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Aims Lowering low-density lipoprotein cholesterol (LDL-C) through PCSK9 inhibition represents a new therapeutic approach to 
preventing and treating cardiovascular disease (CVD). Phenome-wide analyses of PCSK9 genetic variants in large biobanks 
can help to identify unexpected effects of PCSK9 inhibition.  

Methods 
and results 

In the prospective China Kadoorie Biobank, we constructed a genetic score using three variants at the PCSK9 locus asso-
ciated with directly measured LDL-C [PCSK9 genetic score (PCSK9-GS)]. Logistic regression gave estimated odds ratios 
(ORs) for PCSK9-GS associations with CVD and non-CVD outcomes, scaled to 1 SD lower LDL-C. PCSK9-GS was asso-
ciated with lower risks of carotid plaque [n = 8340 cases; OR = 0.61 (95% confidence interval: 0.45–0.83); P = 0.0015], 
major occlusive vascular events [n = 15 752; 0.80 (0.67–0.95); P = 0.011], and ischaemic stroke [n = 11 467; 0.80 
(0.66–0.98); P = 0.029]. However, PCSK9-GS was also associated with higher risk of hospitalization with chronic obstructive 
pulmonary disease [COPD: n = 6836; 1.38 (1.08–1.76); P = 0.0089] and with even higher risk of fatal exacerbations amongst 
individuals with pre-existing COPD [n = 730; 3.61 (1.71–7.60); P = 7.3 × 10−4]. We also replicated associations for a PCSK9 
variant, reported in UK Biobank, with increased risks of acute upper respiratory tract infection (URTI) [pooled OR after 
meta-analysis of 1.87 (1.38–2.54); P = 5.4 × 10−5] and self-reported asthma [pooled OR of 1.17 (1.04–1.30); P = 0.0071]. 
There was no association of a polygenic LDL-C score with COPD hospitalization, COPD exacerbation, or URTI.  

Conclusion The LDL-C-lowering PCSK9 genetic variants are associated with lower risk of subclinical and clinical atherosclerotic vascular 
disease but higher risks of respiratory diseases. Pharmacovigilance studies may be required to monitor patients treated with 
therapeutic PCSK9 inhibitors for exacerbations of respiratory diseases or respiratory tract infections.  

Lay summary Genetic analyses of over 100 000 participants of the China Kadoorie Biobank, mimicking the effect of new drugs intended to 
reduce cholesterol by targeting the PCSK9 protein, have identified potential severe effects of lower PCSK9 activity in pa-
tients with existing respiratory disease.  

* Corresponding authors. Tel: +44 1865 743977, Email: robin.walters@ndph.ox.ac.uk (R.G.W.); Tel: +44 1865 743839, Email: zhengming.chen@ndph.ox.ac.uk (Z.C.) 
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‡ The last three authors are joint senior authors. 
© The Author(s) 2024. Published by Oxford University Press on behalf of the European Society of Cardiology. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, 
distribution, and reproduction in any medium, provided the original work is properly cited.  
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• PCSK9 genetic variants that are associated with lower cholesterol and reduced rates of cardiovascular disease are also 
associated with increased risk of a range of respiratory diseases, including asthma, upper respiratory tract infections, 
and hospitalization with chronic obstructive pulmonary disease (COPD).  

• These genetic variants are not associated with whether or not individuals have COPD; instead, they are specifically as-
sociated with an increase in the chance of those who already have COPD being hospitalized and even dying, suggesting 
that careful monitoring of such patients should be considered during development of and treatment with anti-PCSK9 
medication.    

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
Keywords PCSK9 inhibition • Upper respiratory tract infection • Chronic obstructive pulmonary disease • Exacerbation • 

Mendelian randomization • Target-mediated adverse effects  

Introduction 
Lowering of low-density lipoprotein cholesterol (LDL-C) is an estab-
lished, efficacious approach for treatment and prevention of occlusive 
cardiovascular disease (CVD).1 Whilst statins represent the main class 
of LDL-C lowering drug used in routine clinical practice, new drugs tar-
geting different components of LDL-C metabolism have gained clinical 
traction, including inhibition of Niemann-Pick C1-Like 1 (i.e. ezetimibe2) 
and of proprotein convertase subtilisin kinase 9 (PCSK9).3,4 

Compared with statins, PCSK9 inhibitors (e.g. evolocumab and incli-
siran) are relatively new, with much less comprehensive long-term data 
concerning their benefits and potential side-effects. Two large rando-
mized trials have reported that inhibition of PCSK9 over a period of 
around 2–3 years significantly reduced the risk of major CVD events 
in high-risk patients with prior history of vascular disease.3,4 

Moreover, these trials have demonstrated a reduction in atheroma vol-
ume5 and that the reduction in CVD events was proportional to the 
reduction in LDL-C achieved.6 However, there was suggestive evidence 
of excess risk of diabetes associated with PCSK9 inhibition.7 As with 
statins,8 confirmation (or refutation) of any excess risk of diabetes 
will likely require meta-analysis of multiple large trials with patients trea-
ted and followed up for longer durations. Little is known about the po-
tential long-term effects in the general population of PCSK9 inhibition 
on a wide range of other major disease outcomes, although open-label 
extension studies of trials of both evolocumab and inclisiran have iden-
tified very low rates of adverse events.9,10 

Human genetics can be used to predict the likely effects of therapeutic 
modification of a drug target on disease outcomes.11–13 Several well- 
established examples have either predicted or recapitulated findings 
from randomized clinical trials of lipid lowering (such as 3-Hydroxy-3- 
Methylglutaryl-CoA Reductase14 and Cholesteryl ester transfer protein 
(CETP)15 inhibitors) and other therapies (including inhibitors of interleu-
kin 6 receptor,16,17 secretory phospholipase A2-IIA,18 and lipoprotein- 
associated phospholipase A219,20). This approach has provided evidence 
corroborating findings from randomized clinical trials that PCSK9 inhib-
ition leads to reduced LDL-C,21 with a corresponding reduction in risk 
of CVD.22,23 Similarly, genetic studies provide strong evidence that, as 
with statins, LDL-C lowering by PCSK9 inhibition may increase the 
risk of diabetes.22,24–26 In addition to diabetes, analyses in UK Biobank 
(UKB) of a functional variant of PCSK9 (rs11591147) suggested possible 
excess risks of several non-vascular disease outcomes, including asthma 
and respiratory tract infections,24,27 although these associations were 
only nominally significant and require replication. 

