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A B S T R A C T 

The black hole (BH) masses measured from gravitational wave observations appear to cluster around specific mass values. 
Consequently, the primary (and chirp) mass distribution of binary black holes (BBHs) inferred using these measurements shows 
four emerging peaks. These peaks are approximately located at a primary (chirp) mass value of 10 M � (8 M �), 20 M � (14 

M �), 35 M � (28 M �), and 63 M � (49 M �). Although the presence of the first and third peaks has been attributed to BBH 

formation in star clusters or due to the evolution of stellar binaries in isolation, the second peak has received relatively less 
attention because it lacks significance in the primary mass distribution. In this article, we report that confidence in the second 

peak depends on the mass parameter we choose to model the population on. Unlike primary mass, this peak is significant when 

modelled on the chirp mass. We discuss the disparity as a consequence of mass asymmetry in the observations that cluster at the 
second peak. Finally, we report this asymmetry as part of a potential trend in the mass ratio distribution manifested as a function 

of the chirp mass, but not as a function of primary mass, when we include the observation GW190814 in our modelling. The 
chirp mass is not a parameter of astrophysical rele v ance. Features present in the chirp mass, but not in the primary mass, are 
relati vely dif ficult to e xplain and e xpected to garner significant interest. 

Key w ords: gravitational w aves – black hole mergers. 
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 I N T RO D U C T I O N  

ra vitational wa v e observations are be ginning to inform on the
opulation of the binary black holes (BBHs). The most recent report
y the LIGO-Virgo-Kagra (LVK) collaboration inferred the BBH
opulation (Abbott et al. 2021c ) using the 69 BBH observations
rom their third gravitational wave (GW) transient catalogue (Abbott
t al. 2021b ). Although still in the initial stages and limited by
he number of observations, the BBH population has presented a
omplex picture in terms of the mass and spin distributions (Tiwari
022 ). The mass ratio and spins distributions vary with the mass
istribution and remain a challenge to be consistently explained
y the proposed formation channels. 1 Among others, efforts have
ocused on independently investigating the spin (Baibhav, Doctor &
alogera 2022 ; Hoy et al. 2022 ), the mass-ratio (Li et al. 2022 ;
tegmann et al. 2022 ), correlations in the mass-spin (Callister et al.
021 ; Adamcewicz & Thrane 2022 ; Franciolini & Pani 2022 ; Mould
t al. 2022 ; Wang et al. 2022 ), mass-redshift (Belczynski et al. 2022 )
nd the spin-redshift distrib utions (Ba vera et al. 2022 ; Biscoveanu
t al. 2022 ). 

The GW observation GW190814 adds to the challenges as it
oes not fit with the rest of the BBH population (LIGO Scientific
ollaboration & Virgo Collaboration 2019b ; Abbott et al. 2020 ).
 E-mail: v aibhavte wari@gmail.com 

 Chirp mass M = ( m 1 + m 2 ) 3 / 5 / ( m 1 + m 2 ) 1 / 5 dominates the phase evolu- 
ion of GWs. Mass-ratio is the ratio of secondary mass ( m 2 ) and the primary 
ass ( m 1 ), defined as q = m 2 / m 1 . Aligned spins are the components of the 

pins aligned with the orbital angular momentum. 
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Published by Oxford University Press on behalf of Royal Astronomical Socie
Commons Attribution License ( https:// creativecommons.org/ licenses/ by/ 4.0/ ), whi
W190814’s primary object with a mass of around 23 M � is
xpected to be a BH; ho we ver, the secondary object with a mass of
.6 M � lies in the lower mass gap. 2 The secondary object has been
nterpreted as either the heaviest Neutron Star (NS; Dexheimer et al.
021 ; Ivan ytsk yi & Blaschke 2022 ) or the lightest BH (Fattoyev et al.
020 ; Most et al. 2020 ; Te ws et al. 2021 ) e v er disco v ered in a double-
ompact system. Its observation has been explained or investigated
n many ways, such as, it being a BH of primordial origin (Clesse &
arcia-Bellido 2020 ; Jedamzik 2021 ; Franciolini et al. 2022 ). Future
bservations will help reveal the origin of GW190814, but there lacks
 concrete proposal at the current moment. We note that the chirp
ass of GW190814 lies in the range 4 –10 M � (Abbott et al. 2021b ),
 point we will revisit later in this article. 

In addition, BH masses and spins inferred from x-ray binary
easurements and GW measurements are possibly in tension (Fish-

ach & Kalogera 2022 ). The tension in mass has been suggested
o arise because the two methods probe environments that differ in
etallicity that are expected to produce BHs differing in masses

Belczynski, Done & Lasota 2021 ; Liotine et al. 2022 ), and the ten-
ion in spins should be assessed while keeping the uncertainties and
ystematics the BH spin measurements from x-ray binaries are sub-
ected to (Belczynski, Done & Lasota 2021 ) or the possibility of their
ormation through alternate scenarios (Gallegos-Garcia et al. 2022 ).

In contrast to these challenges, the BBH mass distribution shows an
rganized structure. There is a presence of several peaks, suggesting
he o v erproduction of binaries with masses clustered around specific
 A predicted absence of compact objects with masses in between the most 
assive neutron stars and least massive black holes with masses ∼2–5 M �. 

© 2023 The Author(s). 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 
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alues. Earlier, we reported the locations of the peaks seem to bear
 constant factor (Tiwari & Fairhurst 2021 ; Tiwari 2022 ). The first
eak is located at an approximate chirp mass value of 8 M � (10 M �
n primary mass; Tiwari & Fairhurst 2021 ; Veske et al. 2021 ; Sadiq,
ent & Wysocki 2022 ; Edelman et al. 2022b ) and has been predicted

o originate from the BBHs mergers formed from the evolution 
f stellar binaries in isolation (Abbott et al. 2021c ; van Son et al.
022 ; Schneider, Podsiadlowski & Laplace 2023 ). The second peak 
s located at an approximate chirp mass value of 14 M � (20 M � in
rimary mass) (Abbott et al. 2021c ; Tiwari & Fairhurst 2021 ; Tiwari
022 ; Edelman, Farr & Doctor 2022a ). The second peak has been
uggested to be only marginally (Wong & Cranmer 2022 ; Callister &
 arr 2023 ; F arah et al. 2023 ) or moderately significant (Abbott et al.
021c ) and recent works suggest it due to merger of BBH from
solated binaries (Schneider, Podsiadlowski & Laplace 2023 ). The 
hird peak is located at an approximate chirp mass value of 28 M �
35 M � in primary mass; LIGO Scientific Collaboration & Virgo 
ollaboration 2019b ) and the suggested mechanism for its formation 

ncludes pile-up of BBH near the cut-off mass for the pair-instability 
upernovae (Talbot & Thrane 2018 ), and dynamical formation in 
lobular clusters (Antonini et al. 2022 ). The fourth peak is located
t an approximate chirp mass value of 49 M � (63 M � in primary
ass). This peak is only marginally significant. Multiple peaks have 

lso been proposed due to repeated mergers of BHs in star clusters or
ctive galactic nuclei (Mahapatra et al. 2022 ; Li, Lin & Yuan 2023 ).

