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Abstract

Assumption-based Argumentation (ABA) is a well-known
structured argumentation formalism, whereby arguments and
attacks between them are drawn from rules, defeasible as-
sumptions and their contraries. A common restriction im-
posed on ABA frameworks (ABAFs) is flatness, that is, each
of the defeasible assumptions can only be assumed, but not
derived. While it is known that flat ABAFs can be translated
into abstract argumentation frameworks (AFs) as proposed
by Dung, no translation exists from general, possibly non-flat
ABAFs into any kind of abstract argumentation formalism.
In this paper, we close this gap and show that bipolar AFs
(BAFs) can instantiate general ABAFs. To this end we de-
velop suitable, novel BAF semantics which borrow from the
notion of deductive support. We investigate basic properties
of our BAFs, including computational complexity, and prove
the desired relation to ABAFs under several semantics.

1 Introduction
Computational models of argumentation (Baroni et al. 2018)
play a central role in non-monotonic reasoning and have
a wide range of applications in various fields such as
law and healthcare (Atkinson et al. 2017). One key as-
pect of these models is the use of structured argumenta-
tion formalisms (Besnard et al. 2014), which outline for-
mal argumentative workflows from building blocks. Promi-
nent approaches include assumption-based argumentation
(ABA) (Bondarenko et al. 1997), ASPIC+ (Modgil and
Prakken 2013), DeLP (Garcı́a and Simari 2004), and deduc-
tive argumentation (Besnard and Hunter 2008). The reason-
ing process within these formalisms typically involves cre-
ating argument structures and identifying conflicts among
them in a systematic manner from rule-based knowledge
bases. The resulting arguments and conflicts are known
as argumentation frameworks (AFs) (Dung 1995). These
frameworks are then evaluated using semantics to resolve
conflicts, determine the acceptability of arguments and draw
conclusions based on the original knowledge bases.

In this paper, we focus on ABA, as a versatile structured
argumentation formalism that, despite its simplicity, is able
to handle reasoning with certain types of preferences, strict
and defeasible rules, and different types of attacks without
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the need for additional tools (Toni 2014). Additionally, ABA
can be naturally expanded to include more advanced rea-
soning with preferences (Cyras and Toni 2016) and prob-
abilities (Dung and Thang 2010), can support applications
(e.g. in healthcare (Craven et al. 2012; Cyras et al. 2021a),
law (Dung, Thang, and Hung 2010) and robotics (Fan et al.
2016)), and can be suitably deployed in multi-agent settings
to support dialogues (Fan and Toni 2014).

An ABA framework (ABAF) amounts to a set of
rules from some deductive system, candidate assumptions
amongst the sentences in its language, and a contrary for
each assumption: at an abstract level, arguments are deduc-
tions supported by rules and assumptions, and attacks are di-
rected at assumptions in the support of arguments, by means
of arguments for their contraries. Thus, assumptions con-
stitute the defeasible part of an ABAF. There are no re-
strictions in ABA, in general, as to where the assumptions
may appear in the rules (Čyras et al. 2018). A common
restriction adopted in the study and deployment of ABA,
however, is that ABAFs are flat, i.e., each set of assump-
tions is closed (Bondarenko et al. 1997). Intuitively speak-
ing, flatness means that assumptions cannot be inferred,
only assumed to be true or not. Flat ABA is well-studied
and, because of its relative simplicity (Cyras, Heinrich, and
Toni 2021), it is equipped with a variety of computational
mechanisms (Toni 2013; Bao, Cyras, and Toni 2017; Lehto-
nen, Wallner, and Järvisalo 2022). However, general, non-
flat ABAFs have not yet been studied as comprehensively
(except for aspects of computational complexity, e.g. as
in (Cyras, Heinrich, and Toni 2021)), despite their potential
for a broader range of applications than restricted flat ABA.
The following example gives a simple illustration.
Example 1.1. Consider the following discussion about cli-
mate change. It is an abstraction of an idealised but re-
alistic debate: is climate change actually happening? We
cannot prove it for sure, so it makes sense to see it as an
assumption (cc), but we can try and establish it by look-
ing at its consequences: if it is actually happening we may
expect an increased amount of rain (assumption mr), but
then may need to deal with arguments against the validity
of this assumption: one may argue that there has always
been more rain at times, and so it is standard (assumption sr
for “standard rain”) and thus object against mr (using rule
not mr ← sr), which in turn can be defeated by looking at
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statistics (s). This yields an ABAF D consisting of atoms
L = {cc,mr, sr, s, not cc, not mr, not sr}, assumptions
A = {cc,mr, sr}, and rules (R):

mr ← cc, not mr ← sr, not sr ← s, s←,

Moreover, for each assumption X , the contrary is not X .
This is a non-flat ABAF, as the assumption mr is deriv-
able from the assumption cc. Allowing for assumptions to
be derived from rules can thus accommodate a form of
hypothetico-deductive reasoning in debates of this form.

A main booster for the development of flat ABAFs was
the close correspondence to abstract AFs (Čyras et al. 2018).
This contributed to the theoretical understanding of flat
ABA, but plays also an important role in further aspects like
explainability (Cyras et al. 2021b), dynamic environments
(Rapberger and Ulbricht 2023), and solving reasoning tasks
(Lehtonen et al. 2023).