In this study, we sought to further investigate the potential impact of 
therapeutic PCSK9 inhibition. In approximately 100 000 genotyped in-
dividuals from the prospective China Kadoorie Biobank (CKB), we as-
sessed the associations of a PCSK9 genetic score (PCSK9-GS) with lipids, 
lipoproteins, and a range of vascular and non-vascular disease out-
comes, including (where available) those previously reported in UKB. 
Where applicable, we further undertook meta-analyses of CKB and 
UKB data for respiratory disease and other relevant disease outcomes. 

Methods 
Study design and population 
The overall study design is illustrated in Supplementary material online, 
Figure S1. The CKB is a prospective cohort study of 512 713 adults aged 
30–79 years, recruited between 2004 and 2008 from five urban and five 
rural areas across China.28 In brief, baseline information was collected via 
a laptop-based questionnaire (including demographic and lifestyle factors 
and medical history) and physical measurements (including anthropometry, 
blood pressure, and lung function). Duplicate lung function measurements 
were conducted using a portable handheld ‘Micro spirometer’ (Micro 
Medical Limited, Rochester, Kent, UK), as previously described,29 from 
which forced expiratory volume in 1 s (FEV1) and forced vital capacity 
(FVC) were derived; the distributions of values for FEV1/FVC, with large 
numbers of individuals with values of 1, indicated systematic errors in 
data collection in two recruitment regions (Qingdao and Haikou; see  
Supplementary material online, Figure S2), so participants in these regions 
were excluded from analyses requiring spirometry data. A non-fasting 
blood sample was collected (with time since last meal recorded) and sepa-
rated into plasma and buffy-coat fractions for long-term storage. Resurveys 
of random 5% subsets of the cohort were conducted at periodic intervals, 
and the second resurvey in 2013–14 included measurements of carotid 
intima-media thickness (CIMT) and plaque.30 

Incident disease outcomes up to 1 January 2017 were identified from 
long-term follow-up through electronic linkage of each participant’s unique 
national identification number to the Chinese national health insurance sys-
tem and to established regional registries for death and major diseases (can-
cer, ischaemic heart disease, stroke, and diabetes). Health insurance records 
included detailed information about each hospital admission [e.g. disease 
description, International Statistical Classification of Diseases and Related 
Health Problems, 10th Revision (ICD-10) code, and procedure or examin-
ation codes]. All reported cases of disease outcomes from different sources 
were centrally checked, reviewed, and standardized by clinicians. 

Biomarker assays 
Plasma concentrations of total cholesterol, LDL-C, high-density lipoprotein 
cholesterol (HDL-C), triglycerides, apolipoprotein B (ApoB), and apolipo-
protein A-I from baseline samples were quantified in 18 181 CKB partici-
pants (17 687 with genotyping data) using clinical chemistry assays at the 
Wolfson Laboratory [AU 680 clinical chemistry analysers, Beckman 
Coulter (UK) Ltd, Wycombe, UK) using manufacturers’ reagents, calibra-
tors, and settings.31 In a subset of 4442 individuals, a high-throughput tar-
geted 1H-NMR metabolomic platform32,33 was used to generate spectra 
from which 225 lipid and other metabolic measures were simultaneously 
quantified by Nightingale Health Ltd (Helsinki, Finland; previously known 
as Brainshake Ltd). 

Genome-wide association studies genotyping 
Genome-wide genotyping data were available for a subset of 100 706 CKB 
participants, comprising ∼30 000 participants selected for nested case- 
control studies of CVD and respiratory disease and ∼70 000 being random-
ly selected from the remaining participants.34 Region-specific principal 
component analysis identified 6107 individuals with ancestry not local to 
the region in which they were recruited (of whom 774 had clinical  
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biochemistry measurements), who were excluded from region-stratified 
analyses. To avoid biases due to over-representation of disease cases in 
the genotyped data set, we constructed a subset of 70 914 individuals rep-
resentative of the full CKB cohort in which such over-representation was 
eliminated; this was a preliminary version of the population-representative 
sample described elsewhere.34 

Instrument selection and derivation of 
weighted PCSK9 locus score 
In the 17 687 samples with both genotyping and LDL-C data, LDL-C was 
regressed on age, age-squared, sex, study area, fasting time, and fasting 
time-squared. The residuals were rank inverse-normal transformed 
(RINT) and genome-wide association analysis of the transformed variable 
was conducted using BOLT-LMM v2.3.2.35 Summary statistics for variants 
within a 1 Mbp window around the PCSK9 structural gene were evaluated 
using FINEMAP v1.1,36 identifying the model with the highest posterior 
probability of explaining association at the locus with LDL-C, comprising 
a set of three single-nucleotide polymorphisms (SNPs; rs151193009, 
rs2495477, and rs11206517: log10 Bayes Factor = 47.6). These were used 
to construct a weighted genetic score, PCSK9-GS, with SNP weights corre-
sponding to the beta coefficients for the association of the SNPs with RINT 
LDL-C. To account for linkage disequilibrium between the SNPs, the per- 
allele beta coefficients were derived from a region-stratified, multivariable 
(mutually adjusted) model including dosages for the three SNPs, age, 
age-squared, sex, study area, fasting time, fasting time-squared, and 
region-specific principal components, with exclusion of 774 individuals 
with non-local ancestry (see Supplementary material online, Table S1), 
which were applied to individuals without LDL-C data. The association of 
these SNPs with LDL-C was validated by performing lookups in summary 
statistics for East Asian populations from the Global Lipids Genetics 
Consortium (GLGC)37 (see Supplementary material online, Table S2). To 
avoid potential bias from using internally derived weights and to provide in-
ternal cross-validation of the association of PCSK9-GS with LDL-C, beta 
coefficients for participants with LDL-C data were derived using 100-fold 
block jackknifing, from regressions that excluded random 1% subsets of par-
ticipants to whom those beta coefficients were assigned.38 For each individ-
ual with genotyping data, the sum of SNP dosages, weighted by their 
corresponding beta coefficients, gave a PCSK9 gene score calibrated to 
the predicted effect on LDL-C. 

