) 1.00 (0.037) 0.894
Brainstem 1.22 (0.066) 1.18 (0.182) 1.22 (0.065) 0.715
Midbrain 1.35 (0.100) 1.27 (0.161) 1.38 (0.090) 0.217
Pons 1.20 (0.070) 1.20 (0.202) 1.19 (0.093) 0.676
Medulla 1.32 (0.585) 1.06 (0.205) 1.13 (0.117) 0.455
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[11C] PBR28 distribution volume ratio (DVR) results

Table 3 describes the differences in [11C] PBR28 DVR 
normalised to cortical grey matter at the 20 pre-selected 
anatomical brain ROIs between the three groups of partici-
pants. We observed no statistically significant differences 
in [11C] PBR28 DVR binding between the three groups 
of participants at any of the pre-selected regions of inter-
est (unadjusted p-value > 0.05 for differences between the 
three groups at all 20 ROIs, using the Kruskall-Wallis test) 
(Table 3).

Mean [11C] PBR28 DVR results at the pre-selected ROIs 
were variable and showed no consistent pattern in trends 
towards differences between the three groups of participants 
(Table 3 and Fig. 2).

Conclusions

This study compares neuroinflammation using [11C] PBR28 
binding as a proxy in people who initiated ART in acute HIV 
infection, people who initiated ART in chronic HIV infection 
and control participants. While no statistically significant 
differences in [11C] PBR28 binding were observed between 
the three groups, our analyses consistently demonstrated 
higher absolute mean [11C] PBR28 binding amongst people 
who initiated ART during chronic HIV infection compared 
with people who initiated ART during acute HIV infection 
and control participants at the majority of brain anatomi-
cal regions studied. Our findings should be interpreted with 

caution due to the small sample size of our pilot study, how-
ever this initial signal may herald a potential true signal 
that warrants further investigation. The trend towards lower 
absolute [11C] PBR28 binding in participants who initiated 
ART during acute infection compared with chronic infec-
tion corroborates the theory that early ART initiation soon 
after HIV acquisition may attenuate the neuroinflammatory 
responses widely reported in persons with HIV who initiated 
ART during chronic HIV infection (Ulfhammer et al. 2018; 
Yilmaz et al. 2008).

While some previous TSPO studies in people with HIV 
have identified statistically significant differences in TSPO 
binding at certain anatomical locations in people with HIV 
on ART compared with control participants, we did not 
observe this in our study. Reasons for the discrepant results 
between the various TSPO studies in people with HIV 
include the fact that the previous studies have used different 
TSPO radiotracers and different methodologies to quantify 
TSPO binding (Alagaratnam & Winston 2022). Quantifica-
tion of TSPO binding remains a rapidly evolving field and 
our study utilised newer models and processes for quantifi-
cation based on current gold-standard techniques that had 
not yet been determined at the time when the previous stud-
ies were conducted. In a previous study from our group, 
(Vera et al. 2016) estimated the continuous [11C] PBR28 
plasma-to-blood ratio using a constant model in the plasma 
input function. However, we observed that an exponential-
approaching-constant model provided a better fit for the data 
in the majority of the participants in our study. Brain [11C] 
PBR28 data for people who initiated ART during chronic 

Fig. 2   [11C] PBR28 DVR binding in selected brain regions, stratified according to stage when ART was initiated and control participants
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HIV was provided from Vera et al.’s study (Vera et al. 2016), 
but the same control participants’ data were not available for 
us to use in our analysis, which may also explain the discrep-
ancy seen between the results of our analyses. Additionally, 
brain [11C] PBR28 signals from grey matter were analysed, 
as at the time, it was considered the optimal strategy for 
identifying microglial activation. However, given that HIV 
disease affects both the grey and white matter throughout the 
brain, our analyses here included brain [11C] PBR28 signals 
from both grey and white matter. Furthermore, our study 
is limited by the sensitivity of [11C]PBR28; although [11C]
PBR28 has greater sensitivity than previous TSPO ligands, it 
may not have sufficient sensitivity to determine differences 
in ligand binding between the three cohorts of participants 
in this study.

