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ABSTRACT

Multi-class part parsing is a dense prediction task that de-
composes objects into semantic components with multi-level
abstractions. Despite the importance of this problem, it re-
mains challenging due to the presence of both part-level and
class-level ambiguities. In this paper, we propose GRPSNet
network which integrates graph reasoning to capture relation-
ships between parts for part segmentation. These captured
relationships help to enhance the recognition and localization
of parts. We also propose to exploit the relationships of part
boundaries to further enhance the accuracy of part segmenta-
tion. The experimental results demonstrate the effectiveness
of the proposed method and show that it achieves state-of-the-
art performance on the benchmark datasets.

Index Terms— Part parsing, Semantic segmentation,
Graph Reasoning, Deep Learning.

1. INTRODUCTION

Semantic part parsing aims to simultaneously detect multiple
object classes in the scene and accurately segment the parts
within each object class. Understanding parts within each ob-
ject class is important for many fine-grained tasks, such as
object detection [1], fine-grained action detection [2], pose es-
timation [3], and categorization [4, 5]. However, multi-class
part parsing has been considered only recently [6, 7, 8, 9, 10].
It is a challenging task that needs to tackle both part-level am-
biguity and object-level ambiguity.

In particular, one challenge is that some parts occupy
a small area in the scene, making them difficult to detect.
For example, as shown in Fig. 1 (c), even the state-of-the-
art method [10] struggles to accurately detect the human and
horse legs and the cat tail. Another challenge is inaccurate
boundary detection due to the clutter of several classes in the
scene, which often leads to occlusions. An example is the
segmentation of the bike body, as shown in Fig. 1.

Graph reasoning to infer relational information has proven
to be useful for many computer vision tasks. Recently, graph-
based methods have achieved considerable improvements by
modeling the relationships between distant regions and rea-
soning using global information [11, 12, 13]. This global per-
spective can improve the ability of a model to handle complex
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Fig. 1. Challenges of multi-class part parsing. (a) Input im-
ages. (b) Ground truth masks. (c) Results from the current
state-of-the-art method [10]. (d) Results from our method.

scenes, where local information alone might not be sufficient.
Inspired by the achievements, in this paper, we propose to in-
tegrate graph reasoning into part parsing to tackle the above
challenges. We construct two graphs, namely, the part graph
and the boundary graph. The part graph aims to extract a
broad range of relationships such as spatial and appearance
between entire parts to enhance the recognition and localiza-
tion of parts in the scene, while the boundary graph focuses
on extracting adjacency information, such as edges and transi-
tions between parts, to enhance the detection and understand-
ing of part boundaries.

In addition to graph reasoning, we adopt a multi-task
framework, which includes part awareness, boundary aware-
ness, and object awareness branches. Part awareness inte-
grates the part graph to capture relationships between parts.
Boundary awareness enforces boundary constraints to refine
the boundaries of detected parts. We also integrate the bound-
ary graph to help the model better detect the adjacency of
parts in the image. Moreover, as object-level ambiguity is
also a challenge, we propose the object awareness branch to
improve the localization of parts within each object class.

The contributions of this work are as follows:

* We propose to integrate part and boundary graphs to

extract part relationships with the goal of reducing am-
biguities in part parsing.



* We propose a multi-task framework to perform bound-
ary and object awareness as auxiliary tasks to improve
the part localization within each object class.

* The proposed method achieves state-of-the-art perfor-
mance on the benchmark part parsing datasets.