In this paper, we extend this line of research and estab-
lish a connection between non-flat ABA and an abstract
argumentation formalism. To this end, we require two in-
gredients. The first crucial observation is that ABAFs can
be translated into bipolar AFs (BAFs) (Karacapilidis and
Papadias 2001; Cayrol and Lagasquie-Schiex 2005; Am-
goud et al. 2008) under a novel semantics. As opposed to
Dung-style AFs, BAFs do not only consider an attack re-
lation between arguments, representing conflicts, but also
a support relation, that can represent justifications. Vari-
ous semantics for BAFs have been proposed in the litera-
ture (see (Cayrol and Lagasquie-Schiex 2013; Cohen et al.
2014) for overviews). Our BAF semantics, which capture
non-flat ABAFs, borrow ideas from previous approaches,
but are novel in their technical details. The second observa-
tion is that the aforementioned approach does not work for
all common ABA semantics. We tackle this issue by slightly
extending our BAFs, similarly in spirit to so-called claim-
augmented AFs (CAFs) (Dvorák, Rapberger, and Woltran
2020) which assign to each argument a corresponding claim.
In our work, we will extend BAFs with premises storing un-
der which conditions an argument can be inferred.

The main contributions of this paper are as follows.

• We define BAF semantics: novel, albeit similar in spirit
to an existing semantics interpreting support as deduc-
tive (Boella et al. 2010). We also study basic properties.

• We show that for complete-based semantics, non-flat
ABAFs admit a translation to BAFs w.r.t. our semantics.

• We propose so-called premise-augmented BAFs and
show that they capture all common ABA semantics.

• We analyse the computational complexity of our BAFs.

2 Background
Abstract Argumentation. An abstract argumentation
framework (AF) (Dung 1995) is a directed graph F =
(A,Att) where A represents a set of arguments and Att ⊆
A × A models attacks between them. For two arguments
x, y ∈ A, if (x, y) ∈ Att we say that x attacks y, x is an
attacker of y, as well as x attacks (any set) E given that
y ∈ E ⊆ A. We let E+

F = {x ∈ A | E attacks x}.

A set E ⊆ A is conflict-free in F iff for no x, y ∈ E,
(x, y) ∈ Att. E defends an argument x if E attacks each
attacker of x. A conflict-free set E is admissible in F
(E ∈ ad(F )) iff it defends all its elements. A semantics
is a function F 7→ σ(F ) ⊆ 2A. This means, given an AF
F = (A,R), a semantics returns a set of subsets of A. These
subsets are called σ-extensions. In this paper we consider so-
called admissible, complete, grounded, preferred, and sta-
ble semantics (abbr. ad , co, gr , pr , stb). For an AF and
E ∈ ad(F ), we let i) E ∈ co(F ) iff E contains all ar-
guments it defends; ii) E ∈ gr(F ) iff E is ⊆-minimal in
co(F ); iii) E ∈ pr(F ) iff E is ⊆-maximal in co(F ); iv)
E ∈ stb(F ) iff E+

F = A \ E.
A bipolar argumentation framework (BAF) is a tupleF =

(A,Att, Sup), where A is a finite set of arguments, Att ⊆
A × A is the attack relation as before and Sup ⊆ A × A
is the support relation (Amgoud et al. 2008). Given a BAF
F = (A,Att, Sup), we call F = (A,Att) the underlying
AF of F . Graphically, we depict the attack relation by solid
edges and the support relation by dashed edges.

Assumption-based Argumentation. We assume a deduc-
tive system (L,R), where L is a formal language, i.e., a set
of sentences, and R is a set of inference rules over L. A
rule r ∈ R has the form a0 ← a1, . . . , an with ai ∈ L.
We denote the head of r by head(r) = a0 and the (possibly
empty) body of r with body(r) = {a1, . . . , an}.
Definition 2.1. An ABA framework is a tuple (L,R,A, ),
where (L,R) is a deductive system,A ⊆ L a non-empty set
of assumptions, and : A → L a (total) contrary function.

We say that a sentence p ∈ L is derivable from assump-
tions S ⊆ A and rules R ⊆ R, denoted by S ⊢R p, if
there is a finite rooted labeled tree T such that the root is
labeled with p, the set of labels for the leaves of T is equal
to S or S ∪ {⊤}, and for every inner node v of T there is a
rule r ∈ R such that v is labelled with head(r), the number
of successors of v is |body(r)| and every successor of v is
labelled with a distinct a ∈ body(r) or ⊤ if body(r) = ∅

By ThD(S) = {p ∈ L | ∃S′ ⊆ S : S′ ⊢R p} we de-
note the set of all conclusions derivable from an assumption-
set S in an ABA framework (ABAF) D. Observe that S ⊆
ThD(S) since, by definition, each a ∈ A is derivable from
{a} ⊢∅ a. For S ⊆ A, we let S = {a | a ∈ S}; moreover,
for a derivation S ⊢ p we write asms(S ⊢ p) = S and for
a set E of derivations we let asms(E) =

⋃
x∈E asms(x).