The astrophysical processes responsible for the formation of 
BH are anticipated to imprint the mass spectrum with features. 
urrent proposals suggest the formation of compact binaries from the 
volution of massive binary stars (e.g. see Spera, Trani & Mencagli 
022 ) and in dense star clusters due to many-body interaction 
e.g. see Rodriguez, Chatterjee & Rasio 2016 ; Mapelli et al. 2021 ;
hattopadhyay et al. 2022 ; Fragione & Rasio 2023 ), including binary

ormation in active galactic nuclei (e.g. see Arca Sedda, Naoz & 

ocsis 2023 ; Gayathri et al. 2023 ). The first and the third peaks in
he mass distribution have been jointly focused on by recent works
e.g. see Wang et al. 2022 ; Godfrey, Edelman & Farr 2023 ). Ho we ver,
he second peak, because it is of marginal presence in primary mass,
as not been confidently explained or received attention. 

In this article, we report the significance of the peaks in the mass
istribution. In particular, we investigate how likely is it for the peaks
o arise from a featureless mass distribution. We also show that the
ignificance of the second peak depends on the mass parameter used 
n modelling the population. When modelling the population on 
he chirp mass, we conclude the second peak to be significant, but
hen modelling the population on the primary mass, we conclude 
 marginal significance. We show that the mass parameters give 
ifferent confidence in the peaks because of mass asymmetry at 
he second peak. Finally, we report this asymmetry may be a part
f a potential trend in the mass ratio that is manifested when we
nclude the observation GW190814 in the analysis. We summarize 
he methodology and report the results in Section 2 and discuss a
rend in mass asymmetry in Section 3 . 

 SU M M A RY  O F  T H E  M E T H O D  A N D  RES ULTS  

 mass parameter in a two-body problem can be chosen in different
ays. Some of the examples rele v ant to BBHs include, (i) component
ass: any of the two masses without making a distinction, (ii) the

rimary mass: heavier of the two BHs, (iii) total mass: the sum of
he two masses, and iv) chirp mass: the most accurately measured 
unction of the two masses. Along with the chosen parameter, 
ne needs also to specify the ratio between the two masses to
niquely determine the masses of both components. Due to their 
strophysical rele v ance primary mass and mass ratio are often the
arameter of choice when inferring the BBH population. Ho we ver, 
nce inferred the distribution on any other mass parameter can be
btained by performing a parameter transformation. It requires a 
imple application of a rele v ant Jacobian matrix. If the population
s composed of comparable mass BBHs, the resulting Jacobian will 
e mostly independent of the mass ratio (Callister 2021 ). The one-
imensional distribution of the new mass parameter will only be a
caled version of the 1D distribution of the old mass parameter, i.e.
he distribution of the new parameter will be similar to the old one
ut with the x / y axis redefined. Any feature present in the old mass
arameter will also appear at a comparable confidence in the new
ass parameter. But, if the mass ratio has a dependence on the mass

arameter, the Jacobian will also show a dependence on the mass
arameter resulting in different scaling at different mass values. Any 
eature present in the old mass parameter may appear at a lower or
igher confidence in the new mass parameter. 
The mass ratio distribution of BBH has shown mass dependence 

Tiwari 2022 ). In this article, we focus on an emerging structure
n the BBH mass distribution and investigate if the confidence in
eatures depends on the chosen mass parameter. We use the mixture
odel framework, Vamana, that can infer all the major 1D and

D features in the BBH population (Tiwari 2021 ). In practice,
e can infer the population using one mass parameter and draw

onclusions by making parameter transformations. Instead, we infer 
he BBH population using several modifications of Vamana that 
ither directly model the primary mass or the chirp mass. Primary
ass is a parameter of astrophysical importance and its population- 

evel distribution is expected to be directly impacted by the physics
f binary formation and merger. On the other hand, chirp mass
oes not have direct astrophysical rele v ance. It is an interesting
arameter because it dominates the phase evolution of a binary 
nd consequently is the most accurately measured mass parameter 
Finn & Chernoff 1993 ; Cutler & Flanagan 1994 ). Ho we v er, an y
ignificant feature observed in the chirp mass distribution can not be
gnored. Either such a feature needs to be explained as arising from a
nique combination of other astrophysically moti v ated parameters 
r justified as an outcome of the underlying systematics of the
odel used in inferring the distribution. A brief description of these

opulation models is as follows, a detailed description is presented 
n Appendix A . All models use a mixture of weighted components
o infer the population. The components contain 

(i) Model M M 

: a truncated bi-variate normal to model the chirp 
ass and mass ratio distribution. 
(ii) Model M m 1 : a truncated bi-variate normal to model the primary 
ass and mass ratio distribution. 
(iii) Model M 

pl 
m 1 

: a uni-variate normal to model the primary mass 
istribution. A single power law is used to model the mass ratio of
he full mass range. 

The bi-variates are truncated because the mass ratio can obtain 
 maximum value of one. In addition, for all the models, the
omponents also include a uni-variate normal to identically but 
ndependently model the aligned spin distribution, and a power law 

o model the redshift evolution of the merger rate. The first two
opulation models are Gaussian mixtures and are expected to model a
ange of distributions in masses and spins. The third model, M 

pl 
m 1 

, uses
 single power law to infer the mass ratio for the full population while
exibly modelling the primary mass distribution. This population 
odel is comparative to other approaches that flexibly model the 
MNRAS 527, 298–306 (2024) 
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M

Figure 1. Top) chirp mass distribution inferred using model M M 

. The solid blue line is the density and the blue band is the 90 per cent credible interval. The 
vertical grid lines identify the four chirp mass segments. The dark red line is a power-law distribution that minimizes o v er or under-density throughout the mass 
range. The inset focuses on the third peak and sho ws dif ferent draws of the inferred chirp mass distribution (see equation A5 ). The black line indicates the 
location of the highest o v erdensity, bottom) primary mass distribution inferred using models M m 1 and M 

pl 
m 1 . The solid blue line is the median density for model 

M m 1 and the bands are the 90 per cent credible interval. The solid orange line is the median density for model M 

pl 
m 1 . To impro v e visual presentation we plot the 

90 per cent credible intervals using dashed orange lines. The dashed red lines identify the four primary mass segments. 
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rimary mass and use a phenomenological model to infer the mass
atio (Abbott et al. 2021c ; Edelman, Farr & Doctor 2022a ). 

