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Abstract: Systemic lupus erythematosus (SLE) is the prototypical systemic autoimmune disorder.
Kidney involvement, termed lupus nephritis (LN), is seen in 40–60% of patients with systemic
lupus erythematosus (SLE). After the diagnosis, serial measurement of proteinuria is the most
common method of monitoring treatment response and progression. However, present treatments for
LN—corticosteroids and immunosuppressants—target inflammation, not proteinuria. Furthermore,
subclinical renal inflammation can persist despite improving proteinuria. Serial kidney biopsies—the
gold standard for disease monitoring—are also not feasible due to their inherent risk of complications.
Biomarkers that reflect the underlying renal inflammatory process and better predict LN progression
and treatment response are urgently needed. Urinary biomarkers are particularly relevant as they
can be measured non-invasively and may better reflect the compartmentalized renal response in
LN, unlike serum studies that are non-specific to the kidney. The past decade has overseen a boom
in applying cutting-edge technologies to dissect the pathogenesis of diseases at the molecular and
cellular levels. Using these technologies in LN is beginning to reveal novel disease biomarkers
and therapeutic targets for LN, potentially improving patient outcomes if successfully translated to
clinical practice.
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1. Introduction

Systemic lupus erythematosus (SLE) is a multisystem autoimmune disorder with
heterogeneous clinical manifestations [1]. It most commonly affects women of childbearing
age. Lupus nephritis (LN) describes renal involvement in SLE, affecting approximately
40–60% of patients, with African Americans being at higher risk both of LN development
and severe forms of LN [2,3]. Patients with LN usually present with findings of nephritic
(e.g., hematuria, generalized edema, hypertension) and/or nephrotic (generalized edema,
frothy urine) glomerular disease. Urinalysis often reveals proteinuria and hematuria with
red blood cell (RBC) casts. Other routinely performed investigations for LN include renal
function tests, 24 h urinary proteinuria or spot urine protein-to-creatinine ratio, complement
levels, and serologies to assess for anti-double stranded DNA (dsDNA) and anti-nuclear
antibodies (ANAs).

The presence of LN portends a poor prognosis in patients with SLE, associated with a
significant morbidity and mortality burden [4]. Despite advancements in immunomodula-
tory therapies, approximately 30% of patients with LN develop end-stage kidney disease,
requiring renal replacement therapy [5,6].

The gold standard technique for diagnosing and monitoring LN remains a kidney
biopsy [7,8]. The pattern of glomerular disease on renal biopsy is also used to classify LN
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into six distinct subtypes. However, a kidney biopsy is an invasive technique with an array
of potential complications [9]. Moreover, patients with LN often require repeated kidney
biopsies to assess disease activity, which is associated with a compounding risk of adverse
events [7,8]. On the other hand, traditional serum and urinary biomarkers such as comple-
ment levels, glomerular filtration rate, and urine protein-to-creatinine ratios offer limited
specificity. They also cannot distinguish LN from other etiologies of nephritis [10–12].
Furthermore, the treatment for LN—corticosteroids and immunosuppressants—targets the
immune response, not proteinuria [13]. It is possible for inflammation to subsist despite
improving proteinuria.

Hence, a need emerges to identify novel markers that meet the following requirements:
they reflect the biology of LN; they can be measured easily, preferably through a non-
invasive, routinely collectible sample such as urine; and their temporal changes reflect
disease activity in a manner that can reflect a change in clinical state, such as disease
progression and treatment response. Thoroughly assessing lupus nephritis requires a
protocol that combines novel biomarkers with clinical disease activity scores, renal biopsy
findings, conventional laboratory markers such as proteinuria and renal function tests, and
imaging tools.

In the era of precision medicine and novel immuno-technologies, multi-omic tech-
niques represent a novel strategy to identify potential biomarkers for LN [14,15]. Omics
describes a comprehensive assessment of a particular set of molecules. The most utilized
example of a genomics approach is genome-wide association studies (GWASs), for instance,
in which the genotype of several thousands of individuals is analyzed for genetic mark-
ers, and statistically significant differences in the frequency of a genetic variant between
cases and controls are taken as evidence of an association between that genetic variant
and disease [16]. The techniques used for transcriptomic, proteomic, and metabolomic
analyses—the main aspects of multi-omics discussed in this review—are detailed in their
corresponding sections.