2. RELATED WORK

2.1. Part Parsing

Existing research in the recent literature has shown effective
performance in accurate segmentation of parts of one specific
category, such as human bodies [14, 15], vehicles [16, 17] and
animals [18, 19]. However, existing models mainly assume a
single object of interest per image, where the object is well-
localized beforehand and with no occlusions. In contrast,
detecting multiple object classes in the scene and simultane-
ously parsing the parts within each class is a relatively new
problem that has been explored only recently [6, 7, 8, 9, 10].
Zhao et al. [6] proposed a joint boundary-semantic aware-
ness framework to enhance the part localization and the ex-
pression of class-relevant feature channels. Michieli et al. [7]
proposed a framework consisting of three subnetworks with
a graph-matching module. Object-level segmentation maps
are used as guidance for part-parsing within the object, while
the graph matching technique is used to preserve the relative
spatial relationships between the predicted parts and ground
truth. Michieli et al. [9] improved their framework by inte-
grating edge information to enhance edge localization. Tan
et al. [8] introduced a framework with a confident semantic
ranking loss function to model the pixel relationships among
intra and inter parts. Alsudays et al. [10] proposed a frame-
work based on scaled attention and feature fusion to capture
more part details from finer scales and to effectively fuse dif-
ferent scales of features. Despite the remarkable performance
of these methods, relation reasoning has not been explored in
multi-class part parsing. Therefore, we propose to integrate
graph reasoning into the part segmentation task to enhance
the recognition and localization of parts in the scene.

2.2. Graph Reasoning

In recent years, graph-based methods [20, 11, 12, 13] have
been widely used for relational reasoning. Kipf er al. [20]
proposed a graph convolution network that introduces the ba-
sis of feature embedding on graph-structured data for semi-
supervised classification. Later studies [11, 12, 13] intro-
duced graph reasoning for visual recognition tasks due to its
ability to capture global information in graph propagation.
However, the approaches of multi-class part parsing lack the
investigation of the relationships among part regions. There-
fore, we propose to integrate graph reasoning to capture and
model these relationships for improved part segmentation.

3. METHOD

3.1. Overview

GRPSNet uses DeepLab v3+ [21] as a backbone. The same
encoder as in [21] is used as a shared layer for the subsequent
three branches. The object and part awareness branches then
follow the typical design of AFPSNet [10], which consists
of Atrous Spatial Pyramid Pooling (ASPP), Attention Refine-
ment Module (ARM) and Feature Fusion Module (FFM) to
help the model selectively emphasize important contextual in-
formation at different scales. Finally, graph reasoning units
(GRU) are built in the part and boundary branches to enable
the reasoning of part relationships at part-level and boundary-
level, as shown in Fig. 2.

3.2. Graph Reasoning Unit (GRU)

In multi-class part parsing methods, extracted regions are an-
alyzed separately without considering the dependencies be-
tween them, leading to limited performance when handling
part-level ambiguities, occlusions, and tiny parts. Therefore,
we propose to integrate graph reasoning to extract relation-
ships between regions and to enhance the features of these
regions with the extracted relationships. To achieve that, we
construct two graphs, i.e., part graph and boundary graph.
Part graph performs graph reasoning at part level, which aims
to extract broad relational information between parts, such
as their spatial layouts and appearance similarity. Boundary
graph performs graph reasoning at the boundary level. It has
a more specific focus on the adjacency between parts.

In these two graphs, a Graph Convolution Network
(GCN) [20, 22] is employed as in [12] to refine the model
understanding of relationships within a graph by adjusting
edge weights in the adjacency matrix during training. GCN is
applied via two 1D convolution layers along different direc-
tions, i.e., node-wise and channel-wise, as shown in Fig. 3. In
the following, we describe the construction of the two graphs.

Construction of the part graph. We build the part graph
Gp = (Vp, Ep, Ap) as adapted from [12] to extract the part re-
lationship information from the feature map F € RH*XWxC,
which is the output of the shared encoder. The part graph G,
consists of a set of nodes V), and edges E,,. A, denotes the ad-
jacency matrix. In the part graph, the input feature map F' is
divided into meaningful and distinct regions. Each node in V,
represents one of these regions, and the edges between nodes
denote relationships between the corresponding regions.