Also, we often write S ⊢R p simply as S ⊢ p.
A set S ⊆ A attacks a set T ⊆ A if for some a ∈ T

we have that a ∈ ThD(S). A set S is conflict-free, denoted
E ∈ cf (D), if it does not attack itself. With a little notational
abuse we say S attacks a if S attacks the singleton {a}.

Given S⊆A, the closure cl(S) of S is cl(S)=ThD(S)∩
A. With a little notational abuse we write cl(a) instead of
cl({a}) whenever S is a singleton. A set S ⊆ A is closed
if S = cl(S). Observe that, in order for S to be non-closed,
it is necessary that R contains a rule a0 ← a1, . . . , an s.t.
a0 ∈ A, i.e., the head of the rule is an assumption.

Now we consider defense (Bondarenko et al. 1997; Čyras
et al. 2018). Observe that defense in general ABAFs is only
required against closed sets of attackers. Formally:
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Definition 2.2. Let D = (L,R,A, ) be an ABAF, S ⊆ A
and a ∈ A. We say that S defends a iff for each closed set T
of assumptions s.t. T attacks a, we have that S attacks T ; S
defends itself iff S defends each b ∈ S.

We next recall admissible, grounded, complete, preferred,
and stable ABA semantics.
Definition 2.3. Let D = (L,R,A, ) be an ABAF and S ⊆
A be a set of assumptions s.t. S ∈ cf (S). We say
• S ∈ ad(D) iff S is closed and defends itself;
• S ∈ pr(D) iff S is ⊆-maximal in ad(D);
• S ∈ co(D) iff S ∈ ad(D) and is a superset of every

assumption set it defends;
• S ∈ gr(D) iff S =

⋂
T∈co(D) T ;

• S ∈ stb(D) iff S is closed and attacks each x ∈ A \ S.
In this paper we stipulate that the empty intersection is

interpreted as ∅, i.e., if co(D) = ∅, then gr(D) = ∅.
Example 2.4. Let D = (L,R,A, ) be the ABAF where
L = {a, b, c, d, a, b, c, d}, A = {a, b, c, d}, the contrary
function is given as indicated, andR consists of rules:

b← a. a← b. d← b. b← c. d← c.

Let us discuss why S = {b} is admissible in D. First of all,
b is conflict-free as it does not derive b. Also, b is closed, i.e.,
cl(b) = {b}. Regarding defense, we have that {a} ⊢ b, but
also {b} ⊢ a, so the attack is defended against. Finally, c
attacks b ({c} ⊢ b), but {c} is not closed. Indeed, cl(c) =
{c, d}. Since {b} ⊢ d, this attack is also defended against.

3 Closed Extensions for Bipolar AFs
Our goal is to translate non-flat ABAFs into BAFs. In this
section, we develop BAF semantics which are suitable for
this endeavor (under complete-based semantics for ABAFs).
To this end we interpret the support relation in the spirit of
the notion of deductive support (Boella et al. 2010), i.e., the
intuitive reading is that whenever x is accepted and x sup-
ports y, then y is also accepted. While this approach borrows
from the BAF literature, to the best of our knowledge the
exact definitions do not coincide with any previously pro-
posed BAF semantics. We define extension-based semantics
directly on the given BAF, without re-writing it to an AF.

We start with the notion of the closure for BAFs.
Definition 3.1. Let F = (A,Att, Sup) be a BAF. Consider
the operator µ defined by

µ(E) = E ∪ {a ∈ A | ∃e ∈ E : (e, a) ∈ Sup}.
We call cl(E) =

⋃
n≥1 µ

n(E) the closure of E. A set E ⊆
A is called closed if E = cl(E).

Now we introduce the basic concepts of conflict-freeness
and defense underlying our semantics. As usual, a set of ar-
guments is said to be conflict-free whenever it does not at-
tack itself. Our notion of defense is inspired by the way it is
defined for ABA (cf. Definition 2.2).
Definition 3.2. Let F = (A,Att, Sup) be a BAF. A set
E ⊆ A is conflict-free if E ∩ E+

F = ∅; E defends a ∈ A if
E attacks each closed set S ⊆ A which attacks a; the char-
acteristic function of F is Γ(E) = {a ∈ A | E defends a}.

Observe that this is a weaker condition than the defense
notion of AFs since we can disregard non-closed attackers.
Example 3.3. Let F be the following BAF (recall that the
attack relation is depicted by solid edges and the support
relation by dashed edges):

zyxF : u v

We have that cl(y) = {y, z} and y defends z which can be
seen as follows: even though u attacks z, u is not a closed
set of arguments. The closure of {u} is cl({u}) = {u, v}.
Since y attacks v, we find z ∈ Γ({y}).

As we saw in this example, our defense notion can intu-
itively be interpreted as follows: if we seek to defend some
argument a, then it suffices to counter-attack the closure of
each attacker b of a (rather than b itself).
Lemma 3.4. Let F = (A,Att, Sup) be a BAF and let E ⊆
A and a ∈ A. Then E defends a iff for each attacker b of a
it holds that E attacks cl({b}).