Fig. 1 plots the inferred distribution o v er the mass range. The
edian of the inferred mass distribution shows the presence of

our peaks for all three models. Ho we ver, the median should be
iewed while considering the 90 per cent credible interval as shown
y the blue band in Fig. 1 . The blue band depicts the range of
ossibilities the distribution can acquire. A larger interval can easily
ccommodate a featureless distribution. Thus, the fourth peak which
as a large credible interval is not expected to be significant. Visually,
he prominence of the second peak decreases in orders M M 

, M 

pl 
m 1 

,
nd M m 1 for our three models. The inferred primary mass distribution
sing M m 1 and M 

pl 
m 1 

is mostly consistent. The difference between
hem occurs around the second peak. Ho we ver, the model M 

pl 
m 1 

is
isfa v oured against the model M m 1 by a Bayes factor of 10. 3 The
ass ratio distribution varies with the masses of the binaries (Tiwari
NRAS 527, 298–306 (2024) 

 Vamana uses the Metropolis–Hastings (Hastings 1970 ) algorithm to sample 
he hyper-parameter posterior but it can estimate an approximate value of the 
arginal likelihood/evidence. 

d  

W  

i  

I  

m  
022 ), thus modelling the full mass range using one power law does
ot fit the data well for the model M 

pl 
m 1 

. On the other hand, M m 1 can
odel flexibly throughout the mass range as each component models

he mass ratio independently. 
Next, we estimate the confidence in the peaks. We estimate this

onfidence by asking the question: how likely is it for the inferred
eaks to originate from a distribution that is featureless? As the
istribution of a handful of observations on the mass range follows
 Poisson process, Gaussian mixtures will often infer local maxima
t random mass v alues e ven if the distribution being inferred is
eatureless. One way to assess a model’s tendency to infer a local
axima is by compiling statistics using simulated data (Sadiq,
ent & Wysocki 2022 ; Farah et al. 2023 ). For the presented analyses
e follow the following methodology: 

(i) Underlying distribution: approximate the astrophysical mass
istribution using a distribution that does not contain a local maxima.
e use a monotonically decaying broken power law as the approx-

mating distribution and our conclusions are based on this choice.
nference from our three population models yield three featureless
ass distribution as described later. Moreo v er, our approximating
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Table 1. Location of highest o v erdensity, f highest , for the three models and 
each mass segment. Model M M 

infers the chirp mass, and models M m 1 and 

M 

pl 
m 1 infer the primary mass distribution. 

Peak attributes (i) (ii) (iii) (iv) 

Location ( M M 

) [ M �] 8.3 13.9 28.1 49.0 
f highest 1 0.98 0.99 0.66 
Per cent sims with bigger 
f highest 

0 6 2 73 

Location ( M m 1 ) [ M �] 10.3 20.0 34.5 64.4 
f highest 0.97 0.68 0.98 0.32 
Per cent sims with bigger 
f highest 

3 60 2 68 

Location ( M 

pl 
m 1 ) [ M �] 10.2 18.3 34.8 62.9 

f highest 0.99 0.82 0.99 0.68 
Per cent sims with bigger 
f highest 

1 27 1 70 

Figure 2. Distribution of f highest , a measure of highest o v erdensity for 
the featureless distributions. The featureless distributions do not contain a 
local maxima and best describe the mass distribution inferred by the three 
population models; thus three featureless distributions for the three population 
inference. We perform 1000 simulation runs as described in Appendix B . 
Each simulation generates different realizations of data from a featureless 
distribution and infers the distribution by using the standard methodology. 
For each simulation, we use equation ( 1 ) to estimate f highest for the four 
mass segments. The y -axis plots the fraction of simulations with o v erdensity 
equal to or greater than f highest corresponding to the value on the x -axis. 
The best-fitting power law has a steep decay in the first segment (please see 
Appendix B ) and combined with a sudden truncation at lower masses this 
segment results in the largest values of f highest . The x -axis has been terminated 
below 0.6 for the sake of clarity. 
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istribution ignores mass ratio and spins by fixing them to a fiducial
istribution as described in Appendix B . 
(ii) Synthetic observations: From the broken power law generate 

ynthetic observations. The number of synthetic observations is 
he same as the number of observed BBHs; assign measurement 
ncertainty as described in Appendix B . By fixing the mass-ratio
nd spin distribution our synthetic population does not have a 
orrelation between the parameters and does not reflect fa v orably 
r unfa v ourably on ho w synthetic observ ations cluster in the mass
ange. A full analysis with all the parameters included is possible but
e expect it to be computationally expensive. 
(iii) Infer mass distribution: perform 1000 simulations and record 

ow often the inferred distribution is o v erdense compared to the
nderlying broken power law. Our simulated data is 1D, thus only 
he location and scales of Gaussians modelling the mass distribution 
ontribute to the likelihood (distributions of mass ratio and spins are 
lready fixed). 

(iv) Statistics: compile statistics that quantify o v erdensities in- 
erred by Gaussian mixtures from the simulated data. 

(v) Confidence in peaks: finally, calculate the o v erdensity of the 
eaks in the BBH mass distribution. Estimate confidence in them 

y recording the fraction of simulations that produced a comparable 
 v erdensity from the featureless distribution. 