Practically, the input feature maps are reshaped by using
two convolutional layers to reduce the input dimension and
obtain the node features va. That is, as Fig. 3 shows, the
feature map F' is passed through a 1 x 1 convolutional layer
to generate the node mask B € R¥*W>*N The input feature
map F' is also passed through another 1 x 1 convolutional
layer to reduce the channel number size of F' and generate
Fr e REXWXC! Then, a channel-wise multiplication of F'/
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Fig. 2. An overview of the proposed GRPSNet framework, which consists of three branches to perform multiple tasks simul-

taneously. Two Graph Reasoning Unit (GRU) are integrated into

the part and boundary awareness to capture the relationships

between part classes. The object awareness aims to capture auxiliary object information and supervise the part parsing.

and B is performed to compute the feature map of nodes Fy, .
The node features are represented by Fy, = f(F) € RV
where f(.) refers to the construction function that is per-
formed to construct the feature of nodes from the feature map,
N 1is the number of nodes extracted from F', and C/ is the re-
duced number of channels. A softmax function is performed
along the H x W dimension of B. By applying the softmax
function to the node mask B, we introduce a probabilistic ele-
ment into the assignment of classes to nodes in the part graph.
The softmax probabilities can influence the graph structure
by guiding the connections and relationships between nodes.
Edges between nodes may be influenced by the confidence or
probability scores associated with the corresponding classes.
This can be particularly useful in scenarios where parts may
exhibit uncertainty or ambiguity in their classification, allow-
ing for a more nuanced representation of the parts and their
relationships in the constructed graph. After transforming the
feature map F' into a graph representation Fy,,, the relation-
ships between nodesare computed through the Graph Convo-
lution Network (GCN).

Construction of the boundary graph. We build the
boundary graph G, = (V4, Ep, Ap) from the same feature
map F' € RT*WXC The boundary graph consists of a set of
nodes V; and edges E}. Each node in V;, represents a detected
region from the input feature map F'. These regions are ex-
tracted by performing a 1 x 1 convolution layer on the feature
map F' to generate a node mask B as in the part graph. A
sigmoid function is applied to the extracted nodes in the node
mask B to enhance the representation of boundary strength by
providing probabilistic attributes. The sigmoid probabilities
provide semantic information about the likelihood of nodes
being part of boundaries. This information can be included
as node attributes in the boundary graph and can influence
the graph structure by guiding the connections and relation-
ships between nodes. Edges between nodes may be influ-
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Fig. 3. The architecture of the Graph Reasoning Unit (GRU),
which is adapted from [12]. We propose normalizing the con-
structed nodes by performing an activation function before
passing them to the Graph Convolution Network (GCN).

enced by the confidence or probability scores associated with
each node being part of a boundary. This can be valuable in
scenarios when dealing with ambiguous or uncertain bound-
aries, allowing for more flexible and nuanced modeling of the
relationships between nodes and their association with bound-
aries. Different from the part graph, the edges in the boundary
graph have binary values representing the presence or absence
of boundaries between the detected regions in the node fea-
tures map FYy,. Edges connect nodes and represent relation-
ships between detected adjacent boundaries. The presence of
an edge indicates a spatial connection between two boundary
points. The visual correlations between boundary nodes are
captured by passing the node features Iy, through the graph
convolution network (GCN).

3.3. Joint Parsing Framework

GRPSNet consists of four components: (1) an encoder shared
by all three branches, (2) an object awareness branch, (3) a
part awareness branch, and (4) a boundary awareness branch.

Shared encoder. We use the same encoder as in DeepLab
v3+ [21], which is the ResNet-101 model [23] pre-trained on



ImageNet dataset [24].

Object awareness branch. The object segmentation
branch is built based on AFPSNet [10] which is the state-of-
the-art part segmentation network. As shown in Fig. 2, The
object awareness branch takes the shared representation from
the shared encoder and passes it through the Atrous Spatial
Pyramid Pooling (ASPP) unit, which includes the attention
module (ARM) and feature fusion module (FFM). Thus, ob-
ject information is captured at different scales. The extracted
object information is used to enhance the localization of parts
within each object class. The cross-entropy loss is used for
training this branch:

N C
Lobject Y, p ZZ Yi,c IOg Di, (’ (1)
where y; . is a one-hot encoding scheme of ground truth la-
bels and p; . is a matrix element corresponding to the pre-
dicted value for each object. Here, ¢ is the sample index, c is
the part index and C is the number of objects.

Part awareness branch. As shown in Fig. 2, this branch
also follows the design of AFPSNet [10] with integration of
part graph. The ASPP module in the model captures contex-
tual information across various scales. The cross-entropy loss
is again used for training part branch.
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Boundary awareness branch. The boundary branch
consists of boundary graph, followed by two convolution lay-
ers to obtain the boundary features, as shown in Fig. 2. A
binary cross-entropy loss is used for training this branch.

