
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/169069/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Zakarya, Muhammad, Gillam, Lee, Khan, Ayaz Ali, Rana, Omer and Buyya, Rajkumar 2024. ApMove: A
service migration technique for connected and autonomous vehicles. IEEE Internet of Things Journal 11

(17) , pp. 28721-28733. 10.1109/JIOT.2024.3403415

Publishers page: http://dx.doi.org/10.1109/JIOT.2024.3403415

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.

1

APMOVE: A Service Migration Technique for
Connected and Autonomous Vehicles

Muhammad Zakarya, Lee Gillam, Ayaz Ali Khan, Omer Rana, Rajkumar Buyya

Abstract—Multi-access edge computing systems (MECs) bring the capabilities of cloud computing closer to the radio access network
(RAN), in the context of 4G and 5G telecommunication systems, and converge with existing radio access technologies like satellite
or WiFi. An MEC is a cloud server that runs at the mobile network’s edge and is installed and executed using virtual machines
(VMs), containers, and functions. A cloudlet is similar to a MEC in that it consists of many servers that provide real-time, low latency,
compute services to connected users in the close proximity. In connected vehicles, services may be provisioned from the cloud or edge
infrastructure that will be running users’ applications. As a result, when users travel across many MECs, it will be necessary to transfer
their applications in a transparent and seamless manner so that performance and connectivity is not affected negatively. In this paper, we
propose an affective strategy for migrating connected users’ services from one edge node to another or, more likely, to a remote cloud
in a multi-access edge cloud. A mathematical model is, then, presented to estimate the expected time to migrate the services based on
the laws of motion, instantaneous speed, velocity, and time. Our evaluations and results, based one real workload traces, accounting for
mobility patterns, suggest that the proposed strategy “ApMove” migrates autonomous vehicles’ services while ensuring their expected
levels of performance (∼0.004% – 2.99% loss), reduced runtimes (or at least comparable to the no migration strategy) therefore, users’
costs (∼4.3% – 11.63%), and minimizing the response time (∼7.45% – 9.04%). Furthermore, approximately 17.39% migrations are
avoided. We also study the impacts of variations in car’s speed and network transfer rates on service migrations durations, frequencies,
latencies, and service execution times.

Index Terms—Edge cloud, service migration, connected vehicles, inetrnet of things

F

1 INTRODUCTION

Connected, or more formally, autonomous cars [1] are
considered as mitigators of issues such as traffic con-

gestion, road safety, inefficient fuel consumption, and pol-
lutant emissions that current road transportation system
suffers from [2]. These cars are usually connected to the
remote cloud where their data is being stored, processed,
and used for various objectives. However, there are various
challenges e.g. the risk of becoming the data useless on its
way to the cloud due to longer distances and delays. To
cope with the challenges associated to the cloud computing
and network, service providers are now encouraging for
working in the direction of massively distributed small
sized datacenter infrastructures (known as cloudlets) that
are installed at the edge of the network in close proximity
to users. The fog/edge concept is generating a lot of buzzes
since it enhances service agility and performance of realtime
services in terms of response time.
Multi-acces edge computing systems (MECs) offer the ca-
pabilities of cloud computing closer to the radio access
network (RAN), in the cotext of 4G and 5G telecommu-
nication systems, and converge with other radio access
technologies such as Satellite or WiFi. The MEC could be
more effective than the cloud for traffic flow in terms of

• M. Zakarya is with the Department of Computer Science, Abdul Wali
Khan University, Pakistan. L. Gillam is with the University of Surrey,
Guildford, UK. A.A. Khan is with the University of Lakki Marwat,
Khyber Pakhtunkhwa, Pakistan. O. Rana is with the University of
Cardiff, UK. R. Buyya is with the Cloud Computing and Distributed
Systems (CLOUDS) Lab, School of Computing and Information Systems,
University of Melbourne, Australia.
E-mail(s): mohd.zakarya@awkum.edu.pk, l.gillam@surrey.ac.uk,
ayazkhan@ulm.edu.pk, ranaof@cardiff.ac.uk, rbuyya@unimelb.edu.au