This review discusses the application of multi-omics technologies on urine to identify
biomarkers for LN that reflect its disease burden/severity and can also be used to monitor
treatment responses, thereby providing an alternative to the current gold standard of renal
biopsies that are invasive and consequently carry inherent risks and contraindications and
can be unfeasible to conduct serially in individual patients.

2. Urinary Transcriptomics

Transcriptomics involves the quantitative and/or qualitative analysis of different types
of RNA molecules (e.g., mRNA and non-coding RNAs, such as microRNAs) expressed
in a given sample. Microarray-based analysis was historically the primary method for
global transcriptional profiling. RNA sequencing (RNAseq), either in bulk (i.e., bulk-
RNAseq) or at the single-cell level (i.e., scRNA-seq), subsequently emerged and is now
increasingly used. ScRNA-seq reveals the gene expression patterns of individual cells in
tissues and has revealed a previously underappreciated complexity of cellular transcripts
that change in health and disease and are contingent upon the organ of context and
tissue microenvironment.

The application of transcriptomics approaches to urine is an emerging approach
to identifying predictive biomarkers that better reflect disease severity and treatment
response than proteinuria [17,18]. Most studies compare scRNA-seq findings of renal
biopsy specimens between patients with LN and controls to identify disease-associated
phenotypes in renal parenchymal cells and immune cells that may be candidates for being
considered therapeutic targets [19,20].

ScRNA-seq findings of non-lesional, non-sun-exposed skin biopsies of patients with
LN and healthy controls showed that upregulated keratinocyte IFN responses could distin-
guish patients with LN from controls [21,22]. These findings indicate that transcriptomic
analyses of a readily accessible site such as the skin could represent a novel biomarker for
LN monitoring. In the kidneys, an interferon and pro-fibrotic signature elaborated by renal
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tubular epithelial cells has been associated with a failure to respond to treatment [22]. Simi-
larly, the expression of several transcripts in serial kidney biopsy pre- and post-treatment
related to innate and adaptive immune cell activation, including interferon responses, can
distinguish treatment responders from non-responders [23].

MicroRNAs

MicroRNAs are non-coding RNA molecules that regulate the stability of mRNA,
thereby controlling its translation into protein and regulating an array of physiological
and pathological processes [24,25]. In the context of LN, several microRNAs contributing
mechanistically to various pathophysiological processes in LN—from the modulation of
inflammatory responses to pathways related to renal fibrosis—have been identified as
potential diagnostic biomarkers and indicators of disease activity (Figure 1) [26].
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Both urinary and plasma microRNAs are often quantified non-invasively using a
real-time quantitative polymerase chain reaction (RT-qPCR), owing to this method’s high
sensitivity, cost, and time efficiency [25,27]. MiRNA-21, a critical mediator of inflammation
that upregulates interleukin-6- and NF-κB-associated pathways and modulates lymphocyte
signaling, was one of the first identified microRNAs associated with LN [28–31]. Uri-
nary miRNA-21 could distinguish between inactive and active LN in a cohort study of
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55 patients with SLE and 30 healthy controls with an area under the curve (AUC) of 0.89 [32].
Furthermore, in 52 patients with LN, miRNA-21 could distinguish between healthy controls
and patients with LN with a sensitivity of 86% and an AUC of 0.91 [33]. Urinary miRNA-
146a, also a modulator of the NF-κB inflammatory pathway, could similarly accurately
discriminate patients with LN from healthy controls [34,35]. Interestingly, miRNA-146a also
correlated directly with disease activity and histological features, indicating its potential to
predict disease severity and response to therapy [36]. Finally, miRNA-29c, a key modulator
of renal fibrosis, has recently been shown to accurately determine renal chronicity and
disease severity in LN with a sensitivity and specificity of over 80% [37–39].

Recently, a paradigm shift has emerged in urinary transcriptomics with the devel-
opment of novel biomarker panels utilizing several microRNAs with differing utilities to
accurately aid in diagnosing and assessing disease activity [39–42]. For instance, a recent
panel using three microRNAs (miRNA-21, miRNA-150, and miRNA-29c) was evaluated
in a cohort study of 45 patients with LN and 20 controls [39]. This microRNA panel
showed that changes in these individual microRNA levels correlated significantly with the
LN chronicity index (CI), which was a significant predictor of renal fibrosis recorded by
immunohistochemistry. Additionally, evaluating a separate panel consisting of three micro-
RNAs (miRNA-135b-5p, miRNA-107, and miRNA-31) in a cohort of 42 patients with LN,
comprising 21 responders and 21 non-responders, revealed significant differences amongst
responders and non-responders [43]. They could accurately predict disease activity and
progression during flare-up periods and one year following the initial flare-up (AUC of
0.73–0.78).