Leage(y,y) = —(ylog(y) + (1 —y)log(1 - 7)), ()

where 3 refers to the predicted boundary map and y refers to
the ground truth label.

GRPSNet is trained to perform multiple tasks simultane-
ously. The loss function is adjusted to determine how the
model balances learning across these tasks. The final loss
function Lysq; of our framework is a weighted sum of indi-
vidual losses for each task,

Ltotal = )\e . Ledge + )\o : Lobject + Lpart» (4)

where A, .} are weights to balance the boundary and object
losses to control the contribution of each task to the overall
training objective.

4. EXPERIMENTS

4.1. Implementation Details

Dataset. The widely used PASCAL-Part [4] and the large-
scale ADE20K-Part [25] datasets are used to train and evalu-
ate the proposed method. PASCAL-Part includes PASCAL-
Part-58, PASCAL-Part-108, and PASCAL-Person-Part. Both

PASCAL-Part-58 and PASCAL-Part-108 contain 10103 im-
ages of varying sizes, along with 58 (PASCAL-Part-58) or
108 (PASCAL-Part-108) part-level annotations of 21 seman-
tic object classes, including the background class. We use
4998 images for training and 5105 images for testing as the
original split in [4]. PASCAL-Person-Part contains 3533 im-
ages of multi-person on various scales and with 7 part-level
annotations, including the background class. We use 1716
images for training and 1817 images for testing as the original
split in [26, 27, 6]. ADE20K-Part dataset contains 22210 im-
ages of different sizes, along with 544 part-level annotations
of 150 object- and stuff-level classes as in [7]. We use 20210
images for training and 2000 images for testing as the original
split in [25]. Also, we follow the same evaluation metrics of
the state-of-the-art and other well-known part parsing meth-
ods [6, 7, 8, 10] by using the mean Intersection over Union
(mloU); and applying the same evaluation strategy.

Training details. We employ the DeepLab v3+ [21] net-
work trained on the ImageNet dataset [24] as a backbone
and follow the same training schemes as in [21, 28]. For
PASCAL-Part, we train a model with a batch size of 16 for
80K iterations. For ADE20K-Part, we train our model with
a batch size 6 for 100K iterations. To make the weight bal-
ance and enhance the part segmentation, we set A, = 0.10
and A\, = 0.03 for the first 50K iterations, then we adjust
Ae = 0.20 and )\, = 0.0 for the last iterations. More training
details can be found in the supplementary material.

4.2. Ablation Study

We first evaluate the effectiveness of integrating part and
boundary graphs, the boundary branch and the object branch.
The experiments were carried out on two frameworks,
DeepLab v3+ and AFPSNet, to demonstrate the general ben-
efit of integrating these components.

DeepLab v3+. The first row in Table 1 shows that with-
out any of the proposed components, using DeepLab v3+
achieved 57.60% in mloU for part parsing. Adding the
boundary constraint improves the performance to 59.90. The
further addition of part and boundary graphs increases the per-
formance from 59.90 to 59.99. Moreover, adding the object
awareness further improves the performance to 60.08.

AFPSNet. When using AFPSNet, the baseline method
achieved a mloU of 58.68% for part parsing. Adding the
boundary constraint improves the mloU to 60.02. Integrat-
ing the part and boundary graphs increases the performance
from 60.27 to 61.28. The further addition of the object seg-
mentation achieves the best performance with 61.59% mloU.

4.3. Comparisons with state-of-the-art methods

We compared our method with DeepLab v3+ [21] and the
state-of-the-art multi-class part parsing methods [6, 7, 8, 9,
10]. The segmentation performance of these methods is com-
pared based on the PASCAL-Part-58 benchmark. To compare
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Fig. 4. Segmentation results on PASCAL-Part-58 dataset. Our model generates notable results by achieving better part local-
ization and more accurate boundaries compared to the state-of-the-art models.

Table 1. Detailed performance comparison of each compo-
nent in our proposed GRPSNet approach.