We quantify an o v erdensity or underdensity at a given value of the
ass parameter, m , by calculating the fraction, 

 ( m ) = 

Number of posterior samples inferring an o v erdensity 
Total number of posterior samples 

= 

1 
n 

∑ n 

i= 1 χ
(
p i ( m ) > p underlying ( m ) 

)
, (1) 

here p i ( m ) is one of the sev eral dra ws for the inferred mass
istribution, χ is one when the enclosed condition is met for the i th
osterior samples and zero otherwise, and n is the number of hyper-
arameter posteriors sampled by the analysis. A value of 0.5 indicates 
either an o v er nor underdensity. The larger or smaller the value of
 , the larger the inferred population’s departure from the underlying 
istribution and thus the larger the o v er or the underdensity. 
For the peaks observed in the BBH mass distrib ution, the under -

ying distribution is not known. As we are focusing on the local
axima, we split the mass range into segments (4.0, 10.0, 18, 37,

nd 65 M �), and for the primary distribution, we choose (5.0, 14, 25,
0, and 90 M �). These values are the locations of local minima in the
edian of the inferred mass distribution. To assess how conveniently 

an we accommodate a featureless distribution in the confidence 
and, we place a monotonically decreasing broken power law that 
onnects the endpoint values. Using this broken power-law as the 
nderlying distribution we calculate f and vary the four exponents 
teratively until we minimizes 

∫ 
(0.5 − f ( m )) 2 d m . The best-fitting

roken power law departs least from f = 0.5 throughout the mass
ange. The red curve shown in Fig. 1 is this broken power law for the
hirp mass distribution. The inset shows different possibilities of the 
nferred chirp mass distribution inside the third segment. The black 
ine indicates f highest , the mass value with the highest o v erdensity
or the best-fitting power law. The value of f highest in a segment
uantifies the largest departure from the underlying distribution and 
onsequently the presence of a peak. We summarize the values 
nd locations of the peaks in Table 1 for the three models. To
stimate the confidence in the peaks, we reverse the analysis and 
sk, how often f highest measured in the segments can be generated 
y the broken power law. Thus we use this broken power law as
he underlying featureless distribution and perform simulations. For 
ach simulation, we record f highest for the four segments. Fig. 2 plots
he distribution of f highest for the three models. 
The confidence in the peaks can be estimated by comparing the
 highest values listed in Table 1 with the distribution we obtain from
he simulations shown in Fig. 2 . The shown distribution depends
n various simplistic assumptions made in the featureless model 
described in Section B ). Ho we ver, the most important aspect is
he bandwidth of the modelling functions. In the case of Gaussian

ixtures, it is directly related to the maximum scale the Gaussians
an acquire. For example, when modelled using Gaussians using 
arrow scales, the population model will create significant local 
axima around all the observations. Thus, we have used the same
ethodology when inferring BBH mass distribution from the various 
MNRAS 527, 298–306 (2024) 
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M

Figure 3. The chirp mass and primary mass estimates of observations that contribute to the second and the third peak. The dashed lines identify the second and 
third mass segments that enclose the peaks. Cool/hot colours are used to plot estimates of individual observations that contribute to the second/third peak. For 
the sake of assigning colours, we allocate an observation to the second/third peak if the mean mass value lies inside the second/third mass segment. The two 
sets of clusters can be well identified in the chirp mass distribution. The second peak is less distinguishable in the primary mass estimates (one observation has 
a long tail such that the mean primary mass lies in the second mass segment but the peak of the distribution is outside the segment.). 
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imulations generated from the featureless mass distribution. On
aking small changes to the featureless distribution we observe the

istribution of f highest remains largely unchanged. Overall, we can
erive the following important tak eaw ays: 

(i) Inferred by the model M M 

, the first three peaks are significant
n the chirp mass distribution. Less than 6 per cent of simulations
ere inferred with an o v erdensity of f highest > 0.98. 
(ii) Inferred by model M m 1 , which uses Gaussian mixture to

nfer the mass ratio distribution, the first and third peaks are
ignificant. The significance of the second peak is marginal. More
han 60 per cent simulations were inferred with an o v erdensity of
 highest > 0.68. A similar conclusion was drawn in Wong & Cranmer
 2022 ), Farah et al. ( 2023 ), and Callister & Farr ( 2023 ). 

(iii) Inferred by model M 

pl 
m 1 

, which uses a single power law to
nfer the mass ratio of the full population, the first and third peaks are
ignificant. The significance of the second peak is bigger than inferred
y the model M m 1 . Around 30 per cent of simulations were inferred
ith an o v erdensity of f highest > 0.82. A comparable conclusion was
rawn in Abbott et al. ( 2021c ). 
(iv) The significance for all the peaks, except the second peak,

emains almost the same for all three models. Models provide
isparate conclusions on the significance of the second peak. 

The featureless distribution independently focus on either the chirp
ass or the primary mass distributions. Ho we ver, the conclusions

isted abo v e are robust against parameter transformations, which
eans, the peaks are not an artefact of change in mass parameters. We

av e v erified, that when using the model M M 

in inferring the chirp
ass distribution from simulated data generated from featureless

istribution that best represents the observed primary mass and an
rbitrary mass ratio distribution (for our test we drew mass ratio
nferred for the second peak) the distribution of f highest is very similar
o the left plot of Fig. 2 . 

These conclusions become apparent on re vie wing the chirp and
rimary mass estimates of the observations that contribute to the
econd and third peaks. Fig. 3 shows estimated chirp and primary
ass distributions for the observations that contribute to the second

nd third peaks. Two separated clusters are visible in the chirp
NRAS 527, 298–306 (2024) 
ass. For primary mass, the observations at the second peak show
 skew in distributions. This skew is primarily because o v erall these
bservations have a larger mass asymmetry than the observations
ontributing to the third peak. Arguing from the point of view of
 significant peak present in the chirp mass distrib ution b ut not in
he primary mass distribution, the mass asymmetry foundationally
rises because of a correlation present between the primary mass and
he mass ratio. On making draws from the estimated primary mass
nd mass ratio for each of the seven observations that contribute
o the second peak in chirp mass, we obtain a Pearson correlation
oefficient between the two parameters in the range of 0.82–0.98
t 90 per cent confidence. On the contrary, any positive correlation
etween two uncorrelated parameters is expected to be between 0
nd 0.67. Such a large correlation requires a variation in mass ratios
nd thus results in mass asymmetry at the second peak. 

 A  T R E N D  IN  T H E  MASS  RATI O  

I STRI BU TI ON?  

n astrophysical process may create BHs in a narrow primary
r component mass range. For example, most of the BH masses
nferred from x-ray binaries lie in the range 5–12 M � and follow a
istribution that peaks around 7 M � (Corral-Santana et al. 2016 ). It is
n interesting finding that the significance of the second peak depends
n the mass parameter. A bigger significance when modelling on
he chirp mass and a marginal significance when modelling on the
rimary mass requires a correlation between primary mass and mass
atio. 

