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Abstract–Techniques for detecting mirrors from static
images have witnessed rapid growth in recent years. How-
ever, these methods detect mirrors from single input im-
ages. Detecting mirrors from video requires further con-
sideration of temporal consistency between frames. We
observe that humans can recognize mirror candidates,
from just one or two frames, based on their appearance
(e.g. shape, color). However, to ensure that the candi-
date is indeed a mirror (not a picture or a window), we
often need to observe more frames for a global view. This
observation motivates us to detect mirrors by fusing ap-
pearance features extracted from a short-term attention
module and context information extracted from a long-
term attention module. To evaluate the performance, we
build a challenging benchmark dataset of 19,255 frames
from 281 videos. Experimental results demonstrate that
our method achieves state-of-the-art performance on the
benchmark dataset.

Index Terms— mirror detection, information fusion,
short-term attention, long-term attention, benchmark

1. INTRODUCTION

Mirrors are commonly seen in environments. More and more
attention has been drawn to mirror detection in computer vi-
sion. It is because, on the one hand, detecting mirrors can
benefit scene-understanding tasks. The reflection of the mir-
ror can provide hints for locating objects [1] with 3D informa-
tion [2]. reconstructing human pose [2], and reconstructing
scenes [3]. On the other hand, ignoring mirrors may affect
the performance of some computer vision tasks. For exam-
ple, a service robot may treat reflected objects as real ones.
Therefore, it is important for computer vision systems to be
able to detect and segment mirrors from input images.

Research on detecting mirrors from static images has wit-
nessed rapid growth in recent years. Existing methods ex-
ploit context contrast [6], reflection relation [7], semantic re-
lation [8], depth information [9, 10, 11], visual chirality [12]
and symmetry relation [13] to detect mirrors. However, these
methods detect mirrors from single input images. To detect
mirrors from videos requires further consideration of tem-
poral consistency between frames. Recently, Lin et al. [5]
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Fig. 1. Two normal scenarios where existing methods [4] [5] fail.
HetNet[4] is a single-image mirror detection method, and VMDNet
[5] is designed for video mirror detection. Compared to HetNet and
VMDNet, our method can detect the mirror regions correctly by fus-
ing short-term information and long-term information.

proposed the first video mirror detection model, VMDNet,
which extracts correspondence between the mirrors and the
surroundings at both the intra-frame and the inter-frame lev-
els. However, this method relies on the extraction of the cor-
respondence and may fail when the correspondence cannot
be established. For example, the top two rows in Fig. 1 show
the same mirror hanging on the wall. However, the VMD-
Net is confused by the different mirror reflections in the two
frames, and cannot detect the mirror correctly. Moreover, the
VMDNet will predict other objects as mirrors since it sepa-
rately considers correspondences at the short-term and long-
term levels. For example, the bottom two rows in Fig.1 shows
that the VMDNet fails to distinguish the painting and mirror,
as correspondences for both of them are extracted.

To address the above problems, we propose a novel ap-
proach to detect mirrors in videos. We observe that humans
can recognize the appearance (e.g., shape, color) of candidate
mirrors from just one or two frames. However, to make sure
that the candidate is indeed a mirror (not a picture or window),
we often need to see more frames to have a global view. This
observation motivates us to extract appearance features at a
micro (short video clips) and to extract context features at a
macro view (long video clips) , and then combine them to
predict the mirror. Our approach is different from VMDNet,
which utilizes long-term information as an auxiliary task in
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Fig. 2. The architecture of our proposed model. We first feed three frames from the same video to the backbone feature
extractor, then the DGSA module to extract appearance features from adjacent frames, and an LA module to extract context
features from long video clips parallelly. Second, the SLF module fuses short-term attention and long-term attention to finalize
the mirror region.

the first stage, and separately considers short-term and long-
term information in the second stage. Our approach tries to
combine short-term information and long-term information to
better predict the mirror map.

Our method consists of three modules: 1) a Dual Gated
Short-term Attention (DGSA) module to extract appearance
features from adjacent frames; 2) a Long-term Attention (LA)
module to extract context features from long video clips to
obtain position information of mirrors; and 3) a Short-Long
Fusion (SLF) module to fuse appearance features and context
features to finalize the mirror region.