Derivation of weighted low-density 
lipoprotein cholesterol genetic score 
An LDL-C genetic risk score was derived using SNPs that were previously 
identified as independently associated with LDL-C (at P < 5 × 10−8) in 
genome-wide association studies (GWAS) of Europeans in the GLGC.39 

Of 76 independent association signals, two SNPs were monomorphic in 
CKB; 64 of the remaining 74 SNPs showed an association with LDL-C in 
CKB that was consistent with that in GLGC (i.e. directionally consistent 
or no significant effect size heterogeneity at P < 0.05/74). These 64 SNPs 
were used to construct an LDL-C GS in CKB (further described in the  
Supplementary Methods and Supplementary material online, Table S3), al-
lowing a comparison of disease associations arising from LDL-C lowering 
by PCSK9 variants with those from LDL-C lowering overall. This LDL-C 
score did not include variants at the PCSK9 locus. 

Disease endpoints 
The detailed vascular and non-vascular disease outcomes used in the pre-
sent study and their corresponding ICD-10 codes are provided in  
Supplementary material online, Table S4. Vascular disease outcomes in-
cluded major coronary events (MCEs: non-fatal myocardial infarction, fatal 
ischaemic heart disease, or coronary revascularization); fatal/nonfatal is-
chaemic stroke; fatal/nonfatal intracerebral haemorrhage; major occlusive 
vascular events (MOVEs: consisting of fatal/nonfatal MCEs or ischaemic 
stroke); fatal occlusive vascular events (FOVEs); fatal CVD; and major vas-
cular events (MVEs: fatal/nonfatal myocardial infarction, coronary revascu-
larization procedures, stroke, or fatal CVD). These analyses used a common 
set of controls that excluded all individuals who self-reported prior coron-
ary heart disease (CHD), stroke, or transient ischaemic attack at baseline or 
who experienced any form of MVE during the follow-up period. 

The main non-vascular outcomes were as previously used for a drug target 
Mendelian randomization study of CETP.15 These were organized by anatom-
ical site and consisted of combined incident, self-reported, and screen-detected 
cases of diabetes; incident events of each of chronic obstructive pulmonary dis-
ease (COPD); chronic kidney disease; chronic liver disease; eye disease; malig-
nancy; and non-vascular mortality (see Supplementary material online, 
Table S4). Controls for these diseases excluded individuals with self-reported 
history of that disease at baseline (where available). Phenome-wide analysis 
was conducted in the population subset using incident disease outcomes in 
the ICD-10 code range A00 to N99 grouped together (defined in  
Supplementary material online, Table S5), with no exclusions for prevalent dis-
ease for either cases or controls. 

To dissect the principal incident COPD outcomes, which comprised a 
mixture of incident and recurrent disease, we defined prevalent COPD cases 
at baseline as being those with FEV1/FVC less than the lower limit of normal 
as predicted from the Global Lung Function 2012 spirometry reference 
equations40 according to participants’ ancestry, age, height, and sex (see  
Supplementary material online, Figure S3). Alternatively, we defined preva-
lent COPD cases as those with FEV1/FVC < 0.7. Amongst those with 
spirometry-defined prevalent COPD at baseline (where available), we fur-
ther defined those experiencing one or more incident COPD outcomes 
as exacerbations of COPD. Moreover, we further analysed COPD out-
comes according to disease severity, according to whether incident 
COPD cases or cases of COPD exacerbation were fatal (COPD identified 
as the cause of death) or non-fatal. These analyses excluded all participants in 
the two recruitment regions with systematic errors in spirometry data col-
lection. Analyses of upper respiratory tract infections (URTIs) excluded 
cases occurring before 2009, to avoid biases due to a spike in reported cases 
(>10% of all CKB cases across all years) in Zhejiang in 2007–08. 

Statistical analysis 
For assessment of the association of the PCSK9-GS with potential confoun-
ders, the population-representative subset was divided into four score cat-
egories defined by empirically determined thresholds of 1.33, 1.43, and 1.53 
(see Supplementary material online, Figure S4). Differences between cat-
egories were tested by analysis of variance using the R aov() function. 

For continuous variables measured in the CVD nested case-control sub-
set, such as blood biochemistry and NMR metabolomics, data transform-
ation and analyses were stratified by recruitment region: following linear 
regression of each variable on age, age-squared, sex, case ascertainment cat-
egory, and up to nine region-specific genetic principal components, the re-
siduals underwent stratum-specific RINT. For CIMT, which was measured 
at the second resurvey in a randomly selected subset of surviving partici-
pants, adjustments and data transformation were as above except without 
adjustment for case ascertainment. Associations of the weighted PCSK9-GS 
with these continuous traits were assessed by linear regression within each 
region with inverse-variance-weighted fixed-effect (IVW-FE) meta-analysis 
of the resulting estimates. Associations of PCSK9 SNPs with spirometry 
were extracted from previous GWAS in CKB of FEV1/FVC41 with 
IVW-FE meta-analysis of the resulting estimates. LDL-C variance explained 
and F-statistics for the PCSK9 and LDL-C genetic scores were determined 
by analysis of variance to compare the fit of linear models including or 
excluding the scores, using the R anova() function. 