3. Urinary Proteomics

Proteomics approaches broadly characterize peptide abundance or interactions in
a specific sample. The primary technique applied to proteomic study is spectrometry
(MS). Mass cytometry adds more resolution to proteomics, which allows us to identify the
proteins expressed by different cell types. The advent of mass spectroscopy also led to
large-scale metabolomic analyses aimed at characterizing the abundance of molecules like
fatty acids, amino acids, and carbohydrates. Mass spectroscopy imaging has been devised
to provide spatial context about the proteins and metabolites present within a sample lost
in bulk-level mass spectroscopy.

The application of urinary proteomic techniques to identify biomarker proteins has
demonstrated excellent potential across several systemic and renal disorders [44]. Identify-
ing urinary biomarker proteins can facilitate the non-invasive diagnosis of LN while aiding
in the characterization of disease activity and severity. Additionally, urinary proteomics
can pave the way for identifying biomarkers that predict responsiveness to therapy and
propensity toward relapse [45].

Two primary approaches underpin the utilization of urinary proteomics in the context
of LN biomarker discovery [46]. Targeted proteomics offers a unique perspective as it
involves the study of proteins with an established pathophysiological role in the context
of LN. Although limited in scope, this approach allows the identification of biomarkers
that have biological credibility as they are directly involved in the immunopathogenesis
of LN. On the other hand, untargeted proteomics in the form of unbiased discovery
proteomics allows for discovering a wide array of potential urinary protein biomarkers
that are upregulated or downregulated in patients with LN.

3.1. Pro-Inflammatory Biomarkers

Urine proteomics has revealed that numerous cytokines, including IL-17, TWEAK,
and MCP-1, can be elevated in patients with LN and positively correlate with disease
activity [12]. Screening 1000 urinary protein biomarkers in 30 patients with LN and
correlating the urinary protein signature with a single-cell transcriptomic analysis of renal
biopsy specimens, Fava et al. demonstrated a robust link between urinary chemokine
signals and renal immune cell infiltration, indicating that this approach may be more
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reflective of the immune status of the kidney than urinary proteinuria—currently widely
utilized [47]. This approach also allowed for the stratification of patients with LN over a
gradient of IFNγ-inducible chemokines, thereby adding biologically relevant information
beyond traditional histological classifications [47]. Furthermore, these findings indicate the
possibility of dynamically tracking LN status non-invasively through urine samples over
time in a manner that could guide treatment decisions [47].

Recent urinary proteomic studies have revealed a consistent elevation in IL-16 in
the urine of patients with active LN [48]. IL-16, a potent T-cell chemoattractant, signif-
icantly correlates with renal activity and the NIH indices—histopathology-based scor-
ing systems designed to quantify the severity and progression of LN [49]. Moreover,
an early decline in urinary IL-16 at 3 months correlated with treatment response to
immunosuppression—a response determined based on UPCR, serum creatinine, and the
dose of prednisone—outperforming traditional measures like UPCR [48]. In addition to its
predictive value for treatment response, IL-16 can distinguish between proliferative LN and
pure membranous LN with an AUC of 0.89 [49]. Additionally, urinary IL-16 abundance
correlated with single-cell RNA sequencing analyses of renal biopsies, indicating that IL-16
is produced by infiltrating immune cells in LN kidneys, supporting its utility as a biomarker
for monitoring intrarenal immune activity [49]. In 225 patients with LN, urine proteomic
signatures showed that fibrous crescents were similar to activity-related lesions despite
being considered inactive lesions [48]. Despite their classification under the NIH chronicity
index, an inflammatory signature including CD73, MMP9, MIP1b, and IL-8 was identified
in fibrous crescents, highlighting the potential for tailored interventions [50].