To evaluate the performance of video mirror detection,
we also construct a challenging benchmark dataset that in-
cludes a variety of scenes from real living and working en-
vironments. Most of our data are from two public datasets:
NYUv2 [14], ScanNet [15], and others are captured by our-
selves. Our dataset has 19,255 frames from 281 videos with
pixel-wise annotation. Compared to the first video mirror
dataset (VMD) proposed by [5], of which 95% are collected
from furniture stores, our dataset covers about 20 scene types
(e.g., gym, lift, kitchen) which largely increases the diversity
of data.

Our contributions can be summarized as:

• We propose a novel transformer network for video mir-
ror detection. It consists of three modules (DGSA mod-
ule, LA module, and SLF module) to support the ex-
traction and fusion of short-term and long-term atten-
tion to improve video mirror detection.

• We construct a challenging benchmark dataset that con-
tains 19,255 frames from 281 videos and pixel-wise an-
notations from a variety of real-world scenes.

• We have conducted extensive experiments on both the

VMD dataset and our dataset to demonstrate that our
method achieves state-of-the-art performance.

2. RELATED WORK

2.1. Mirror Detection

In recent years, many works [6, 7, 8, 12, 4, 9, 10, 11], are
proposed to detect mirrors from single images. They exploit
context contrast [6], reflection relation [7], semantic relation
[8], depth information [9, 10, 11], visual chirality [12] and
symmetry relation [13] to detect mirrors. Although the single-
image mirror detection model achieves reliable results, their
performance on video is not good because of insufficient ex-
ploitation of temporal information. Recently, Lin et al. [5]
propose the first video detection network, named VMDNet.
It focuses on extracting mirror correspondence at intra-frame
and inter-frame levels.

3. METHOD

3.1. Overall Structure

Fig. 2 shows the architecture of the proposed FusionFormer.
To enable extraction and fusion of short-term and long-term
attention, our model first takes three frames from the same
video as input. Two are adjacent frames and the third In is a
random other frame. Then, we employ the Mix Transformer
[16] as the encoder, which can encode long-range dependen-
cies. Adhere to the approach in [5], we utilize the second
scale for the low-level features (F low

i ) and the fifth scale after
the atrous spatial pyramid (ASPP) for the high-level features
Fhigh
i . After obtaining features from three input frames, we
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Fig. 3. The schematic illustration of Dual Gated Short-term Attention (DGSA) module. The grey part represents the short-term
attention (SA) block. Pink parts represent the fusion blocks. The green and blue parts represent the spatial-wise gate (SG) block
and the channel-wise gate (CG) block, respectively.

assign the Dual Gated Short-term Attention (DGSA) module
on the low-level F low

i∈{t−1,t} and high-level features Fhigh
i∈{t−1,t}

to extract appearance features from adjacent frames, and
the Long-term Attention (LA) module on low-level features
F low
i∈{t,n} and high-level features Fi∈{t,n}high to extract con-

text features from long video clips at the same time. Finally,
the Short-Long Fusion (SLF) module combines appearance
features and context features selectively to produce the final
mirror prediction Pt.

3.2. Dual Gated Short-term Attention Module

The DGSA module aims to extract appearance features from
the short-term information. It is inspired by the cross atten-
tion module proposed in [5], which can extract correspon-
dences between the content inside and outside of the mirror at
the intra-frame level and the inter-frame level. However, oc-
clusions, appearance changes, etc., may affect the correspon-
dence extraction. Therefore, we propose to weigh the mirror
correspondence features differently.

Fig.3 shows the schematic illustration of the DGSA. We
use Fi∈{t−1,t} to denote F low

i∈{t−1,t} or Fhigh
i∈{t−1,t} to be visual

clear. Our DGSA module consists of four blocks: a short-
term attention (SA) block, a spatial-wise gate (SG) block, a
channel-wise gate (CG) block, and two fusion blocks. Given
the input features Fi∈{t−1,t}, we first use the SA block to ex-
tract short-term correspondence features (denotes Rt−1, Rt):

Rt−1 = ωt−1

(2H+2W−1)×(W×H)∑
i

AVt−1, (1)

Rt = ωt

(2H+2W−1)×(W×H)∑
i

AVt, (2)

where A is the correspondence attention map. ωt−1 and ωt

are the learnable parameters. Then, we concatenate the Rt−1,
Rt and feed them to the SG block and the CG block to pro-
duce spatial gated mask St−1, St and channel gated mask
Ct−1, Ct.