The mass asymmetry in the second chirp mass segment is in
ontrast to the mass ratio distribution for the binaries in the third chirp
ass segment. All three models inferred comparable mass binaries in

his segment. On comparing various draws of mass ratios predicted
y the model M M 

for the second and the third segments, the draws
rom the third segment show greater mass symmetry 80 per cent of
he time. On the other hand, the average mass ratio in the first segment
s approximately the same as the second segment; ho we ver, the first
egment contains highly asymmetric observations. The observations
W190814 and GW200210 092254 have a chirp mass consistent
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Figure 4. Variation of mass ratio as a function of chirp mass. The dark/light 
bands show 50th/10th percentile. The first three peaks show increased mass 
asymmetry for smaller values of the chirp mass. The vertical grid lines show 

the segments that enclose the peaks. The asymmetry in the first segment is 
largely due to the observations GW190814 and GW200210 092254. Their 
average chirp mass value is approximately 6.3 M �. The largest asymmetry 
occurs at a slightly smaller value. This is an artefact introduced when 
correcting for the selection effect using a limited number of injections (see 
equation A1 ; Essick & Farr 2022 ). 
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ith the first segment and have the lowest mass ratio among all the
bservations (Abbott et al. 2021b ). Fig. 4 shows mass ratio becomes
ncreasingly asymmetric with decreasing chirp mass. Similar to the 
ase of the second peak, which is significant in the chirp mass but not
n primary mass, the trend in the mass ratio shows dependence on the
hirp mass but not on the primary mass. This is because the primary
asses of the observations GW190814 and GW200210 092254 are 

ot consistent with any of the primary mass segments. 
Chirp mass dominates the phase evolution of GWs and thus is
easured most accurately. Its measurement is also least affected by 

ny systematic biases. Ho we ver, chirp mass is not a parameter of
strophysical significance. The systematic dependence of mass ratio 
n chirp mass, but not primary or component mass is challenging 
o explain and will possibly result in significant implications. In 
ddition, implications made using different mass parameters may 
e disparate. F or e xample, the lack of observations in the chirp
ass range 10–12 M � and four well-placed peaks in the chirp 
ass distribution may be simply explained by a hierarchical merger 

cenario (Tiwari & Fairhurst 2021 ; Tiwari 2022 ). In this proposal, the
rst peak is created by the merger of BHs which are stellar remnants.
he remnant BHs from previous BBH merge further and create the 
ext peaks. Of particular note is the relative location of peaks bearing
 factor of 1.9, correctly accounting for the doubling of masses and
round 5 per cent of it radiated in GW. 4 But, the same implication
s relati vely dif ficult to make using the primary mass distribution as
he confidence in the existence of the second peak is only marginal. 

Although more observations are needed to impro v e confidence 
n the potential trend in the mass ratio, the trend is nevertheless
ntriguing. Future observations will only maintain the trend if there 
re continued observations of binaries with chirp masses consistent 
ith the first chirp mass segment but with large mass asymmetry. 
 This proposal needs to explain why sub-dominant peak – between dominant 
eaks – are not visible in the inferred chirp mass distribution. 

A
A
A  
 C O N C L U S I O N  

n this article, we reported our confidence in the four emerging peaks
n the BH mass distribution. The confidence in the first and the third
eaks is significant, and confidence in the fourth peak is marginal.
nterestingly, the confidence in the second peak depends on the mass
arameter we choose to model the population on. When modelling 
he population on primary mass, the confidence in the second peak
s marginal, but when modelling on the chirp mass the confidence is
ignificant. Although chirp mass is not a parameter of astrophysical 
mportance, the presence of a significant feature in the chirp mass
istribution should not be ignored. We also reported a potential trend
n the mass ratio distribution. Binaries are of comparable masses for
he third peak, the second peak shows mass asymmetry and some of
he observations consistent with the first peak have the largest mass
symmetry in the population. 

A  C K A  G E S  USED  

UMPY (Harris et al. 2020 ), SCIPY (Virtanen et al. 2020 ), MATPLOTLIB
Hunter 2007 ), and ASTROPY (Astropy Collaboration & Astropy 
roject Contributors 2022 ). 

C K N OW L E D G E M E N T S  

incere thanks to Stephen Fairhurst and Thomas Dent for helpful 
eedback on the manuscript. This work is supported by the STFC
Science and Technology Facilities Council) grant ST/V005618/1. 

e are grateful for the computational resources provided by Cardiff 
niversity and funded by the STFC grant ST/N000064/1. 
This research has made use of data, software, and/or web tools

btained from the Gravitational Wave Open Science Center ( https: 
/ www.gw-openscience.org/ ), a service of LIGO Laboratory, the 
IGO Scientific Collaboration and the Virgo Collaboration. LIGO 

aboratory and Advanced LIGO are funded by the United States 
ational Science Foundation (NSF) as well as the Science and Tech-
ology Facilities Council (STFC) of the United Kingdom, the Max- 
lanck-Society (MPS), and the State of Niedersachsen/Germany for 
upport of the construction of Advanced LIGO and construction and 
peration of the GEO600 detector. Additional support for Advanced 
IGO was provided by the Australian Research Council. Virgo is 

unded, through the European Gravitational Observatory (EGO), by 
he French Centre National de Recherche Scientifique (CNRS), the 
talian Istituto Nazionale della Fisica Nucleare (INFN) and the Dutch 
ikhef, with contributions by institutions from Belgium, Germany, 
reece, Hungary, Ireland, Japan, Monaco, Poland, Portugal, and 
pain. 

ATA  AVAI LABI LI TY  

he result files and plotting scripts are available on GitHub. 

EFERENCES  

bbott R. et al., 2020, ApJ , 896, L44 
bbott R. et al., 2021a, preprint ( arXiv:2108.01045 ) 
bbott R. et al., 2021b, preprint ( arXiv:2111.03606 ) 
bbott R. et al., 2021c, preprint ( arXiv:2111.03634 ) 
bbott R. et al., 2021d, Phys. Rev. X , 11, 021053 
damcewicz C. , Thrane E., 2022, MNRAS , 517, 3928 
de P. A. R. et al., 2016, A&A , 594, A13 
ntonini F. , Gieles M., Dosopoulou F., Chattopadhyay D., 2022, MNRAS ,

522, 466 
MNRAS 527, 298–306 (2024) 

https://www.gw-openscience.org/
http://dx.doi.org/10.3847/2041-8213/ab960f
http://arxiv.org/abs/2108.01045
http://arxiv.org/abs/2111.03606
http://arxiv.org/abs/2111.03634
http://dx.doi.org/10.1103/PhysRevX.11.021053
http://dx.doi.org/10.1093/mnras/stac2961
http://dx.doi.org/10.1051/0004-6361/201525830
http://dx.doi.org/ 10.1093/mnras/stad972