Whether to use absolute [11C] PBR28 binding (VT) 
or [11C] PBR28 VT binding normalised to a reference 
region (DVR) to report regional brain [11C] PBR28 bind-
ing remains hotly debated. Some studies have suggested 
a poor test–retest reproducibility with absolute TSPO VT 
binding due to intra-individual factors and normalisa-
tion to a reference or pseudo-reference region can con-
trol for unaccounted physiological factors such as stress 
responses, hormone-mediated changes in TSPO expres-
sion, blood cholesterol changes due to food intake and 
other genotypic factors that may affect TSPO radioligand 
uptake in the brain (Coughlin et al. 2014; Drugan 1996; 
Gavish et al. 1999; Jučaite et al. 2012). These factors may 
impact cerebral radioligand signal in TSPO PET imag-
ing studies and can also cancel out non-binding effects 
on the TSPO radioligand signals. A study using [11C] 
DPA-713, a second-generation TSPO radioligand, dem-
onstrated improved test–retest reproducibility when [11C] 
DPA-713 VT binding was normalised to a reference region 
(Coughlin et al. 2014). A major concern with normalising 
TSPO binding to a reference region is losing the ability to 
detect changes in the region used as the reference region, 
by effectively cancelling out the signal in the region of 
interest by normalising to another region also displaying 
a signal. Ideally, the reference region chosen should be 
unaffected by the disease under investigation. However, 
HIV disease generally affects the whole central nervous 
system, and a reliable disease-free brain TSPO reference 
region in people with HIV has not yet been identified. For 
this reason, we have chosen to use absolute [11C] PBR28 
VT binding as our primary outcome, with [11C] PBR28 
DVR binding normalised to cortical grey matter as the 
secondary outcome. Urgent consensus is required on the 
optimal methodology for determining [11C] PBR28 bind-
ing and the optimal reference region for TSPO studies. 
Until a gold-standard method of measuring TSPO radi-
otracer uptake is developed and accepted, interpreting and 

comparing results from TSPO PET neuroimaging studies 
will remain challenging.

Strengths of our study include the phenotypically well-
described cohorts of participants living with HIV. Partici-
pants who initiated ART during acute HIV infection were 
strictly within 3 months of confirmed primary HIV infec-
tion. [11C] PBR28 binding quantification was performed 
using the gold-standard methodology using continuous 
plasma input function via arterial sampling.

On the converse, limitations include the small sample 
size due to the high cost of performing PET neuroimaging 
studies, and the control participants who were not demo-
graphically matched to the people living with HIV. Overall, 
participants who initiated ART during chronic HIV infection 
were older and had higher body weight upon enrolment into 
the study, which may reflect the normal ageing processes. 
While control participants were on average younger than 
both groups of HIV-positive participants, the control partici-
pants’ body weight were similar to that seen in participants 
who initiated ART during chronic HIV infection. To date, 
published findings on the effect of age on TSPO expression 
have been inconclusive with some studies demonstrating 
higher TSPO binding with increasing age and no effect in 
others (Cagnin et al. 2001; Paul et al. 2019; Rissanen et al. 
2018; Schuitemaker et al. 2012; Tuisku et al. 2019). Body 
mass index has been shown to negatively correlate with 
brain [11C] PBR28 VT binding (Tuisku et al. 2019), how-
ever complete body mass index data was not available for 
our analysis. We are also limited by a lack of data on alcohol 
use, recreational drug use and smoking history which could 
be confounders to our findings.

Astrocytes and microglia play very different roles in the 
central nervous system but emerging data suggests that reactive 
astrocytes may also have a contributory role to TSPO expres-
sion signals (Lavisse et al. 2012) and it is becoming increas-
ingly recognised that [11C] PBR28 binding can represent 
pro-, anti- and mixed inflammatory phenotypes (Owen et al. 
2017). Thus, TSPO expression signals in this setting should be 
interpreted with caution and further studies are warranted to 
determine the phenotype (pro-, anti- and mixed inflammatory) 
of the signals identified and the cell type contributing to the 
[11C] PBR28 binding signals (microglia and astrocytes), by 
correlating brain TSPO binding results with neuropathological 
specimens with histochemistry and fluid biomarkers.

In summary, this study assessed the effect of early ART 
initiation soon after HIV acquisition on neuroinflamma-
tion using a novel molecular neuroimaging technique. We 
observed no significant differences in neuroinflammation, 
using [11C]PBR28 binding as a proxy between people who 
initiated ART during chronic HIV infection, people who ini-
tiated ART during primary HIV infection and control partic-
ipants. A trend towards higher neuroinflammation in people 
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who initiated ART during chronic infection compared with 
acute infection and control participants was observed, sug-
gesting early ART initiation may reduce neuroinflammation.
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