Let us now define admissibility. We require a set of argu-
ments to be conflict-free, closed, and self-defending.
Definition 3.5. Let F = (A,Att, Sup) be a BAF. A set E ⊆
A is admissible, E ∈ ad(F), if i) E is conflict-free, ii) E is
closed, and iii) E ⊆ Γ(E).

Example 3.6. Recall Example 3.3. Let us verify that E =
{y, z} ∈ ad(F). Clearly, E is closed with E ∈ cf (F).
The two attackers of E are x and u with cl(x) = {x} and
cl(u) = {u, v}, both of which are counter-attacked. Another
admissible set is E′ = {u, v} since the attack by y is coun-
tered due to cl(y) = {y, z} and u attacks z.

As usual, the empty set is always admissible and hence,
we can guarantee ad(F) ̸= ∅ for any given BAF F .
Proposition 3.7. Let F be a BAF. Then ∅ ∈ ad(F). In par-
ticular, ad(F) ̸= ∅.

Given this notion of admissibility, the definition of the
remaining semantics is natural: for complete extensions,
we require E to include all defended arguments; preferred
extensions are defined as maximal admissible sets; the
grounded extension is the intersection of all complete ones.
Definition 3.8. Let F = (A,Att, Sup) be a BAF. A set E ⊆
A of arguments s.t. E ∈ cf (F) is

• preferred, E ∈ pr(F), iff it is maximal admissible;
• complete, E ∈ co(F), iff E ∈ ad(F) and E = Γ(E);
• grounded, E ∈ gr(F), iff E =

⋂
S∈co(F) S;

• stable, E ∈ stb(F), iff it is closed and E+ = A \ E.

Example 3.9. In our Example 3.3, the admissible exten-
sion E = {y, z} is maximal and thus preferred. Moreover,
{x, u, v} ∈ pr(F). We observe however that {y, z} is not
complete since it does not contain the unattacked argument
u. Hence co(F) = {{u, v}}.

As a final remark regarding our BAF semantics, let us
mention that they do not admit a translation into Dung-style
AFs. As the previous example already shows, preferred ex-
tensions are in general not complete (which is the case for
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AFs). Another interesting observation is that we do not nec-
essarily have a complete extension. These properties show
that a translation to AFs is impossible.
Example 3.10. Let F be the following BAF:

zyxF :

Suppose E ∈ co(F). Since z is unattacked, we must have
z ∈ E. As complete sets must be closed, y ∈ E follows.
However, by the same reasoning, x ∈ E and thus, E /∈
cf (F); a contradiction. Indeed, the only admissible sets are
∅ and {x}, both of which are not complete.

Note that, for the same reason, ABAFs cannot be trans-
lated into AFs: general ABAFs violate many properties that
hold for AFs. Thus we require BAFs for the translation.

4 Instantiated BAFs
Suppose we are given an ABAF D = (L,R,A, ). Our goal
is to translate D into a BAF FD = (A,Att, Sup). The un-
derlying idea is to define A and Att as it is done for flat
ABAFs, i.e., each ABA argument S ⊢ p corresponds to an
argument inFD which attacks arguments inFD correspond-
ing to T ⊢ q whenever p ∈ T . What we have left to discuss
is the support relation. To this end we need to take care of
the closure of sets of assumptions. More specifically, if some
assumption a is in the closure of a set S, i.e., S ⊢ a is an ar-
gument in D, then we encode this in FD using Sup.

To illustrate this, suppose we are given assumptions a, b, c
and rules r1 : p ← a, r2 : b ← a, and r3 : b ← c. From
r2 it follows that b ∈ cl(a), which can be encoded in our
instantiated BAF as follows: since b is an assumption, there
is some generic argument {b} ⊢ b for it, then the argument
stemming from rule r2, i.e., {a} ⊢ b, supports the argument
{b} ⊢ b; hence any closed set accepting {a} ⊢ b must also
accept {b} ⊢ b. Including the usual attacks, this would give
the following BAF (for a ∈ A, we depict {a} ⊢ a by just a):

b

a

p

a

b

c
b

a

c

It is now indeed impossible to accept {a} ⊢ b without
counter-attacking {c} ⊢ b since the former supports {b} ⊢ b.
With this support relation we miss however that we can-
not accept {a} ⊢ p, either: since constructing this argu-
ment requires a, we would then also have to include b due to
b ∈ cl(a). Hence {a} ⊢ p should also support {b} ⊢ b. More
generally, an argument S ⊢ p shall support each a ∈ cl(S):

a ∈ cl(S)⇒ (S ⊢ p, {a} ⊢ a) ∈ Sup. (1)

We therefore define the support relation of our correspond-
ing BAF according to (1) as follows.
Definition 4.1. For an ABAF D = (L,R,A, ), we define
the instantiated BAF FD = (A,Att, Sup) via

A = {(S ⊢ p) | (S ⊢ p) is an argument in D}
Att = {(S ⊢ p, T ⊢ q) ∈ A2 | p ∈ T}
Sup = {(S ⊢ p, {a} ⊢ a) ∈ A2 | a ∈ cl(S)}

Example 4.2. Recall our ABAF D from Example 2.4. The
instantiated BAF FD is given as follows (again, we depict
the generic argument {a} ⊢ a for each a ∈ A by a).

b

a

A1

a

b

A2

d

b

A3

b

c

A4

d

c

A5

a b c d

As we saw, {b} is admissible in D. Now consider the set
E of all arguments with {b} as assumption set, i.e., E =
{A2, A3, b}. Again, E is conflict-free and closed (in FD).
The attack from A1 is countered; moreover, A4 attacks A3;
however, as A4 supports d, the closure of A4 (in FD) is
{A4, d}with A3 attacking d; so this attack is also countered.
We infer that E is admissible in FD.