304 V. Tiwari 

M

A
A
B
B  

B
B  

B  

C
C
C  

C  

C
C  

C
D  

E
E
E
F  

F  

F
F
F
F
F  

G  

G  

G
H
H
H
H
I
J
L  

L
L  

L  

L
L
M  

M
M
M  

M  

R
S
S
S
S  

T
T  

T
T
T
T
T
T
v
V
V
W  

W

A

I  

o  

d  

b  

F  

T  

 

i

p

w  

p  

t  

T  

t

p

w

N

R  

d
 

C  

o  

f

p

B  

F  

m  

p  

a  

s  

t  

p  

b  

b  

p

p

w

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/527/1/298/7317695 by guest on 30 April 2024
rca Sedda M. , Naoz S., Kocsis B., 2023, Universe , 9, 138 
stropy Collaboration , Astropy Project Contributors, 2022, ApJ , 935, 167 
aibhav V. , Doctor Z., Kalogera V., 2022, ApJ , 946, 50 
avera S. S. , Fishbach M., Zevin M., Zapartas E., Fragos T., 2022, A&A ,

665, A59 
elczynski K. , Done C., Lasota J. P., 2021, preprint ( arXiv:2111.09401 ) 
elczynski K. , Doctor Z., Zevin M., Olejak A., Banerje S., Chattopadhyay

D., 2022, ApJ , 935, 126 
isco v eanu S. , Callister T. A., Haster C.-J., Ng K. K. Y., Vitale S., Farr W.

M., 2022, ApJ , 932, L19 
allister T. A. , 2021, preprint ( arXiv:2104.09508 ) 
allister T. A. , Farr W. M., 2023, preprint ( arXiv:2302.07289 ) 
allister T. A. , Haster C.-J., Ng K. K. Y., Vitale S., Farr W. M., 2021, ApJ ,

922, L5 
hattopadhyay D. , Hurley J., Stevenson S., Raidani A., 2022, MNRAS , 513,

4527 
lesse S. , Garcia-Bellido J., 2020, preprint ( arXiv:2007.06481 ) 
orral-Santana J. M. , Casares J., Mu ̃ noz-Darias T., Bauer F. E., Mart ́ınez-Pais

I. G., Russell D. M., 2016, A&A , 587, A61 
utler C. , Flanagan E. E., 1994, Phys. Rev. D , 49, 2658 
exheimer V. , Gomes R. O., Kl ̈ahn T., Han S., Salinas M., 2021, Phys. Rev.

C , 103, 025808 
delman B. , Farr B., Doctor Z., 2022a, ApJ , 946, 16 
delman B. , Doctor Z., Godfrey J., Farr B., 2022b, ApJ , 924, 101 
ssick R. , Farr W., 2022, preprint ( arXiv:2204.00461 ) 
arah A. M. , Edelman B., Zevin M., Fishbach M., Mar ́ıa Ezquiaga J., Farr

B., Holz D. E., 2023, ApJ , 955, 107 
attoye v F. J. , Horo witz C. J., Piekare wicz J., Reed B., 2020, Phys. Rev. C ,

102, 065805 
inn L. S. , Chernoff D. F., 1993, Phys. Rev. D , 47, 2198 
ishbach M. , Kalogera V., 2022, ApJ , 929, L26 
ragione G. , Rasio F. A., 2023, ApJ , 951, 129 
ranciolini G. , Pani P., 2022, Phys. Rev. D , 105, 123024 
ranciolini G. , Musco I., Pani P., Urbano A., 2022, Phys. Rev. D , 106, 123526
allegos-Garcia M. , Fishbach M., Kalogera V., L Berry C. P., Doctor Z.,

2022, ApJ , 938, L19 
ayathri V. , Wysocki D., Yang Y., Shaughnessy R. O., Haiman Z., Tagawa

H., Bartos I., 2023, ApJ , 945, L29 
odfrey J. , Edelman B., Farr B., 2023, preprint ( arXiv:2304.01288 ) 
arris C. R. et al., 2020, Nature , 585, 357 
astings W. K. , 1970, Biometrika , 57, 97 
oy C. , Fairhurst S., Hannam M., Tiwari V., 2022, ApJ , 928, 75 
unter J. D. , 2007, Comput. Sci. Eng. , 9, 90 

van ytsk yi O. , Blaschke D., 2022, Phys. Rev. D , 105, 114042 
edamzik K. , 2021, Phys. Rev. Lett. , 126, 051302 
IGO Scientific Collaboration , Virgo Collaboration, 2019a, Phys. Rev. X, 9,

031040 
IGO Scientific Collaboration , Virgo Collaboration, 2019b, ApJ , 882, L24 
IGO Scientific , Virgo and KAGRA Collaborations, 2021, Zenodo, available

as ht tps://zenodo.org/deposit /5636816 
i Y .-J. , Wang Y .-Z., Tang S.-P ., Y uan Q., Fan Y.-Z., Wei D.-M., 2022, ApJ ,

933, L14 
i G.-P. , Lin D.-B., Yuan Y., 2023, Phys. Rev. D , 107, 063007 
iotine C. , Zevin M., Berry C., Doctor Z., Kalogera V., 2022, ApJ , 946, 4 
ahapatra P. , Gupta A., Favata M., Arun K. G., Sathyaprakash B. S., 2022,

preprint ( arXiv:2209.05766 ) 
andel I. , Farr W. M., Gair J. R., 2019, MNRAS , 486, 1086 
apelli M. et al., 2021, MNRAS , 505, 339 
ost E. R. , Papenfort L. J., Weih L. R., Rezzolla L., 2020, MNRAS , 499,

L82 
ould M. , Gerosa D., Broekgaarden F. S., Steinle N., 2022, MNRAS , 517,

2738 
odriguez C. L. , Chatterjee S., Rasio F. A., 2016, Phys. Rev. D , 93, 084029 
adiq J. , Dent T., Wysocki D., 2022, Phys. Rev. D , 105, 123014 
chneider F. R. N. , Podsiadlowski P., Laplace E., 2023, ApJ , 950, L9 
pera M. , Trani A. A., Mencagli M., 2022, Galaxies , 10, 76 
tegmann J. , Antonini F., Schneider F. R. N., Tiwari V., Chattopadhyay D.,