In the fusion block, we first use dual gated attention fea-
tures Dt−1, Dt to refine the original features Ft−1, Ft, and
then fuse the refined features Gt−1, Gt with the correspon-
dence features Rt−1, Rt to obtain enhanced dual gated short-
term attention features Et−1, Et. The fusion block process
can be formulated as:

Et−1 = Rt−1 + Conv3×3(Cconcat(Ft−1, Dt−1)), (3)

Et = Rt + Conv3×3(Cconcat(Ft, Dt)), (4)

3.3. Short-long Fusion Module

The SLF module is designed to fuse short-term features with
long-term features to further focus on the mirror with a global
view. The reason to take long-term features into account is
that we notice the mirror frequently appears throughout the
whole video. Here, we utilize the LA module, instead of
DGSA, to obtain the long-term relation features because we
find that the dual gated mechanism may be confused by the
mirror appearance changes in long video clips. LA module



Fig. 4. Videos in our ViMirr dataset show high diversity and low similarity. They cover lots of daily scenes.

follows the design of the cross attention module [5]. The dif-
ference is that we are using it to extract the long-term corre-
spondence, not the short-term correspondence.

Fig. 5 shows the architecture of the SLF module. We
weight the enhanced short-term attention features Eshort

t with
the long-term attention features Rlong

t . In this way, the corre-
spondence features Efuse

t are extracted, which encodes both
the appearance of the mirror from the short-term features and
the position of the mirror from the long-term features.
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Fig. 5. Details of the Short-long Fusion (SLF) module.

3.4. Loss function

Following [17], we adopt the binary cross-entropy (BCE) and
the Lovasz-hinge loss to supervise the training of the mirror
maps:

L =

i∈{t−1,t,n}∑
i

Lhinge(Pi, Gi) + Lbce(Pi, Gi), (5)

where Lhinge, Lbce are the lovasz-hinge loss and the binary
cross-entropy (BCE) loss. Pi and Gi are the final predicted
map and the ground truth of frames.

4. EXPERIMENTS

4.1. Datasets

Recently, Lin et al. proposed the first video mirror dataset
(VMD) in [5], which contains 14,987 frames from 269 videos

with corresponding annotated masks. However, we notice
that their data were mostly collected from similar scenes. In
particular, more than 95% of their data are collected from fur-
niture stores (e.g. IKEA). This limits the diversity of the data,
and will affect the generalization of the model to other scenes.
Following [7], we use SSIM [21] to study the similarity of
videos in VMD. As the frames are similar in the same video,
we use the first frame in each video to calculate the similarity
score. Our ViMirr obtains 39.54% similarity score, which is
much lower than the 51.21% of the VMD dataset. The details
of the similarity score calculation are given in Section 1.2 of
the supplemental material.

To address the limitations of VMD dataset, we construct
the ViMirr dataset, which has 19,255 frames from 276 videos.
Fig. 4 shows some example video frames in ViMirr. To cover
diverse realistic scenes, we studied five existing widely used
datasets (i.e. Matterport3D [22], NYUv2 [14], ScanNet [15],
DAVIS [23] and YouTube-VOS [24]), and manually selected
78 videos from NYUv2 and 126 videos from ScanNet, which
contain mirrors in the videos. The indices of the videos se-
lected are provided in Section 1.1 of the supplemental mate-
rial. Moreover, we captured 13 videos to provide more pop-
ular scenarios (e.g., gym, lift) in daily life. Some examples
we captured are given in Section 1.3 of the supplemental ma-
terial. For both the collected and captured videos, we then
manually annotated the mirrors in each frame. Example an-
notations can be seen in Fig. 4.

4.2. Implementation Details

The model was implemented in PyTorch [25] and trained on
a PC with an NVIDIA RTX 4090 GPU card. During train-
ing, the images are resized to 512× 512. We use Mix Trans-
former (MiT) [16] pre-trained on ADE20K [26, 27] dataset
as the backbone network to extract image features. We adopt
AdamW [28] with a weight decay of 5×10-4 as the optimizer.
The base learning rate, batch size, and the number of training
epochs are 0.00001, 5, and 15, respectively.
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Fig. 6. Visual results of our model, compared with relevant state-of-the-art methods.