Disease outcome associations with PCSK9-GS were assessed by logistic 
regression within each region with adjustment for sex, age, age-squared, 
and up to nine region-specific genetic principal components, and estimates 
were combined using IVW-FE meta-analysis. For all disease outcomes, cases 
and controls were selected from the population-representative subset of 
70 914 genotyped individuals, plus additional cases identified amongst the 
remaining genotyped individuals. However, to avoid potential ascertain-
ment bias, additional cases were excluded from the analysis if they were se-
lected for genotyping on the basis of a different disease outcome that might 
separately be associated with altered PCSK9 expression (see Supplementary 
material online, Table S6). 

For confirmation of the therapeutic effects of inhibition of PCSK9 in re-
ducing the risk of CVD outcomes,3,4 we assessed a combination of simple 
and composite outcomes, with a Bonferroni-adjusted threshold of signifi-
cance (P < 0.05/3 = 0.0167) based on three independent tests (determined 
by spectral decomposition of the correlation matrix for these related end-
points42). Similarly, we used a Bonferroni-adjusted threshold of significance 
[P < 0.05/(7 + 3 prior tests) = 0.005] for non-vascular disease associations  
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(type 2 diabetes, COPD, chronic kidney disease, chronic liver disease, ma-
lignant neoplasms, eye disease, and non-vascular mortality) and also for the 
phenome-wide scan [P < 0.05/(41 + 10 prior tests) = 9.8 × 10−4]. For sensi-
tivity analyses of subgroups, analyses were performed in the full data set 
with additional adjustment for recruitment region. 

For disease outcomes previously reported as nominally associated with a 
functional PCSK9 variant in a recent study of UKB participants by Rao et al.,24 

associations of PCSK9-GS with seven (out of 12) diseases that were available 
in CKB were investigated as follows. We used identical case/control defini-
tions (or the closest possible match), based on ICD-10 codes or responses 
to the baseline questionnaire (see Supplementary material online, Table S7); 
for cerebrovascular disease, the analysis was limited strictly to the 
population-representative subset—this was to minimize the risk of bias 
due to over- or under-representation of particular disease subtypes, since 
the case-control part of the genotyped data set is not representative of 
the full spectrum of cerebrovascular disease. Replication of these prior asso-
ciations and tests for heterogeneity using Cochran’s Q-statistic were each as-
sessed with a Bonferroni-adjusted significance threshold (P < 0.05/7). 

In order to compare effect estimates, these were scaled to the same dif-
ference in LDL-C (1 SD lower) as follows: the UKB study by Rao et al.24 

(and Nelson et al.27) used a missense variant in PCSK9 (rs11591147) to 
quantify the associations with risk of diseases. We took the per-allele 
rs11591147 LDL-C estimate from the GLGC43 (per-allele beta coefficient: 
0.497 SD) and scaled the disease association estimates reported by Rao 
et al.24 so that they were equivalent to 1 SD lower LDL-C, as used for 
the CKB effect estimates. The scaled estimates derived from UKB and 
CKB were combined in IVW-FE meta-analyses, and Cochran’s Q-statistic 
was used to assess heterogeneity. 

All analyses used release version 15 of the CKB database and were per-
formed using SAS software (version 9.3; SAS Institute, Inc) or R v4.2.1. 

Results 
Participant characteristics 
In the population-representative subset of 70 914 genotyped partici-
pants, the mean age at the study baseline was 52.1 (SD 10.7), 59.7% 
were female, and 45.8% were from urban regions. Stratifying individuals 
into four groups according to their PCSK9-GS values, no appreciable dif-
ferences between these groups were observed at baseline for a wide 
range of CVD risk factors (Table 1), including height, adiposity, blood 
pressure, physical activity, alcohol drinking, and smoking. Similar pro-
portions of the two groups had prior diagnoses of CVD, hypertension, 
or diabetes or were taking statins. Of the risk factors assessed, only 
LDL-C exhibited a significant difference across the PCSK9-GS categor-
ies after adjustment for multiple testing. 

Characterization of the PCSK9 genetic 
score 
In 17 687 participants with both genotyping and LDL-C data, three 
SNPs in/around PCSK9 (rs151193009, rs2495477, and rs11206517) 
were independently associated with LDL-C at genome-wide signifi-
cance (P < 5 × 10−8) in a multivariable model, with per-allele effects 
on LDL-C of 0.65 SD (SE = 0.05), 0.10 SD (SE = 0.01), and 0.16 SD 
(SE = 0.03), respectively (see Supplementary material online, 
Table S1). The SNP with the strongest effect, rs151193009C > T, is a 
known loss-of-function variant that disrupts the binding of the 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Baseline characteristics of the population-representative subset of genotyped China Kadoorie Biobank 
participants, divided into four categories according to their PCSK9 genetic score 

PCSK9-GS range <1.33 1.33 to <1.43 1.43 to <1.53 ≥1.53 P 
Characteristic (n = 4557) (n = 20 274) (n = 39 786) (n = 6297)  

PCSK9-GS, mean (SD)  1.11 (0.24) 1.40 (0.01) 1.49 (0.02)  1.57 (0.03) — 

LDL-C (mmol/L), mean (SD)a  2.13 (0.65) 2.32 (0.65) 2.39 (0.71)  2.39 (0.72)  1.6 × 10−8 

Age (years), mean (SD)  52.2 (10.8) 52.0 (10.7) 52.2 (10.7)  52.3 (10.8)  0.23 
Female, %  59.9 59.9 59.9  58.0  0.03 

Urban region, %  45.3 45.6 46.1  45.1  0.26 

Height (cm), mean (SD)  159.1 (8.2) 158.8 (8.3) 158.7 (8.3)  158.9 (8.4)  0.03 
BMI (kg/m2), mean (SD)  23.9 (3.5) 23.8 (3.4) 23.8 (3.4)  23.9 (3.5)  0.03 

Waist/hip ratio, mean (SD)  0.88 (0.07) 0.88 (0.07) 0.88 (0.07)  0.88 (0.07)  0.02 

SBP (mmHg), mean (SD)  131.7 (21.4) 131.3 (21.3) 131.5 (21.5)  131.9 (21.1)  0.14 
DBP (mmHg), mean (SD)  78.3 (11.2) 77.9 (11.2) 78.0 (11.3)  78.2 (11.1)  0.09 