2022, Phys. Rev. D , 106, 023014 
NRAS 527, 298–306 (2024) 
albot C. , Thrane E., 2018, ApJ , 856, 173 
ews I. , Pang P. T. H., Dietrich T., Coughlin M. W., Antier S., Bulla M.,

Heinzel J., Issa L., 2021, ApJ , 908, L1 
hrane E. , Talbot C., 2019, PASA , 36, e010 
iwari V. , 2018, Class. Quantum Gravity , 35, 145009 
iwari V. , 2021, Class. Quantum Gravity , 38, 155007 
iwari V. , 2022, ApJ , 928, 155 
iwari V. , Fairhurst S., 2021, ApJ , 913, L19 
iwari V. , Fairhurst S., Hannam M., 2018, ApJ , 868, 140 
an Son L. A. C. et al., 2022, ApJ , 940, 184 
eske D. , Bartos I., M ́arka Z., M ́arka S., 2021, ApJ , 922, 258 
irtanen P. et al., 2020, Nat. Methods , 17, 261 
ang Y .-Z. , Li Y .-J., Vink J. S., Fan Y.-Z., Tang S.-P., Qin Y., Wei D.-M.,

2022, ApJ , 941, L39 
ong K. W. K. , Cranmer M., 2022, preprint ( arXiv:2207.12409 ) 

PPENDI X  A :  M E T H O D  

nferring the compact binary population requires proper accounting
f uncertainties in the estimated parameters, correcting bias caused
ue to the selective sensitivity of the detectors towards different
inary parameters, and a model to infer the population (Tiwari,
airhurst & Hannam 2018 ; Mandel, Farr & Gair 2019 ; Thrane &
albot 2019 ). Given a model p( θ | � ) and a set of observations,

d ≡ { d 0 , · · · , d N obs } , the posterior on the model hyper-parameters
s given by equation ( A1 ), 

( � | d ) ∝ 

N obs ∏ 

i= 1 

∫ 
d θ p( d i | θ ) p( θ | � ) ∫ 
d θ p det ( θ) p( θ | � ) 

p( � ) , (A1) 

here θ are the population parameters being inferred, p ( � ) is the
rior probability of the model hyper-parameters and p det ( θ) encodes
he probability of confidently observing a binary with parameters θ .
he merger rate is estimated by extending equation ( A1 ) to include

he Poisson probability of observing N obs signals 

( N obs | N exp ) = N 

N obs 
exp e −N exp , (A2) 

hen the number of expected signals for a population model is N exp , 

 exp = 

∫ 

R ( z ) p( θ | � ) 
d V c 

d z 
d θ d z . (A3) 

 ( z), in the last equation, is the redshift-dependent merger rate and
 V c /d z is the differential co-moving volume. 
The posterior probability is equation ( A1 ) is estimated by Monte

arlo (MC) integration. The analysis estimating the parameters
f GW signals calculate p( d i | θ ) using an independent Bayesian
ramework, 

( θ | � PE ) ∝ p( d i | θ ) p( θ | � PE ) . (A4) 

ut, these analyses use a standard prior, p( θ | � PE ), for all the signals.
urthermore, large-scale injection campaigns are performed to esti-
ate the sensitivity of the detector network for a population model
( θ | � inj ). Both the numerator and the denominator in equation ( A1 )
re then calculated for a target population p( θ | λ) using importance
ampling (Tiwari 2018 ; Mandel, Farr & Gair 2019 ). Vamana uses
he Metropolis–Hastings algorithm to sample the hyper-parameter
osterior (Hastings 1970 ). Once hyper-parameter posteriors have
een sampled, the inferred distribution on the mass parameter, m , can
e obtained for each posterior by marginalizing o v er the remaining
arameters ( θ = ( m , ω)), 

 i ( m ) = 

∫ 

d ω p( m, ω| � i ) , (A5) 

here i in � i identifies a sample. 
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Table A1. This table lists the hyper-parameters of the three models used to infer the BBH population. The last column identifies the model where the 
hyper-parameters are used. U stands for Uniform, and UL for Uniform-in-log. 
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Following, we list the three models presented in this article, 
able A1 list the hyper-parameters for these models and their prior
istributions: 

(i) Model M M 

: Infers the chirp mass, mass ratio, and aligned 
pin distributions. Each component consists of a truncated bi-variate 
ormal to infer the chirp mass and mass ratio together and a uni-
ariate normal to identically but independently infer the aligned 
pin distribution. The mean chirp mass distribution inferred for a 
at likelihood approximately follows a uniform-in-log distribution, 

.e. p( 〈 M | � 〉 ) = 

∑ 

i p( M | � i ) /n ∼ 1 / M . The mean mass ratio
nferred for a flat likelihood approximately follows, p ( 〈 q | � 〉 ) =

 

i p ( q | � i )/ n ∼ q . For this model’s definition 

 ( M , q, χ1 , χ2 , z| � ) = 

N ∑ 

i= 1 

w i N 

(
M , q| μM 

i , σM 

i , μ
q 

i , σ
q 

i , C 

M q

i 

φ
(
χ1 | μχ

i , σ
χ
i 

)
φ

(
χ2 | μχ

i , σ
χ
i 

)
, (A

he bi-variate normal in equation ( A6 ) has mean and covariance
atrix given as 

ean = ( μM 

i , μ
q 

i ) , covariance = 

[ (
σM 

i 

)2 
C 

M q 

i 

C 

M q 

i 

(
σ

q 

i 

)2 

] 

(A7) 

ith the distribution truncated outside values 0.05 > q > 1. 
(ii) Model M m 1 : Infers the primary mass, mass ratio, and aligned 

pin distributions. Each component consists of a bi-variate normal 
o infer the primary mass and mass ratio together and a uni-
ariate normal to identically but independently infer the aligned spin 
istribution. The mean primary mass distribution inferred for a flat 
ikelihood approximately follows a uniform-in-log distribution, i.e. 
 ( 〈 m 1 | � 〉 ) = 

∑ 

i p ( m 1 | � i )/ n ∼ 1/ m 1 . The mean mass ratio inferred
or a flat likelihood approximately follows, p ( 〈 q | � 〉 ) = 