Beyond IL-16, CD163—a macrophage-specific hemoglobin scavenger receptor up-
regulated during inflammation—has been consistently identified as a urinary biomarker
through ELISA and single-cell transcriptomics techniques in patients with LN [51–53].
Urinary CD163, closely following IL-16, significantly correlates with LN severity indicated
by the NIH activity index and histological activity [48,54]. Urinary CD163 concentration
improved considerably by week 12 in complete treatment responders, with a decline at
three months predicting a one-year response more accurately than proteinuria [48]. Ele-
vated CD163 levels across all LN classes, especially in proliferative forms, were closely
linked to disease activity and treatment response, highlighting its utility as a non-invasive
marker for tracking LN progression and therapeutic efficacy [48].

In addition to cytokines, a urine proteomic analysis has unveiled numerous signaling
molecules as biomarkers of LN pathogenesis [14]. The application of extensive proteomics
revealed a panel of six biomarkers (ICAM2, FABP4, FASLG, IGFBP-2, SELE, and TN-
FSF13B/BAFF) that effectively distinguished (AUC ROC > 0.8) patients with LN and
active renal disease (AR) from those with inactive disease (iSLE), with the majority also
showing a strong correlation with clinical disease activity [55]. Other promising urine
biomarkers—such as Angptl4, L-selectin, TPP1, and TGFβ1—also had high ROC AUC
values for distinguishing patients with lupus and AR from those with iSLE, with the com-
bination of Angptl4, L-selectin, and TPP1 yielding the highest discrimination with an AUC
of 0.97 [56]. Urinary L-selectin and Angptl4 preceded or coincided with worsening renal
disease activity as measured by the renal domains of the Systemic Lupus Erythematosus
Disease Activity Index (rSLEDAI), supporting a causal relationship between their elevation
and LN severity [56]. However, not all these urinary proteins are suitable for diagnosing
LN, as their levels may rise in other conditions causing chronic kidney disease [56]. For
instance, Angptl4, L-selectin, and TPP1 were elevated in CKD secondary to numerous
cases, TGFβ1 was only increased in FSGS, and urinary Angptl4 correlated with the CKD
stage (correlation coefficient: 0.56; p < 0.0001) [56]. Additional urinary biomarkers such
as ORM1 hold potential for the early detection of LN, even before the onset of significant
proteinuria [57]. Another study on 92 patients investigated the use of high-throughput
proteomics to identify urine-based markers for tracking kidney disease activity and damage
in patients with LN monitored by the NIH activity index (NIH-AI) and chronicity index
(NIH-CI) scores [58]. The study identified eight urinary markers (ApoA-II, vWF, IL-1α,
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IGFBP2, IL-6Rβ, KIM-1, DBH, and fetuin-A) and developed two predictive algorithms
with over 88% specificity and 93% accuracy [58]. As longitudinal kidney biopsies are
not typically performed for disease monitoring, these urinary markers hold promise for
non-invasively tracking changes in LN status over time.

The role of a complement in LN is gaining attention due to the emergence of complement-
targeting therapeutics [59]. In a study of 30 patients with LN, the kidney deposition of
Membrane Attack Complex (MAC)—the terminal product of complement activation—was
positively associated with tubulointerstitial fibrosis and atrophy (IFTA) and proteinuria,
which are predictors of progression to ESKD [60]. Urinary proteomic assays in 46 patients
with LN demonstrated that patients with more severe IFTA had a higher ratio of C9 to CD59
than those with no/mild IFTA [60]. Urinary complement activation markers also correlated
with the increased expression of genes involved in TGFβ and PDGFRβ signaling, indicating
a potential link between terminal complement pathway activation in kidney tubules and
critical growth factors in developing kidney fibrosis in LN [61,62]. These findings align with
transcriptomic data demonstrating that TGFβ1 can stimulate the expression of C3 in the
kidneys and with studies showing that PDGFRβ-positive pericytes can secrete complement
factor C1q in murine models of renal fibrosis [63,64]. TGFβ has been recognized for its
crucial role in activating pro-apoptotic pathways, leading to renal fibrosis in patients with
lupus, which can contribute to persistent immune stimulation and epitope spreading,
consequently worsening autoimmunity [65].

3.2. Rail Score

A combination approach that utilizes both targeted and untargeted proteomics tech-
niques to generate a novel biomarker panel represents an excellent strategy for biomarker
development in the context of LN. This strategy has led to the recent development of the
Renal Activity Index for Lupus Nephritis (RAIL) [45]. The RAIL score was developed
by selecting urinary biomarkers from targeted and untargeted proteomics studies and
applying multivariate regression analyses to identify the six most discriminative urinary
biomarkers for LN—NGAL, MCP-1, KIM-1, ceruloplasmin, adiponectin, and hemopexin.