Physical activity (MET h/d), mean (SD)  20.5 (14.1) 20.8 (14.0) 20.5 (14.0)  20.7 (14.1)  0.10 

High school or higher education, %  21.3 20.6 21.4  20.0  0.02 
Household income ≥20 000 yuan, %  39.6 40.5 40.0  39.8  0.60 

Current regular alcohol drinking, %  15.8 15.3 15.4  16.2  0.31 

Current regular smoker, %  25.0 26.0 25.7  27.1  0.06 
Stroke/TIA,a %  1.6 1.7 1.7  1.2  0.04 

Coronary heart disease,b %  3.7 3.4 3.7  3.5  0.42 

Hypertension, %  12.6 11.4 11.6  11.3  0.14 
Diabetes,c %  6.1 5.9 6.2  6.2  0.65 

Taking statins, %  1.8 1.6 1.9  2.4  0.50 

BMI, body mass index; DBP, diastolic blood pressure; LDL-C, low-density lipoprotein cholesterol; MET, metabolic equivalent of task; PCSK9-GS, PCSK9 genetic score; SBP, systolic blood 
pressure; TIA, transient ischaemic attack. 
aResults for 4181 members of the population-representative subset with LDL-C measurements. 
bSelf-reported physician diagnosed. 
cSelf-reported physician diagnosed or screen-detected at baseline.   
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PCSK9 protein prodomain to heparan sulfate proteoglycans (HSPGs), 
an essential step in PCSK9-mediated degradation of LDL receptors 
(LDLRs).44 When combined into the weighted PCSK9-GS, in 100-fold 
cross-validation analyses, the three SNPs explained 1.2% of the variance 
of LDL-C (F-statistic = 206) and showed a consistent association with 
LDL-C between women and men, and across geographical regions, 
age groups, and smoking or alcohol behaviour categories (see  
Supplementary material online, Figure S5). Scaled to a 1 SD lowering 
of LDL-C (equivalent to 27.4 mg/dL), PCSK9-GS was associated with 
lower concentrations of ApoB [−0.95 SDs, (95% confidence interval: 
−1.08 to −0.82); P = 6.7 × 10−46] and, more weakly, a lowering of 
Lp(a) [−0.14 (−0.27 to −0.01); P = 0.038]. No significant associations 
were detected with triglycerides [−0.01 (−0.14 to 0.12); P = 0.87] or 
HDL-C [−0.10 (−0.23 to 0.03); P = 0.13] (Figure 1). Using detailed mea-
sures of lipoproteins and lipids quantified by NMR spectroscopy, we 
identified associations of PCSK9-GS with lower concentrations of chol-
esterol amongst the smaller subclasses of very low-density lipoproteins 
and across intermediate- and low-density lipoprotein subclasses (see  
Supplementary material online, Figure S6). After accounting for mul-
tiple testing, there was no significant association with inflammation bio-
markers including glycoprotein acetyls, C-reactive protein, or 
fibrinogen, nor were associations identified with other non-lipid blood 
biochemistry measures (see Supplementary material online, Figures S6 
and S7). 

Association of PCSK9 with subclinical and 
clinical vascular outcomes 
As expected, PCSK9-GS was associated with clinical CVD outcomes. 
Scaled to 1 SD lower LDL-C, there was reduced risk of MOVE that 
was significant after adjustment for multiple testing [n = 15 752; odds 
ratio (OR) = 0.80 (0.67–0.95); P = 0.011] and nominally significant re-
duced risk of ischaemic stroke [n = 11 467; 0.80 (0.66–0.98); P =  

0.029]; for MCE, MVE, FOVE, and fatal CVD, the associations were 

directionally consistent but not statistically significant (Figure 2A). In 
addition, the score was associated with lower CIMT [n = 20 896; 
−0.24 SDs (−0.36 to −0.12); P = 0.00012] and 39% lower odds of ca-
rotid plaque [n = 8340 cases; 0.61 (0.45–0.83); P = 0.0015] (see  
Supplementary material online, Table S8). Conversely, no association 
of PCSK9-GS was observed with the risk of intracerebral haemorrhage 
[n = 5906; 1.04 (0.81–1.34); P = 0.74]. 

This pattern of associations with risk of vascular disease was very 
similar to that obtained when using a genetic score for LDL-C 
(Figure 2B) constructed with 64 SNPs from across the genome but 
which did not include SNPs at the PCSK9 locus (variance explained =  

5.6%, F-statistic = 1002; Supplementary material online, Table S3). For 
example, using the LDL-C genetic score, 1 SD lower LDL-C was asso-
ciated with a lower risk of MCE [0.74 (0.66–0.84); P = 1.5 × 10−6] and 
ischaemic stroke [0.90 (0.83–0.98); P = 0.015] but not intracerebral 
haemorrhage [1.02 (0.91–1.14); P = 0.73]. 

Association of genetic scores with major 
non-vascular outcomes 
We further assessed the associations of the PCSK9 and LDL-C genetic 
scores with major non-vascular outcomes. No associations were iden-
tified for PCSK9-GS with diabetes, chronic kidney diseases, eye diseases, 
malignant neoplasms, or non-vascular mortality (Figure 2A). There was a 
nominally significant positive association of lower LDL-C with risk of li-
ver disease [2.10 (1.17–3.79); P = 0.013] and a strongly suggestive posi-
tive association with risk of incident COPD [1.38 (1.08–1.76); P = 8.9 ×  
10−3], although these were not significant after accounting for multiple 
testing. The LDL-C genetic score showed no association with any of 
these outcomes (Figure 2B). The association of PCSK9-GS was also in-
vestigated for a wide range of other disease outcomes available in 
CKB using a phenome-wide approach (see Supplementary material 
online, Figure S8), with no association meeting the pre-specified signifi-
cance threshold. 