Method Object Boundary Boundary&Part mloU(%)
branch  branch graphs
DeepLab v3+ 57.60
DeepLab v3+ v 59.90
DeepLab v3+ v v 59.99
DeepLab v3+ v v v 60.08
AFPSNet 58.68
AFPSNet v 60.27
AFPSNet v v 61.28
AFPSNet v v v 61.59

Table 2. Segmentation performance of mloU on the bench-
mark datasets. mloU: per-part-class mloU. Avg.: average per-
object-class mloU.

Method PASCAL-Part-58 | PASCAL-Part-108 | Pascal-Person-Par | ADE20K-Part
mloU Avg. mloU Avg. mloU mloU  Avg.
DeepLab v3 [28] 54.4 55.9 413 43.7 63.5 8.9 17.6
DeepLab v3+[21] | 57.6 59.1 46.5 48.9 68.1 159 275
BSANet [6] 58.2 58.9 429 46.3 67.4 9.7 19.6
GMNet [7] 59.0 61.8 45.8 50.5 67.5 106 213
GMENet [9] 59.6 622 46.3 51.2 68.4 129 23.6
CSR [8] 60.7 60.6
AFPSNet [10] 61.3 62.0 49.2 512 69.6 182  29.1
GRPSNet 61.6 62.2 50.5 524 70.1 18.7 294

the performances of these methods quantitatively, two metrics
were used: mloU, which computes the mean per-part IoU on
the 58 part classes, and Avg., which computes the average
per-object mIoU on the 21 object classes (including back-
ground). Table 2 shows that DeepLab v3+ achieved 57.6%
in per-part mloU, while the first work addressing part-based
semantic segmentation, BSANet, achieved 58.2%. GMNet
improved its performance, achieving 59.0%. Then, GMENet
enhanced the performance to 59.6%. While CSR improved
the performance of part segmentation to 60.7%. The current

state-of-the-art method, AFPSNet, achieved 61.3%. The pro-
posed GRPSNet achieved the highest per-part mIoU of 61.6%
compared to the above methods, outperforming the current
state-of-the-art methods. The same is observed for the aver-
age per-object-class mloU as well.

Table 2 shows the overall results of these methods on
PASCAL-Part and ADE20K-Part benchmarks. Our method
achieved the highest per-part mloU for all the benchmarks,
outperforming the state-of-the-art method.

Fig. 4 illustrates a qualitative comparison of the segmen-
tation results from these methods. Our model shows overall
better segmentation results in better localization of parts and
more accurate boundaries. For example, the recognition of
the plant in the second row is difficult to detect by the other
methods, while GRPSNet can successfully localize and seg-
ment it. Moreover, GRPSNet shows superior performance
in detecting parts even in a very crowded scene. For exam-
ple, the human arm in the first row, and the girl’s arms in the
last row. Also, GRPSNet can better predict the boundaries of
the airplane body in the third row. These segmentation results
demonstrate that GRPSNet can effectively enhance the recog-
nition and localization of parts. Further experimental results
can be found in the supplementary material.

4.4. Failure cases

Our method does have limitations. As shown in the first row
of Fig. 5, despite the ability of the model to detect the bottles,
the model may be confused if several objects occupy a small
region in the scene. One avenue for enhancement could be by
further improving the boundary awareness branch. Addition-
ally, our model might produce localized segmentation errors
if the objects have similar appearances and their surroundings
are not visible in the input image, such as the bus in the sec-
ond row of Fig. 5, which will need further investigation.
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Fig. 5. Two typical failure cases. Our model may be con-
fused with several objects occupying a small region in the
scene. The invisible surrounding of the object can sometimes
confuse our model.

5. CONCLUSION

In this paper, we proposed GRPSNet, which utilizes part rela-
tionships and the multi-task framework to address the multi-
class part parsing challenges. The ablation study demon-
strates the effectiveness of our method, and the experiments
show that GRPSNet achieves state-of-the-art performance on
multi-class part parsing on both PASCAL-Part and ADE20K-
Part benchmark datasets. In the future, we will consider en-
hancing boundary awareness to further improve the boundary
localization of parts. Moreover, further investigations of the
localized segmentation errors will also be carried out.
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