The RAIL score represents a novel biomarker panel comprising six urinary protein
biomarkers, two from targeted proteomics and four from untargeted proteomic techniques.
The two proteins utilized in the RAIL identified via targeted proteomics are neutrophil
gelatinase-associated lipocalin (NGAL) and monocyte chemoattractant protein-1 (MCP-1).
Mechanistically, NGAL represents a nephroprotective protein consistently upregulated
in patients with various forms of renal injury in renal epithelial cells [66]. In contrast,
MCP-1 is a chemokine that regulates immune cells’ diffuse infiltration into renal tissue,
facilitating the ongoing inflammatory cascade in LN [67]. Targeted proteomic techniques
include enzyme-linked immunosorbent assays (ELISAs) to accurately quantify NGAL and
MCP-1 in urinary samples amongst patients with LN [68]. Numerous cross-sectional and
prospective cohort studies have shown that NGAL and MCP-1 significantly increase in
patients with LN [69–73]. Moreover, higher levels of NGAL and MCP-1 were correlated
with heightened disease activity, and these biomarkers could predict subsequent relapses
and disease flares accurately [74–77]. The findings of these cohort studies, which jointly
included approximately three hundred patients, led to the incorporation of MCP-1 and
NGAL into the RAIL score.

In contrast, the other four biomarkers incorporated in the RAIL score were identified
using unbiased discovery proteomics techniques, such as mass spectrometry. Four primary
proteomic discovery studies pioneered the identification of novel urinary biomarkers in the
context of LN [77–81]. These studies compared urine proteomic signatures across approxi-
mately 300 patients with LN and controls. They identified ~30 target proteins through the
utilization of techniques such as surface-enhanced laser desorption–ionization time-of-flight
mass spectrometry (SELDI-TOF) and matrix-assisted laser desorption–ionization time-of-
flight mass spectrometry (MALDI-TOF-MS/MS). Identified proteins were then validated in
further targeted proteomics studies utilizing ELISA techniques [81–84]. Subsequently, four
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of these proteins were selected in the RAIL score, including ceruloplasmin, adiponectin,
hemopexin, and kidney injury molecule-1 (KIM-1). Mechanistically, hemopexin and cerulo-
plasmin represent antioxidant proteins that are increased in subjects with LN, potentially
as an indicator of ongoing inflammation [85,86]. Furthermore, KIM-1 is in the nephron and
is upregulated during kidney damage to facilitate the clearance of damaged cells [87,88].
Finally, adiponectin suppresses inflammation that can be upregulated in patients with
LN [89]. Figure 2 provides an illustrative demonstration of the RAIL biomarkers and their
function in the kidney. Importantly, proteins such as NGAL and KIM-1 are not specific for
LN and reflect kidney injury secondary to a variety of causes (reviewed here: [90]).
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The first study to validate the RAIL score was conducted in a cohort of 46 children
and adolescents and demonstrated outstanding efficacy with the capability to identify
over 90% of LN cases [91]. Furthermore, the RAIL score outperformed conventional
diagnostic scores that utilized traditional serum and laboratory biomarkers. Following
this, the RAIL score was validated in a further study using 79 adult patients with LN, and
it demonstrated excellent efficacy with an AUC of 0.88, indicating excellent diagnostic
capacity [92]. Additionally, a third study set out to validate the predictive accuracy of
the RAIL score in predicting response to therapy and disease flares amongst a cohort
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of 87 patients with LN [93]. In the study, the RAIL biomarkers could accurately predict
response to therapy and propensity towards relapse, highlighting that these biomarkers not
only hold diagnostic potential but are also capable of predicting the prognosis. RAIL scores
could also distinguish clinically active LN from inactive LN or healthy controls in pediatric
patients with SLE and decreased by ≥1 point in patients with complete remission [94].
Importantly, the RAIL score outperformed the rSLEDAI in capturing high LN activity (AUC
of 0.79 vs. 0.62, respectively). Furthermore, the RAIL score could reveal subclinical/low–
moderate LN activity in patients with an rSLEDAI of 0 who had a kidney biopsy more than
3 months ago [95], underscoring its potential as a method to routinely monitor subclinical
kidney disease [94].