Figure 1 Associations of PCSK9 genetic score with major blood lipids and apolipoproteins. Estimates are standardized beta coefficients from linear 
regressions of the weighted PCSK9 genetic score, scaled to a 1 SD lowering of low-density lipoprotein cholesterol, calculated as an 
inverse-variance-weighted average of region-specific estimates with adjustment for age, age-squared, sex, ascertainment, and region-specific principal 
components. CI, confidence interval; HDL, high-density lipoprotein; LDL, low-density lipoprotein.   
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Replication of reported PCSK9 associations 
For seven traits previously reported as being nominally associated with 
a missense PCSK9 variant (rs11591147) in UKB,24 we tested association 
with PCSK9-GS in CKB (Figure 3). Scaled to a 1 SD lowering of LDL-C, 
association in CKB of PCSK9-GS with a higher risk of URTI [n = 1095 
cases; 2.18 (1.34–3.35); P = 1.6 × 10−3] was significant after adjustment 
for multiple testing and was consistent with the association observed in 
UKB [n = 2364 cases; 1.70 (1.15–2.51)], providing an estimate after 
meta-analysis of 1.87 [(1.38–2.54); P = 5.4 × 10−5]. A nominally signifi-
cant association was also identified for self-reported doctor-diagnosed 
asthma [n = 427 cases; 2.28 (1.12–4.64); P = 0.02], again consistent 
with the association reported in UKB [n = 39 269 cases; 1.15 (1.02– 
1.28)], with an estimate after meta-analysis of OR = 1.17 [(1.04– 
1.30); P = 0.007]. Although low case numbers limited power for repli-
cation in CKB, effect size estimates were consistent with those from 
UKB for the other disease outcomes, with the exception of breast can-
cer (P-het = 0.005). 

Association of PCSK9 genetic score with 
further respiratory endpoints 
The association of PCSK9-GS with multiple respiratory-related diseases, 
in both UKB and CKB, was further investigated in related outcomes in 
CKB (Figure 4). The primary incident COPD outcome, reflecting either 
death or hospital admission due to COPD, was consistently observed 
across fatal [n = 1632; 1.47 (0.93–2.34); P = 0.098] or non-fatal [n =  

5204; 1.38 (1.05–1.80), P = 0.019] events. However, there was no as-
sociation of the genetic score with prevalent COPD, as defined by spir-
ometry measurements at baseline compared with a population 
reference [n = 5105; 0.96 (0.73–1.26); P = 0.75], nor were these 
SNPs associated with baseline FEV1/FVC as a continuous measure 
(see Supplementary material online, Table S9). By contrast, the associ-
ation with higher risk of an incident COPD event was stronger in those 
with pre-existing COPD [2212 exacerbations amongst 6.409 indivi-
duals with spirometry-defined COPD; 1.91 (1.12–3.24); P = 0.017]. 
The increased risk was most clearly observed in those for whom the 
COPD exacerbation was fatal [730 deaths due to acute exacerbations 
of COPD: 3.61 (1.71–7.60); P = 7.1 × 10−4], although this was not 

significantly different from the risk of a non-fatal exacerbation [1482 
non-fatal exacerbations: 1.58 (0.86–2.91); P = 0.14; P-het = 0.24]. 
Similar results were obtained when defining prevalent COPD as 
FEV1/FVC < 0.7 (see Supplementary material online, Figure S9), al-
though with wider confidence intervals due to fewer prevalent 
COPD cases by this definition. The association of PCSK9-GS with 
URTI persisted after excluding individuals with spirometry-defined 
COPD and no differences were found across geographical regions, 
age groups, sex, smoking status, and alcohol consumption (see  
Supplementary material online, Figure S10). 

The association with risk of COPD exacerbation in CKB was not re-
plicated in UKB using a different functional PCSK9 variant (see  
Supplementary material online, Table S10), although power was limited 
due to a much smaller number of recorded cases (468 in UKB vs. 2212 
cases in CKB). After meta-analysis, the pooled OR was 1.45 [(0.91– 
2.32); P = 0.12] but with significant heterogeneity between the two es-
timates (P-het = 0.032). 

By contrast with PCSK9-GS, the LDL-C GS shows no association 
with any of these respiratory disease outcomes (Figure 4). When scaled 
to the same predicted difference in LDL-C, there was significant het-
erogeneity between associations with PCSK9-GS and LDL-C GS for 
both URTI [PCSK9: 2.18 (1.34–3.53); LDL-C GS: 1.11 (0.88–1.38); 
P-het = 0.013] and fatal COPD exacerbations [PCSK9: 3.61 (1.71– 
7.60); LDL-C GS: 0.92 (0.75–1.19); P-het = 0.0012]. 

Discussion 
We used genetic variants, including a loss-of-function variant, to mimic 
the pharmacological inhibition of PCSK9 to gain insight into expected 
therapeutic effects on a broad range of disease outcomes in a 
Chinese population. As expected, genetic inhibition of PCSK9 was as-
sociated with lower levels of LDL-C and ApoB, less subclinical athero-
sclerosis, lower risk of MOVE, including ischaemic stroke, and 
directionally concordant effects on risk of FOVE and MCE. Whilst these 
associations are confirmatory of previously reported results in 
European ancestry populations, as the relationship of PCSK9 inhibition 
with risk of vascular disease is well documented from large-scale cardio-
vascular outcome trials3,4 and other genetic studies,22,24,45,46 they 

Figure 2 Associations of genetic scores for (A) PCSK9 and (B) low-density lipoprotein cholesterol with risk of vascular and non-vascular disease end-
points. Odds ratios are estimated using logistic regression of the weighted PCSK9 and low-density lipoprotein cholesterol genetic scores, each scaled to 
the effect corresponding to a predicted 1 SD lowering of low-density lipoprotein cholesterol, calculated as the inverse-variance-weighted mean of 
region-specific estimates with adjustment for age, age-squared, sex, ascertainment, and region-specific principal components. CI, confidence interval; 
COPD, chronic obstructive pulmonary disease; LDL-C, low-density lipoprotein cholesterol; OR, odds ratio.   
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demonstrate that PCSK9 inhibition is likely also to be effective for the 
treatment of CVD in East Asian populations, in whom mean LDL-C le-
vels are lower than in Western populations. Conversely, the present 
study also indicated that PCSK9 inhibition is potentially associated 
with higher risks of URTI, acute exacerbation of COPD, and asthma. 