Though Definition 4.1 induces infinitely many arguments,
they are determined by their underlying assumptions and
conclusion. Hence it suffices to construct a finite BAF.

In the remainder of this section, we establish the follow-
ing main result showing that the BAF FD as defined above
is suitable to capture non-flat ABAFs for complete-based se-
mantics: if E is some extension (inFD), then a set of accept-
able assumptions can be obtained by gathering all assump-
tions underlying the arguments in E; and if S is acceptable
(in D), then all arguments constructible from the assump-
tions in S from a corresponding extension in the BAF FD.
Theorem 4.3. Let D = (L,R,A, ) be an ABAF andFD =
(A,Att, Sup) the instantiated BAF. Let σ ∈ {co, gr , stb}.
• If E ∈ σ(FD), then asms(E) ∈ σ(D).
• If S ∈ σ(D), then {x ∈ A | asms(x) ⊆ S} ∈ σ(FD).

If S ∈ ad(D), then {x ∈ A | asms(x) ⊆ S} ∈ ad(FD).
Example 4.4. Recall our ABA D andFD from above. As we
already saw, S = {b} ∈ ad(D) and indeed, E = {x ∈ A |
asms(x) ⊆ S} = {A2, A3, b} ∈ ad(FD) as we verified.

As stated in the theorem, we only get one direction for the
ad semantics; for the pr semantics, both directions fail. We
will discuss and subsequently fix the underlying issue later.

From ABA to BAF
Translating an extension of the given ABAF into one in the
BAF is the easier direction. Our first step is the following
proposition which shows the desired connection between
conflict-free and closed sets.
Proposition 4.5. Let D = (L,R,A, ) be an ABAF and
FD = (A,Att, Sup) the instantiated BAF. Let S ⊆ A and
let E = {x ∈ A | asms(x) ⊆ S}.
• If S ∈ cf (D), then E ∈ cf (FD).
• If S is closed in D, then E is closed in FD.
• If S ∈ ad(D), then E ∈ ad(FD).

In order to extend this result to complete extensions, we
have only left to show that all defended arguments are in-
cluded in the corresponding BAF FD.
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Proposition 4.6. Let D = (L,R,A, ) be an ABAF and
FD = (A,Att, Sup) the instantiated BAF. If S ∈ co(D),
then for E = {x ∈ A | asms(x) ⊆ S} we get E ∈ co(FD).

Moreover, the set of attacked assumptions is preserved.
Thus, we also find stable extensions of FD.
Proposition 4.7. Let D = (L,R,A, ) be an ABAF and
FD = (A,Att, Sup) the instantiated BAF. If S ∈ stb(D),
then for E = {x ∈ A | asms(x) ⊆ S} we get E∈stb(FD).

Consequently, the first item in Theorem 4.3 is shown.

From BAF to ABA
Turning extensions of the instantiated BAF into extensions
of the underlying ABAF is more involved and does not work
for admissible sets without any further restriction. It is im-
portant to understand why it does not work for admissible
sets since this will also demonstrate why complete-based se-
mantics do not face this issue. The problem is related to the
way we have to construct our support relation. We illustrate
this in the following example.
Example 4.8. Let D = (L,R,A, ) be the ABAF where
L = {a, b, c, a, b, c, p}, A = {a, b, c}, is as indicated, and
R = {p ← a., q ← b., c ← p, q., c ← c.}. Observe
that S = {a, b} is not admissible in D since S is not closed:
indeed, we can derive p from a and q from b and thus c from
S, i.e., c ∈ cl(S). Now consider FD = (A,Att, Sup):

p

a

A1

q

b

A2

c

p q

a b

A3

c

c

A4

c

c

p q

a b

A5

a b
c

We want to emphasize that there is neither a support arrow
from A1 to c nor from A2 to c; the fact that c ∈ cl({a, b})
holds is reflected in (A3, c) ∈ Sup and (A5, c) ∈ Sup.

Consider now E = {a, b, A1, A2}. As all arguments in
E are unattacked and have no out-going support arrows, it
is clear that E ∈ ad(FD). Yet, the required assumptions to
build these arguments are {a, b}, despite {a, b} /∈ ad(D).

The mismatch in the previous example occurred because
we did not take all arguments we can build from a and b.
Indeed, we did not include A3 and A5 in our extension E of
FD. These arguments encode the support from a and b to c
and, thus, we would have detected the missing c we cannot
defend. This observation leads to the following notion.
Definition 4.9. Let D = (L,R,A, ) be an ABAF; FD =
(A,Att, Sup) the instantiated BAF. A set E ⊆ A is assump-
tion exhaustive if asms(x) ⊆ asms(E) implies x ∈ E.
Example 4.10. In the previous Example 4.8, for the set E =
{a, b, A1, A2} of arguments we have asms(E) = {a, b}
and hence E is not assumption exhaustive because A3 and
A5 also satisfy asms(Ai) ⊆ asms(E).
Remark 4.11. In the previous subsection we started with
assumptions S and constructed E = {x ∈ A | asms(x) ⊆
S}. Such E is assumption exhaustive by design.