∑ 

i p ( q | � i )/ n
q . For this model’s definition, 

 ( m 1 , q, χ1 , χ2 , z| � ) = 

N ∑ 

i= 1 

w i N 

(
m 1 , q| μm 1 

i , σ
m 1 
i , μ

q 

i , σ
q 

i , C 

m 1 q 
i 

)
φ

(
χ1 | μχ

i , σ
χ
i 

)
φ

(
χ2 | μχ

i , σ
χ
i 

)
, (A8)
he bi-variate normal in equation ( A8 ) has mean and covariance
atrix given as: 

ean = ( μm 1 
i , μ

q 

i ) , covariance = 

[ (
σ

m 1 
i 

)2 
C 

m 1 q 
i 

C 

m 1 q 
i 

(
σ

q 

i 

)2 

] 

, (A9) 

ith the distribution truncated outside values 0.05 > q > 1. 
(iii) Model M 

pl 
m 1 

: Infers the primary mass, mass ratio, and aligned 
pin distributions. Each component consists of a uni-variate normal 
o infer the primary mass and a uni-variate normal to identically but
ndependently infer the aligned spin distribution. Unlike models, M M 

nd M m 1 , model M 

pl 
m 1 

does not infer the mass ratio using a mixture
odel. Instead, it uses a single power law to model the mass ratio

hroughout the full mass range. The mean primary mass distribution 
nferred for a flat likelihood approximately follows a uniform-in-log 
istribution, i.e. p ( 〈 m 1 | � 〉 ) = 

∑ 

i p ( m 1 | � i )/ n ∼ 1/ m 1 . This model is
efined as: 

( m 1 , q, χ1 , χ2 , z| � ) = 

[ 

N ∑ 

i= 1 

w i φ( m 1 | μm 1 
i , σ

m 1 
i ) φ( χ1 | μχ

i , σ
χ
i ) 

φ
(
χ2 | μχ

i , σ
χ
i 

)]
P( q | αq 

i , q 
min 
i , 1 . 0) . 

(A10) 

he older version of Vamana inferred the chirp mass and mass
atio distributions using a uni-variate normal and a power law, 
espectively. Thus, the mass ratio did not vary with chirp mass
ithin a component. Models, M M 

and M m 1 use truncated bi-variate 
ormal distributions that have a correlation term included between 
he two parameters and thus the mass ratio can vary with the mass
arameter within a component. All the models include a power-law 

istribution in each component to infer the redshift evolution of the
erger rate, 

 ( z) ∝ (1 + z) κi (A11) 

The BBH population has been inferred using the observations 
ith a false alarm rate of at most once per year. We only used
bservations reported by the LVK collaborations (LIGO Scientific 
ollaboration & Virgo Collaboration 2019a ; Abbott et al. 2021a ,
 , d ). Only observations with a mean chirp mass greater than 5
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 � are used. We excluded GW190814 from the results presented
n Section 2 . The total number of observations chosen is 69. For
ig. 4 , we used a lower false alarm rate of at most twice per
ear and included all of the observations with mean chirp mass
reater than 5 M �. This resulted in the inclusion of GW190814,
W190926, and GW200210 092254. We used 10 components for

ll three models. Ho we ver, our results remain essentially unchanged
or any number of components between 8 and 15. The binary
arameters are estimated in the detector frame; to change to
he source frame quantities we assume the Planck15 cosmology
Ade et al. 2016 ). 

PPENDIX  B:  SIMULATED  MASS  

ISTR IBU TION  

he tendency of a model to create local minima or maxima depends
n the distribution of the data and the bandwidth of the modelling
omponents. Gaussian mixtures are supposed to inherently create
ocal maxima and local minima in the inferred population. To
enerate a statistic on the creation of o v er or underdense regions
e perform 1,000 simulation runs for the featureless models. Instead
f inferring a full-fledged simulated population, we only focus on the
ass distribution. We simulate a mass distribution that best describes

he inferred mass distribution but contains no local maxima. To
chieve that we 

(i) Fit a monotonically decreasing broken power law, such that,
he inferred mass distribution is least o v erdense compared to it
hroughout the mass range. Table B1 lists the best-fitting parameters
or the three models. 

(ii) Apply selection effects and draw 69 data points from the
esulting distribution. 5 

(iii) Include measurement uncertainty by augmenting each data
oint with additional 500 samples drawn from a normal distribution.
he values of the data points serve as the mean for these normal
istributions and the scales are empirically estimated depending on
he mass value. We found the following relation best describes the

 This involves applying importance sampling to p( θ | � inj ) and obtaining
amples from the target mass distribution. We just perform sampling on
ass distribution, thus the mass-ratio and spin distributions of the synthetic

opulation are the same as that of the injections (LIGO Scientific, Virgo and
AGRA Collaborations 2021 ). 
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( https://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reus
able B1. The best-fitting parameters of the monotonically decreasing
roken power law, f ( x) ∝ x −αi for x i ≤ x < x i+ 1 . The population model’s
nferred mass distribution is least dense compared to this distribution
hroughout the mass range. The table lists the endpoints ( x i ) and exponents
 αi ) of the broken power law. All endpoints have units of solar mass. 

x i 4 10 18 37 65 
 M 

αi 4.66 0.67 2.17 4.58 

x i 5 14 25 50 90 
 m 1 

αi 3.86 0.01 3.70 3.98 
x i 5 14 25 50 90 

 

pl 
m 1 

αi 3.93 0.54 3.09 4.93 

ariation of measurement uncertainty with the mass value, 6 

σ ( M ) 

M 

= 0 . 023 + 0 . 002 M , 
σ ( m 1 ) 

m 1 
= 0 . 167 − 0 . 00047 m 1 . 

(B1) 

(iv) Infer the mass distribution using the simulated data. Priors
dentical to models M M 

, M m 1 , and M 

pl 
m 1 

are used in inferring the chirp
r primary mass distribution for the featureless models. 
(v) Estimate f for each simulation. For each simulation record

he highest value, f highest , obtained within each mass segment. This
esults in one thousand f highest values for each mass segment. 

We ignored selection effects in the simulations. Thus, our under-
ying population for the calculation of f is the selection-weighted
roken power law. We expect the inclusion of selection effects
ill only impact the weights of the components. The components
odelling the lower masses will have their weights increased

ompared to analysis that ignores the selection effect. We indirectly
erified this by inferring the observed BBH distribution (i.e. ignoring
orrection of the selection effects thus just modelling the observed
ass and spin distribution of BBHs in Earth’s frame) using the three
odels. Our conclusion remains unchanged on the significance of

he peaks as the value of f highest reported in Table 1 remained mostly
nchanged. 

 This is only an approximation. In reality, the measurement uncertainty
epends on other factors, such as signal-to-noise ratio. 
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