Mendelian randomization studies in Europeans have shown that a 1 
SD reduction in LDL-C (equivalent to ∼1 mmol/L) leads to a reduction 
in risk of CHD of approximately 40%.47 This compares to a more mo-
dest association in CKB for a comparable outcome of around 25% per 1 
SD lower LDL-C, although this is at least partly attributable to a smaller 
SD for LDL-C in CKB (0.69 mmol/L) than in European populations. 
When scaled to the same mmol/L reduction in LDL-C as in 
Europeans, the reduction in risk in CKB is 34%, which suggests consist-
ency of effect across ancestral groups once appropriate comparisons 
are made.1 A pre-specified secondary analysis of the FOURIER trial 
identified that treatment with a PCSK9 inhibitor led to a monotonic re-
lationship between LDL-C lowering and risk of vascular events.6 

Similarly, the GLAGOV trial illustrated a dose–response relationship 
between LDL-C lowering and volume of atherosclerosis.5 Thus, al-
though the population studied here had much lower LDL-C levels at 
baseline as compared with European studies [e.g. 2.35 (0.69 SD) 
mmol/L CKB vs. 3.57 (0.87) UKB47], triangulation of our genetic find-
ings with studies in Europeans and randomized controlled trials of 
LDL-C-lowering therapies, including PCSK9 inhibitors, supports the 
clinical efficacy of PCSK9 inhibition on vascular disease outcomes in 

patients of East Asian ancestry with already-low LDL-C. Thus, in 
high-risk individuals, it may be beneficial to adopt intensive therapy 
(e.g. adding a PCSK9 inhibitor to statin) so as to reduce LDL-C below 
the normal target range. 

In addition to confirming the expected associations with various 
forms of occlusive CVD, we further identified that PCSK9-GS, orien-
tated to a lowering of LDL-C, was associated with a higher risk of 
URTI, acute exacerbations of COPD, and self-reported asthma. For 
URTI and asthma, our study findings replicate nominally significant find-
ings in a previous phenome scan of another functional variant in PCSK9 
conducted within the UKB.24,27 In addition to these three respiratory 
disease outcomes, meta-analysis of our results with those from UKB 
strengthened the evidence for an association of PCSK9 genetic variants 
with mood disorders and with non-deforming dorsopathies (diseases 
of the spine). Previous studies have identified an association of PCSK9 
with severe forms of dorsopathy,48 which we were unable to investi-
gate in CKB, a population-based study of middle-aged adults. 

The findings of the present study linking PCSK9 inhibition with lung 
infections have biological plausibility. The mechanism by which PCSK9 
influences LDL-C is by mediating lysosomal degradation of LDLR, so 
that inhibition of PCSK9 leads to higher levels of LDLR in the liver49 

and a concomitant reduction in blood LDL-C levels. However, 
PCSK9 binds to and mediates degradation of not only LDLR but also 
very low-density lipoprotein receptors (VLDLRs).50,51 PCSK9, LDLR, 
and VLDLR are each also expressed in the lung,52 where VLDLR and 

Figure 3 Replication in China Kadoorie Biobank of previously reported associations in UK Biobank of PCSK9 genetic scores with disease outcomes. 
Estimates in UK Biobank (open boxes) originate from data published by Rao et al.24 and are scaled to a corresponding 1 SD lowering of low-density 
lipoprotein cholesterol. Odds ratios in China Kadoorie Biobank (filled boxes) are estimated using logistic regression of the weighted PCSK9 genetic 
score, scaled to a 1 SD lowering of low-density lipoprotein cholesterol, calculated as an inverse-variance-weighted average of region-specific estimates 
with adjustment for age, age-squared, sex, ascertainment, and region-specific principal components. Trans-ancestry estimates (diamonds) are derived 
from inverse-variance-weighted fixed-effect meta-analysis. CI, confidence interval; CKB, China Kadoorie Biobank; OR, odds ratio.   
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LDLR are involved in the initiation of infection by several classes of re-
spiratory viruses (e.g. human rhinovirus and some types of corona-
virus), which bind to VLDLR and LDLR on the cell surface, and 
are internalized via receptor-mediated endocytosis.53,54 Inhibition of 
LDLR in cultured human tracheal epithelial cells lowers the infectivity 
of human rhinovirus.55 Thus, it is possible that the relationship of gen-
etic variants mimicking therapeutic inhibition of PCSK9 with a higher 
risk of URTI (which can underlie acute exacerbations of COPD56 and 
worsen asthma symptoms57) may arise from elevated levels of 
VLDLR or LDLR in lung tissue. Since the proposed mechanism is via 
higher susceptibility to respiratory viruses, leading to an increase in ex-
acerbations of COPD (which are often infectious in nature), we would 

not expect an association with prevalent COPD, as observed—the 
pathophysiology of COPD development is itself separate, a potential 
example of disease incidence vs. progression being related to discrete 
aetiological pathways. 