The next proposition states that the problematic behav-
ior we observed in Example 4.8 regarding admissible exten-
sions does not occur for assumption exhaustive sets.
Proposition 4.12. Let D = (L,R,A, ) be an ABAF and
FD = (A,Att, Sup) the instantiated BAF. Let E ⊆ A be
assumption exhaustive and let S = asms(E).
• If E ∈ cf (FD), then S ∈ cf (D).
• If E is closed in FD, then S is closed in D.
• If E ∈ ad(FD), then S ∈ ad(D).

Given the results we have established so far, Proposi-
tion 4.12 can only serve as an intermediate step because
it relies on assumption exhaustive sets of arguments. How-
ever, within the context of an abstract BAF this notion does
not make any sense; it is tailored to arguments stemming
from instantiating D. Because of this, the following lemma
is crucial. It states that for complete-based semantics each
extension is assumption exhaustive. Thus, in this case, the
mismatch we observed in Example 4.8 does not occur.
Lemma 4.13. Let D = (L,R,A, ) be an ABAF andFD =
(A,Att, Sup) the instantiated BAF. If E ∈ co(FD), then E
is assumption exhaustive.
Example 4.14. In Example 4.8, we saw that the set E =
{a, b, A1, A2} of arguments is not assumption exhaustive.
Indeed, since E is admissible, it is clear by definition that
each argument x with asms(x) ⊆ {a, b} is defended, in-
cluding A3 and A5. Hence E is not complete. On the other
hand, Γ(E) = {a, b, A1, A2, A3, A5} = E′ is assumption
exhaustive as desired.

Lemma 4.13 allows us to apply Proposition 4.12 to all
complete extensions. Hence we can infer the following re-
sult without restricting to assumption exhaustive sets.
Proposition 4.15. Let D = (L,R,A, ) be an ABAF and
FD = (A,Att, Sup) the instantiated BAF. If E ∈ co(FD),
then S = asms(E) ∈ co(D).
Corollary 4.16. Let D = (L,R,A, ) be an ABAF and
FD = (A,Att, Sup) the instantiated BAF.
• If E ∈ gr(FD), then S = asms(E) ∈ gr(D).
• If S ∈ gr(D), then for E = {x ∈ A | asms(x) ⊆ S}

we have that E ∈ gr(FD).
Finally, stable extensions (in the BAF FD) are also as-

sumption exhaustive due to Lemma 4.13 (each stable exten-
sion is complete). This yields the desired connection for stb.
Proposition 4.17. Let D = (L,R,A, ) be an ABAF and
FD = (A,Att, Sup) the instantiated BAF. If E ∈ stb(FD),
then S = asms(E) ∈ stb(D).
Example 4.18. Let us head back to our motivating Exam-
ple 1.1 on climate change. We instantiate the following BAF.

A1 mr

sr

A2 sr

s

A3 s

⊤
cc mr sr

The BAF reflects the fact that cc (in favor of climate change)
can only be accepted when mr (more rain) is also included
in the extension. As desired, cc is acceptable; for instance,
{cc,mr} ∈ co(D). Correspondingly, {cc,mr,A1, A3} ∈
co(FD) so the acceptability of cc is also found in FD.
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5 BAFs and Admissible Semantics
Our analysis in Section 4 reveals that we cannot capture ad-
missible (and consequently preferred) ABA semantics by
means of our instantiated BAFs since there is no way to
guarantee that the accepted sets of arguments are assump-
tion exhaustive. In this section, we will propose a slightly
augmented version of BAFs which additionally stores this
information. This proposal is in line with recent develop-
ments in AF generalizations which capture certain features
of instantiated graphs in addition to a purely abstract view
(Dvorák and Woltran 2020; Rapberger 2020; Rapberger and
Ulbricht 2023). In Section 6 we will see that the computa-
tional price we have to pay for this is moderate.
Definition 5.1. Let P be a set (of premises). A premise-
augmented BAF (pBAF) F is a tuple F = (A,Att, Sup, π)
where F = (A,Att, Sup) is a BAF and π : A → 2P is the
premise function; F is called the underlying BAF of F.

We let π(E) =
⋃

a∈E π(a). We sometimes abuse notation
and write F = (F , π) for the pBAF F = (A,Att, Sup, π)
with underlying BAF F = (A,Att, Sup). The following
properties are defined due to the underlying BAF F :
Definition 5.2. Let F = (F , π) be a pBAF. A set E ⊆ A is
conflict-free resp. closed whenever this is the case for E in
F ; E defends a ∈ A in F iff this is the case in F .

The only novel concept we require is the notion of an ex-
haustive set of arguments.
Definition 5.3. Let F = (F , π) be a pBAF. A set E ⊆ A is
exhaustive iff π(a) ⊆ π(E) implies a ∈ E.