4. Urinary Metabolomics

Metabolomics approaches involve comprehensively profiling low-molecular-weight
metabolites in a given biological sample. Nuclear magnetic resonance (NMR) spectroscopy
and mass spectrometry are the main methods for conducting metabolomic analyses. Numer-
ous studies have leveraged these techniques to identify novel biomarkers associated with
various healthy and disease states, including cardiovascular disease [96], neurodegenera-
tive disease [97], aging [98], pregnancy complications [99], and autoimmune diseases [100].

In this regard, NMR spectroscopy of serum of patients with LN, patients with SLE
and without LN, and healthy controls has demonstrated that patients with LN have higher
levels of lipoproteins (VLDL and LDL), but lower levels of acetate, than patients with
SLE [101,102]. NMR spectroscopy of serum was used to describe that a combination of
three metabolites (neuritic acid, C1q, and cystatin-C) could distinguish patients with SLE
and LN from those without LN with an AUC of 0.9 [103]. Interestingly, these metabolomic
changes are reversed upon treatment with cyclophosphamide-based therapy for 6 months,
with LDL/VLDL levels decreasing and acetate levels increasing, with these changes also
correlated with SLEDAI, renal SLEDAI, and serum C3 and C4 levels [102]. These findings
indicate that serum-based metabolomics can distinguish patients with LN from SLE without
LN and from healthy controls, as well as identify differential responses to treatment, which
can thereby be used for monitoring therapy response.

Urinary metabolomics approaches in LN have been used to identify metabolites
differentially affected in distinct histological classes of LN and monitor treatment re-
sponses. Compared to healthy controls, urinary pyruvate, citrate, fumarate, malate, and
α-ketoglutarate are significantly decreased in patients with LN [104,105]. Comparing
NMR-based metabolomic profiling in seven patients with class III/IV LN vs. class V LN,
Romick-Rosendale et al. showed that urinary citrate was significantly lower in class V
LN. In contrast, urinary taurine and Hippurate were markedly lower in class III/IV LN
than type V LN [106]. In another study of six patients with pure class III/IV LN, seven
patients with pure class V LN, and seven with mixed type III/IV + V LN, the ratio of
picolinic acid to tryptophan (Pic/Trp) in urine was significantly lower in patients with
type V LN than those with class III/IV. Combining the Pic/Trp ratio with eGFR and the
urinary protein-to-creatinine ratio (UPCR) could distinguish the LN classification of pure
type III/IV vs. pure type V LN with an AUC of 0.91, outperforming eGFR alone (0.499)
and UCPR alone (0.444), which are current laboratory measures for monitoring LN [104].

In the context of treatment response, urinary citrate, which was significantly lower in
patients with LN than healthy controls and distinguished between them with an AUC of
0.91, increased 6 months after induction therapy with cyclophosphamide for LN [105]. Uri-
nary citrate levels also correlated moderately but significantly with C3 (r = 0.362; p = 0.03)
and UPCR (r = −0.346; p = 0.039). Although urinary acetate levels—higher in patients
with LN than healthy controls at the disease diagnosis—did not decrease significantly
post-treatment, they did correlate significantly with SLEDAI (r = 0.337; p = 0.048). Consid-
ering this evidence and serum-based metabolomics studies that identified LN biomarkers,
these findings pave the way for monitoring LN treatment response through routine blood
samples or non-invasively through urine instead of renal biopsies. However, it remains
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to be investigated to what degree these treatment-related changes are brought about by
clinically beneficial treatment responses or as an independent effect of these medications
on the serum and urine metabolome [107].

5. Conclusions and Perspectives

Table 1 provides an overview of the transcriptomic, proteomic, and metabolomic
biomarkers discussed within this review. Utilizing urinary transcriptomics, proteomics,
and metabolomics in LN holds tremendous potential to aid in establishing accurate diag-
noses and predicting the therapeutic response and prognosis. It is unlikely that urinary mi-
croRNAs and the RAIL biomarkers will replace conventional diagnostic modalities such as
kidney biopsies and other traditional biomarkers. However, an approach utilizing urinary
microRNAs, the RAIL and other pro-inflammatory biomarkers, and urinary metabolites
in combination with conventional diagnostic methods offers a unique perspective toward
enhancing diagnostic and prognostic accuracy. Moreover, urinary multi-omic protocols
can eliminate the need for multiple kidney biopsies amongst patients with LN, as urinary
microRNA, metabolites, and protein biomarkers can predict disease activity, reducing the
repeated utilization of invasive procedures. Developing a multi-parameter urinary panel
incorporating different types of multi-omic biomarkers could facilitate the generation of a
novel, non-invasive modality that integrates emerging immuno-technologies to accurately
aid in the disease diagnosis, predict the prognosis and therapeutic response, and assess the
presence of chronic disease and renal architectural damage. Finally, such biomarkers can
provide novel insights into the pathophysiology of the disease and its mechanisms, leading
to advances in the understanding and targeted treatment of the disease.