A review article in 2013 suggested that dual PCSK9 and statin ther-
apy might amplify potential safety issues, including those related to re-
spiratory infections, given that both act to increase levels of LDLR and 
VLDLR.58 What is unclear is whether PCSK9 inhibitors in clinical use 
(or under development) alter pulmonary VLDL receptor levels and, 
thus, whether genetic findings reflecting life-long systemic changes in 
PCSK9 have clinical relevance to patients receiving long-term treatment 
with tissue-localized PCSK9 inhibitors. Whilst various parameters 

Figure 4 Associations of PCSK9 and low-density lipoprotein cholesterol genetic scores with respiratory disease endpoints. Odds ratios are estimated 
using logistic regression of the weighted PCSK9 genetic score, scaled to 1 SD lower low-density lipoprotein cholesterol, calculated as an 
inverse-variance-weighted average of region-specific estimates with adjustment for age, age-squared, sex, ascertainment, and region-specific principal 
components. Prevalent chronic obstructive pulmonary disease defined on basis of spirometry (see Methods). COPD exacerbations are incident events 
occurring in individuals with spirometry-defined prevalent chronic obstructive pulmonary disease. P-het is the P-value from a test for heterogeneity for 
estimates of PCSK9 and low-density lipoprotein cholesterol genetic instruments. CI, confidence interval; COPD, chronic obstructive pulmonary disease; 
LDL-C, low-density lipoprotein cholesterol; OR, odds ratio; URTI, upper respiratory tract infection.   
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determine the tissue distribution of monoclonal antibodies,59 current 
evidence suggests that evolocumab has limited tissue distribution.60,61 

Furthermore, inclisiran, a small interfering RNA inhibitor of PCSK9,62 

features N-acetylgalactosamine conjugation that renders it hepatotro-
pic.63 Consequently, limited tissue penetration of biological agents may 
mean that the genetic associations we identify do not have major clinical 
relevance. 

Two large phase III trials and subsequent open-label extensions found 
no excess risk of respiratory disease in individuals treated with PCSK9 
inhibition for up to 9 years.9,10 However, the association of PCSK9-GS 
with exacerbations of COPD indicates that PCSK9 inhibition potentially 
confers higher risk only in individuals with existing respiratory disease, 
perhaps triggered by URTI. Clinical trials may not have included many 
such participants, thus limiting their power to detect any excess risk 
within the short period of trial treatment. Whilst some phase II trials 
did show a non-significant excess risk of URTI in those treated with evo-
locumab,64–66 such flu-like symptoms may be common following treat-
ment with monoclonal antibodies in general,67 and, as such, it is not clear 
whether these findings reported in RCTs represent a reaction to the 
treatment modality as opposed to PCSK9 inhibition itself. 

Despite the consistency of associations of genetic variants in PCSK9 
and the risk of lung diseases in these two large biobanks and the under-
lying biological plausibility, there are several other factors to consider in 
interpreting these findings. First, the genetic findings may be a false posi-
tive. For example, we failed, albeit based on a small number of cases and 
using a different functional PCSK9 variant, to replicate the association 
observed in CKB with a similar COPD exacerbation endpoint in 
UKB. In the HUNT Biobank in Norway, no association of PCSK9 genetic 
variants with risks of asthma (6858 cases) or COPD (6685 cases) was 
identified, although there was a nominal association with rhinitis68; in 
that study, the association with URTI was not reported and it is also un-
clear whether COPD was prevalent or represented acute exacerba-
tions of disease. It is unclear; however, to what extent the aetiology 
or definition of respiratory diseases differs between biobanks which de-
rive from very different populations with contrasting exposures to 
other risk factors for respiratory disease.69 Second, direct comparisons 
between different populations are complicated by functional differ-
ences between the genetic variants available in different ancestries. 
The variant with the strongest effect in the CKB PCSK9 score modifies 
the PCSK9 HSPG-binding domain, directly impacting a key step in LDLR 
degradation.44 By contrast, the UKB functional variant (rs11591147) in-
stead exerts its effect by modulating local protein structure.70 Whilst 
both lead to lower LDL-C, suggesting overall similarities in their bio-
logical consequences, PCSK9 mediates degradation of multiple pro-
teins,50 so that different SNPs may vary in their impact on differing 
PCSK9-mediated pathways, including those not directly related to 
LDL-C lowering. Indeed, it is possible that this accounts for the con-
trasting associations observed for breast cancer—one PCSK9 target, 
LRP8, has been implicated in triple-negative breast cancer.71 Third, 
the association of PCSK9-GS with URTI might arise due to the life-long 
effects of genetic perturbations that alter human biology,11 meaning 
that treatment with a PCSK9 inhibitor at a specific time (e.g. in later 
life) need not lead to a similarly altered risk of lung disease. Fourth, as 
discussed above, limited tissue penetration of biological therapeutics 
may mean that VLDLR and LDLR levels in lung parenchyma are un-
altered. Fifth, even if the genetic associations with respiratory disease 
foretell findings in humans from inhibition of PCSK9 that have yet to 
be identified, the relevance of the magnitude of these effects and 
how to frame these in terms of absolute risk are unclear. Whilst there 
is a strong basis for calibration of genetic estimates for vascular disease 
risk of LDL-C lowering variants to the equivalent from a therapeutic 
trial,72 no such calibration exists for non-vascular disease outcomes 
such as respiratory disease, which poses a translational challenge. 

This study demonstrates the advantages of leveraging large-scale 
genetic data from prospective biobanks in diverse populations to 

inform drug target validation, repurposing, and design and conduct of 
randomized trials. Apart from providing improvements in statistical 
power, a key advantage is in accessing the considerable heterogeneity 
in the genetic and environmental characteristics of different popula-
tions, to inform the utility and application of therapies in varying con-
texts globally. Further, our study used functional variants that are 
present at appreciable frequency only in one ancestry, which, when 
findings are consistent across different functional variants in different 
ancestral groups with very different environmental exposures, rein-
forces the credibility of the data. However, despite this, our findings re-
main hypothesis generating and require further validation in future 
studies involving much larger numbers of well-characterized disease 
outcomes. 

Conclusion 
This study provides evidence that genetic variants in PCSK9 that lower 
LDL-C and risk of CVD are also associated with higher risks of respira-
tory disease, in particular acute URTI and acute exacerbations of 
COPD. Whilst further genetic and clinical evidence is needed to con-
firm (or refute) these findings, they raise the possibility that, in indivi-
duals with pre-existing COPD, a careful risk-benefit evaluation of 
LDL-C lowering through inhibition of PCSK9 may be required. 
Pharmacovigilance may be warranted to ascertain whether these find-
ings have relevance to patients being treated with PCSK9 inhibitors. 

Supplementary material 
Supplementary material is available at European Journal of Preventive 
Cardiology. 
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