Semantics for pBAFs are defined similarly as for BAFs,
but with the important difference that we require all
admissible-based extensions to be exhaustive.
Definition 5.4. For a pBAF F = (F , π), a set E ∈ cf (F) is
• admissible, E ∈ ad(F), iff E is exhaustive and E ∈
ad(F);

• preferred, E ∈ pr(F), iff it is ⊆-maximal admissible;
• complete, E ∈ co(F), iff E ∈ ad(F) and E = Γ(E);
• grounded, E ∈ gr(F), iff E =

⋂
S∈co(F) S;

• stable, E ∈ stb(F), iff it is closed and E+
F = A \ E.

Example 5.5. Let us illustrate how pBAFs can help us fix-
ing our issue illustrated in Example 4.8. Let us construct the
same BAF, but assign to each argument the assumptions re-
quired to entail it as premises.

A3{ab}A2{b}A1{a}

a{a} b{b} c{c}

A4{c} A5{ab}

We have that, for instance, E = {a,A1} ∈ ad(F). Both ar-
guments are unattacked with no out-going support arrow.
Thus the only condition to verify is exhaustiveness. This
property is satisfied since no further argument x satisfies
π(x) ⊆ π(E) = {a}.

On the other hand, E′ = {a, b, A1, A2} is not admissible.
Since π(E′) = {a, b}, exhaustiveness would also require
presence of A3 and A5 (which, in turn, would result in ac-
ceptance of c which cannot be defended).

Following the observations made in this example, we de-
fine FD as follows: The underlying BAFF is given as before
and π stores the assumptions required to entail an argument.
Definition 5.6. For an ABAF D = (L,R,A, ), the instan-
tiated pBAF FD = (A,Att, Sup, π) = (F , π) is

F = FD ∀x ∈ A : π(x) = asms(x).

We can now capture any non-flat ABAF as follows.
Theorem 5.7. Let D = (L,R,A, ) be an ABAF and FD =
(F , π) the instantiated pBAF. Then
• if E ∈ σ(FD), then asms(E) ∈ σ(D);
• if S ∈ σ(D), then {x ∈ A | asms(x) ⊆ S} ∈ σ(FD)

for any σ ∈ {ad , co, pr , gr , stb}.

6 Computational Complexity
We consider the usual decision problems (under semantics
σ) in formal argumentation. LetK be a knowledge base (i.e.,
an ABAF, BAF, or pBAF), let a be an assumption resp. ar-
gument, and let E be a set of assumptions resp. arguments.
• Credulous acceptance Credσ: Given K and some a, is it

true that a ∈ E for some E ∈ σ(K)?
• Skeptical acceptance Skeptσ: Given K and some a, is it

true that a ∈ E for each E ∈ σ(K)?
• Verification Verσ: Given K and a set E, is it true that
E ∈ σ(K)?

We start with the computational complexity of BAFs with
our novel semantics. The high level observation is that many
tasks are close to reasoning in usual AFs. However, comput-
ing the grounded extension is much harder, inducing certain
consequences (e.g. there is no shortcut for skeptical reason-
ing under complete semantics).
Theorem 6.1. For BAFs, the problem
• Verσ is tractable for σ ∈ {ad , co, stb}, coNP-complete

for σ = pr , and DP-complete for σ = gr .
• Credσ is NP-complete for σ ∈ {ad , co, pr , stb} and DP-

complete for σ = gr .
• Skeptσ is trivial for σ = ad , DP-complete for σ ∈
{co, gr , stb}, and ΠP

2 -complete for σ = pr .
Surprisingly, the price we have to pay for also capturing

admissible-based semantics is rather small. The computa-
tional complexity of the pBAFs we construct is almost the
same; the only difference is that skeptical acceptance w.r.t.
admissible semantics is not trivial anymore, but now be-
comes coNP-complete.
Proposition 6.2. For pBAFs, Skeptad is coNP-complete.

From this observation the following main theorem follows
as a corollary of the complexity results for BAFs.
Theorem 6.3. For pBAFs, the problem
• Verσ is tractable for σ ∈ {ad , co, stb}, coNP-complete

for σ = pr , and DP-complete for σ = gr .
• Credσ is NP-complete for σ ∈ {ad , co, pr , stb} and DP-

complete for σ = gr .
• Skeptσ is coNP-complete for σ = ad , DP-complete for
σ ∈ {co, gr , stb}, and ΠP

2 -complete for σ = pr .
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ad gr co pr stb

Verσ
ABA coNP-c DP2-c coNP-c ΠP

2 -c in P

BAF in P DP-c in P coNP-c in P

pBAF in P DP-c in P coNP-c in P

Credσ

ABA ΣP
2 -c DP2-c ΣP

2 -c ΣP
2 -c NP-c

BAF NP-c DP-c NP-c NP-c NP-c
pBAF NP-c DP-c NP-c NP-c NP-c

Skeptσ

ABA ΠP
2 -c DP2-c DP2-c ΠP

3 -c DP-c
BAF triv. DP-c DP-c ΠP

2 -c DP-c
pBAF coNP-c DP-c DP-c ΠP

2 -c DP-c

Table 1: Complexity: Non-flat ABA vs. (p)BAFs

Table 1 summarizes our complexity results for BAFs and
pBAFs and compares them to the known computational
complexity of non-flat ABA (Cyras, Heinrich, and Toni
2021).1 We observe that for each reasoning problem we con-
sider, pBAFs are one level below non-flat ABA in the poly-
nomial hierarchy. Moreover, BAFs and pBAFs are compa-
rable for most reasoning problems, with skeptical reasoning
for ad semantics being the only exception. This is in line
with our results that pBAFs are capable of capturing admis-
sible reasoning in ABA (cf. Theorem 5.7), whereas BAFs
are not. Note that Theorem 5.7 does not contradict the dif-
fering results pertaining to computational in complexity in
ABA vs. pBAFs since the instantiation procedure yields ex-
ponentially many arguments in general.