Table 1. Summary of biomarkers for lupus nephritis.

Biomarker Association References

Urinary Transcriptomics

miRNA-21
Distinguished inactive and active LN (AUC = 0.89) and

differentiated healthy controls from patients with LN (sens.: 86%;
AUC = 0.91).

[28–33]

miRNA-146a Accurately discriminates patients with LN from healthy controls,
directly correlates with disease activity and histological features. [34–36]

miRNA-29c Key modulator of renal fibrosis, accurately determines renal
chronicity and disease severity in LN (sens.: >80%; spec.: >80%). [37–39]

MicroRNA Panel (miRNA-21,
miRNA-150, miRNA-29c) Correlated significantly with the LN chronicity index. [39]

MicroRNA Panel (miRNA-135b-5p,
miRNA-107, miRNA-31)

Predicting disease activity and progression, showing significant
differences between responders and non-responders during

flare-ups and one year after (AUC = 0.73–0.78).
[43]

Urinary Proteomics

IL-16
Correlates with renal activity and NIH indices, predictive of

treatment response, distinguishes LN types with high accuracy
(AUC of 0.89).

[48,49]

CD73, MMP9, MIP1b, IL-8 Identifies fibrous crescents. [50]

CD163 Correlates with LN severity and treatment response, predicts
one-year response more accurately than traditional measures. [48,51–54]

Proteomic Panel (ICAM2, FABP4, FASLG,
IGFBP-2, SELE, TNFSF13B/BAFF)

Distinguishes active renal disease from inactive disease in
patients with LN with high accuracy (AUC > 0.8), correlates with

clinical disease activity.
[55]
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Table 1. Cont.

Biomarker Association References

Angptl4, L-selectin, TPP1, TGFβ1
High discrimination power for active vs. inactive disease (highest
AUC of 0.97 with a combination), indicates causal relationship

with LN severity.
[56]

ORM1 Early detection of LN. [57]

Urinary apoA-II, vWF, IL-1α, IGFBP2,
IL-6Rβ, KIM-1, DBH, Fetuin-A

Identified for tracking kidney disease activity and damage in LN,
with high specificity and accuracy. [58]

Complement Activation Markers
(C9-to-CD59 Ratio)

Associated with tubulointerstitial fibrosis and proteinuria,
indicators of ESRD progression; linked with TGFβ and PDGFRβ

signaling in kidney fibrosis development.
[60–64]

NGAL
Upregulated in renal epithelial cells during renal injury.

Significantly increases in patients with LN, correlates with disease
activity, and predicts relapses and disease flares.

[66,69–77]

MCP-1 Elevated levels associated with increased disease activity and
predictive of disease progression. [67,69–77]

Ceruloplasmin Antioxidant protein increased in LN, potentially indicating
ongoing inflammation. [86]

Adiponectin Anti-inflammatory protein upregulated in patients with LN. [89]

Hemopexin Antioxidant protein increased in subjects with LN, indicating
ongoing inflammation. [85]

KIM-1 Upregulated during kidney damage for the clearance of
damaged cells. [87]

RAIL Score (NGAL, MCP-1,
Ceruloplasmin, Adiponectin, Hemopexin,

KIM-1)

Diagnostic capability (over 90% identification rate of LN cases in
children and adolescents; AUC of 0.88 in adults). Excellent

predictive accuracy for response to therapy and disease flares.
[90–95]

Urinary Metabolomics

Serum Lipoproteins (VLDL, LDL),
Acetate Levels

Higher VLDL and LDL but lower acetate levels in patients with
LN compared to healthy controls. Changes upon treatment

correlate with disease activity and treatment response.
[101,102]

Serum Neuritic Acid, C1q, Cystatin-C Can distinguish patients with SLE and LN from those without LN
(AUC = 0.9). Levels reverse upon treatment. [103]