Table 1. Quantitative results on the VMD dataset (second column) and our benchmark (third column). The best results are
shown in bold.

Method VMD ViMirr
IoU↑ Fβ ↑ Accuracy↑ MAE↓ IoU↑ Fβ ↑ Accuracy↑ MAE↓

TVSD [18] 0.3060 0.5343 0.8160 0.1839 0.1413 0.3394 0.8605 0.1394
SCOTCH [19] 0.5949 0.7281 0.8766 0.1233 0.6289 0.7596 0.9299 0.0702

GDNet [20] 0.5576 0.7335 0.8820 0.1179 0.5335 0.7118 0.9200 0.0799
MirrorNet [6] 0.5417 0.7506 0.8787 0.1211 0.4671 0.7015 0.9055 0.0944

PMD [7] 0.5309 0.7823 0.8771 0.1229 0.5258 0.7417 0.9233 0.0766
SANet [8] 0.4908 0.7202 0.8755 0.1245 0.4479 0.6286 0.9024 0.0975
HetNet [4] 0.5145 0.7547 0.8726 0.1274 0.4544 0.6825 0.9063 0.0935
VMD [5] 0.5673 0.7873 0.8950 0.1052 0.4224 0.7001 0.9096 0.0903

Ours 0.6343 0.8104 0.9004 0.0995 0.6455 0.8261 0.9515 0.0484

4.3. Evaluation Metrics and Comparison with the State-
of-the-arts Methods

We compare our method with state-of-the-art methods from
four relevant fields: TVSD [18] and SCOTCH [19] for video
shadow detection , GDNet [20] for single-image glass detec-
tion, MirrorNet [6], PMD [7], SANet [8] and HeNet [4] for
single-image mirror detection and VMDNet [5] for video mir-
ror detection, and the metrics we use are: intersection over
union (IoU), F-measure (Fβ), pixel-accuracy, and mean abso-
lute error (MAE).

Table 1 shows the quantitive results on the VMD dataset
and the proposed ViMirr dataset. Our method achieves the
best performance on all four metrics. Fig. 6 shows the visual
comparisons. We can see that the image sequences contain
some regions (e.g. wood shelf or the door-like area of the first
two rows and cabin in the third and fourth rows where red
dotted lines circles) that look like mirrors. VMDNet tends to
detect these regions as mirrors, while our method can differ-
entiate them well.

Table 2. Ablation study results, trained and tested on the
VMD dataset. ”Baseline” denotes our network without all
proposed modules. ”CA” is the cross attention module pro-
posed in [5]. ”DGSA” is our dual-gated short-term attention
module. ”SLF” is our short-long fusion module.

Method IoU↑ Fβ ↑ MAE↓ Accuracy↑
Baseline 0.6075 0.7676 0.1056 0.8943

+CA 0.6126 0.7919 0.1054 0.8946
+DGSA 0.6147 0.8017 0.1045 0.8954

+DGSA+SLF 0.6343 0.8104 0.0995 0.9004

4.4. Ablation study

We carried out ablation studies to demonstrate the effective-
ness of our model. The last row in Table 2 shows that our fi-
nal model with DGSA module and SLF module outperforms
other baselines on all four metrics. The CA module brings
improvements of baseline which shows the effectiveness of
the spatial and temporal correspondence features. Compared
with it, the DGSA module further improves the baseline, es-



pecially on Fβ by filtering the dual correspondence features.
By fusing long-term correspondence features, the SLF mod-
ule significantly benefits the mirror video detection tasks from
a global view. A visual example of the ablation study is pro-
vided in Section 2 of the supplemental material.

5. CONCLUSION

In this paper, we have proposed a transformer network for
Video Mirror Detection. It detects mirrors by fusing appear-
ance features extracted from a short-term module and context
information extracted from a long-term attention module. In
addition, we construct a challenging benchmark that includes
19,255 frames from 281 videos covering a variety of daily
scenes. Our experimental results demonstrate that the pro-
posed model achieves state-of-the-art performance on both
the VMD dataset and the benchmark.
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