7 Discussion and Related Work
There is a rich selection of bipolar argumentation ap-
proaches in the literature (Cayrol, Cohen, and Lagasquie-
Schiex 2021). The most prominent ones are deductive
(Boella et al. 2010), necessary (Nouioua and Risch 2010),
evidential (Oren and Norman 2008) and backing (Cohen,
Garcı́a, and Simari 2012) support. More recent work on clas-
sical BAFs looked at symmetry between attack and support
(Potyka 2020), argument attributes (Gonzalez et al. 2021)
and monotonicity (Gargouri et al. 2021).

Our notion of defense can be characterized using notions
of extended attacks that occur in BAFs (Amgoud et al. 2008;
Boella et al. 2010). There is a mediated attack from a to b if
a attacks an argument c that is transitively supported by b
(Boella et al. 2010). Using our notion of closure from Defi-
nition 3.2, this can be rewritten as a attacks cl({b}). Hence,
Lemma 3.4 states that E defends a iff for each attacker b of
a, there is a direct or mediated attack from E to b.

Another approach is due to (Amgoud et al. 2008). Here
a set of arguments S defends (Dung 1995) an argument a
if S attacks every attacker of a. Further, S attacks an argu-
ment a iff there is a direct attack from S to a or S transi-
tively supports an argument b that attacks a. This amounts
to requiring that cl(S) attacks a. A set of arguments S is
then called conflict free if S does not attack any argument
in S in the previous sense, that is, if cl(S) does not directly

1In their paper, the standard definition of the empty intersection
is used, but the results can be derived analogously.

attack any argument in S. They call S admissible iff S is
conflict-free, closed under support and defends all its ele-
ments. One important difference to our notion of admissi-
ble sets is the definition of defense. While (Amgoud et al.
2008) allow defense via direct and supported attacks, we al-
low defense via direct or mediated attacks. For instance in
F = ({a, b, c}, {(a, c), (b, a)}, {(b, c)}), {a} is admissible
w.r.t. our definition because it defends itself against b via
a mediated attack, is closed under support and conflict-free.
However, it is not admissible w.r.t. the definition in (Amgoud
et al. 2008) because here, it does not defend itself against b.

The c-admissibility in (Cayrol and Lagasquie-Schiex
2005) is close to ours, but their work uses supported and
indirect defeat which is incompatible with our concepts.

(Cyras et al. 2017) also explored the relation ABAFs-
BAFs, but understands the BAFs under existing semantics
in terms of a restricted form of non-flat-ABAFs, rather than
ABAF as BAF, under new semantics, as we do.

8 Conclusion
We translated non-flat ABAFs into BAFs. To this end we
proposed novel BAF semantics to capture complete-based
semantics. By means of a novel formalisms, called premise-
augmented BAFs, we also established a correspondence be-
tween admissible-based semantics of non-flat ABA and our
BAFs. We discussed basic properties of these semantics and
proved the correspondence to ABA. We then investigated the
computational complexity of BAFs and showed that, com-
pared to non-flat ABA, the typical reasoning problems are
one level lower in the polynomial hierarchy.

This work opens several avenues for future work. It would
be interesting to extend our results to further ABA seman-
tics like semi-stable and ideal semantics (Čyras et al. 2018),
as well as a set-stable semantics (Cyras, Schulz, and Toni
2017). Further, we only discussed basic properties of our
(p)BAF semantics: it would also be interesting to study a
version of the fundamental lemma, existence of extensions,
and the impact of restricting the graph class.

The lower computational complexity of (p)BAFs com-
pared to non-flat ABAFs raises the question as to which
extent our research can contribute to the development of
efficient instantiation-based ABA solvers. As for the flat
ABA instantiation by means of AFs, our constructed graphs
are infinite in general. However, in the case of AFs, only
finitely many arguments suffice to determine the semantics,
and techniques to reduce the size of the constructed AF even
further are available (Lehtonen et al. 2023).

As a final remark, most approaches for explaining reason-
ing in ABA construct the underlying AF and extract an ar-
gumentative explanation from it (Cyras et al. 2021b). Our
research serves as the first step to enabling this machin-
ery for non-flat ABAFs as well: the next goal would be the
computation of intuitive explanations in (p)BAFs. This line
of research would contribute to applications where non-flat
ABAFs give natural representations, as in Example 1.1 as
well as settings where agents share information (e.g. as in
(Cyras, Schulz, and Toni 2017)) and may thus disagree on
which information is factual and defeasible.
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