Urinary Pyruvate, Citrate, Fumarate,
Malate, α-Ketoglutarate

Significantly decreased in patients with LN compared to
healthy controls. [104,105]

Urinary Citrate Significantly lower in class V LN compared to class III/IV.
Increases after treatment, correlating with treatment response. [105,106]

Urinary Taurine and Hippurate Markedly lower in class III/IV LN than class V. [106]

Urinary-Picolinic-Acid-to-Tryptophan
Ratio (Pic/Trp)

Lower in type V LN than in class III/IV; combined with eGFR
and UPCR, distinguishes LN classes with high accuracy

(AUC of 0.91).
[104]

Urinary Acetate
Higher in patients with LN at diagnosis; correlates with disease

activity (SLEDAI), but does not significantly decrease
post-treatment.

[106]

Angptl4: Angiopoietin-like 4; C1q: Complement component 1q; DBH: Dopamine beta-hydroxylase; FABP4:
Fatty acid binding protein 4; FASLG: Fas ligand; ICAM2: Intercellular adhesion molecule 2; IGFBP-2: Insulin-
like growth factor binding protein 2; IL: Interleukin; IL-1α: Interleukin 1 alpha; IL-6Rβ: Interleukin 6 receptor
beta; KIM-1: Kidney injury molecule-1; L-selectin: L-selectin; LDL: Low-density lipoprotein; MCP-1: Monocyte
chemoattractant protein-1; MIP1b: Macrophage inflammatory protein 1 beta; miRNA: microRNA; MMP9: Matrix
metallopeptidase 9; NGAL: Neutrophil gelatinase-associated lipocalin; ORM1: Orosomucoid 1; SELE: Selectin
E; TGFβ1: Transforming growth factor beta 1; TNFSF13B/BAFF: Tumor necrosis factor superfamily member
13B/B-cell activating factor; TPP1: Tripeptidyl peptidase 1; VLDL: Very-low-density lipoprotein; vWF: von
Willebrand factor.
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Nonetheless, several challenges and limitations remain in utilizing urinary transcrip-
tomics and proteomics in the clinical setting. More extensive prospective studies across
diverse patient cohorts remain a need to validate the findings of urinary biomarkers, includ-
ing the RAIL biomarkers and urinary microRNAs. In 368 adolescents and young adults,
RAIL biomarkers amongst the healthy controls demonstrated substantial variations in
biomarker levels due to age and gender [108]. Moreover, several studies have found con-
flicting evidence regarding quantifying specific urinary microRNAs in the context of lupus
nephritis [109]. Hence, validation studies establishing reference ranges for these urinary
biomarkers to distinguish healthy controls from patients with LN accurately are needed.

Additionally, cutting-edge quantitative transcriptomic, proteomic, and metabolomic
techniques are required to quantify these biomarkers accurately in the clinical setting.
The majority of the studies validating the RAIL biomarkers utilized ELISA techniques for
protein quantification; however, given the emergence of novel approaches such as mass
spectrometry to quantify proteins, the incorporation of these techniques in the clinical
setting is required owing to their accuracy and potential cost-effectiveness when utilized at
a grander scale [110]. On the other hand, the majority of studies quantifying urinary micro-
RNAs used RT-qPCR to quantify microRNAs; however, the emergence of next-generation
sequencing technology offers unique perspectives toward the quantification of microRNAs
due to its greater sensitivity and capacity to quantify total microRNA signatures [111].
Additionally, mechanistic research efforts are required to further elucidate the contribution
of identified biomarkers towards the pathophysiology of LN. The confounding effect of
treatment (including corticosteroids and immunosuppressants), patient comorbidities, and
lifestyle factors on urinary transcriptomic, proteomic, and metabolomic findings must also
be better understood, as this could majorly affect the interpretation of findings in individual
patients. Finally, collaborative efforts are needed between scientists and clinicians to bridge
the gap and raise awareness regarding the tremendous utility of these biomarkers in
the clinical setting. Metabolomics approaches are increasingly utilized in the field of
cardiovascular disease prevention and management in the form of composite metabolomic
risk scores or lipidomic scores, which signals increasing clinician awareness of these novel
approaches. Nevertheless, more must be done to increase knowledge of these technologies
if they are to be introduced widely into clinical care, including the possibility of integrating
their basics into the medical education curriculum.
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