avoiding congestions, crowd, routing decisions, and man-
agement [3]. An MEC is a cloud server running at the
edge of a mobile network which is deployed and executed
over virtual machines (VMs), containers, and functions. A
cloudlet is like an MEC which implies several servers, pro-
viding compute services to connected users (cars) in their
close proximities [4]. The services of each car are assumed
to run in VMs in a cloudlet (MEC) covering a specific
geographic area. Therefore, when users (cars) move across
several MECs, it would be necessary to move and migrate
their services seamlessly and transparently to the new MEC.
Since migrations could degrade performance of these real-
time car services; therefore, intelligent decisions should be
very important. Most importantly, whether to migrate the
services are not; if the car is already in its destination. In
this research, our focus would be to propose an effective
strategy for migrating connected cars’ services from one
edge node to another or, more likely, to a remote cloud in
a MEC system. The experimentation should be completed
using real datasets of service migration, in a simulated fog
computing environment [5].
In this paper, we propose an effective strategy for mi-
grating connected users’ services from one edge node to
another or, more likely, to a remote cloud in the MEC
systems. Such decisions are taken based on the vehicle’s
speed, distance traveled, and more likely its destination
that could be predicted using machine learning models.
For example, if a vehicle is enough fast that results in
quick service migrations across edge nodes, then, probably
it would be better to migrate its services to a remote cloud
that covers a large geographic area [6], [7]. However, it
will essentially affect the latency and response time; thus,

2

traffic crowd management. Similarly, if services are being
migrated among edge nodes, then, each migration will have
a negative impact on the response time (migration down
time). Therefore, it would be essential to take appropriate
migration decisions on the right time without affecting the
performance of running applications [8]. The main part in
reaching these decisions is the deep neural network that will
take traffic data in terms of vehicle speed, distance traveled,
distance remaining, destination, and road congestion details
that are stored in a de-centralised storage area network
(SAN). Furthermore, routing decisions could be taken on the
edge while traffic management could be based on the huge
amount of data stored on a centralised cloud. The research
will investigate various methodologies such as: (i) training
the model on the edge and then predict; (ii) training the
model on the cloud and then predict; and (iii) training the
model on the cloud and then predict on the edge. The major
contributions of our research are:

• we investigate whether a user is, highly, likely to
keep moving quickly between edges or not;

• during mobility, when it will be effective to start
migrating the running service or application to the
target edge/cloud;

• an effective strategy is suggested to migrate con-
nected users’ services from one edge to another or,
more likely, to a remote cloud in a MEC platform;

• a mathematical model of the service migration tech-
nique is presented that is based on the motion’s laws;

• a probabilistic and a machine learning based models
are used to estimate the migration time; and

• Google’s and mobility datasets are used to validate
the model through plausible assumptions and simu-
lations [9].

The rest of the paper is organized as follows. In Sec. 2,
we formulate the service migration problem in the context of
connected cars. In Sec. 3, we propose ApMove, an approach
to migrate live services across various edges and/or remote
clouds for connected vehicles. In Sec. 4, we validate and
evaluate the performance of the suggested technique using
real workload traces from the Google clusters and cars
mobility dataset. In Sec. 5, we provide an outline of the
relevant work. Lastly, Sec. 6 brings the work to a close and
discusses future research directions.

2 BACKGROUND AND PROBLEM DESCRIPTION

Fig. 1 shows the system model for the service migration
technique that comprises a number of edge clouds (EC =
ec1, ec2, ..., ecn) and moving vehicles. Furthermore, a special
type of device is integrated in each connected or moving
vehicle (V = v1, v2, ..., vr). Moreover, each EC consists of
several numbers of servers (ES = es1, es2, ..., esn). We
assume each edge server and connected device consist of
sufficient number of VM or container instances to execute
the services [5]. Usually, Function as a Service (FaaS) are
preferred over VMs and containers due to the fact that
FaaS functions are lightweight. The resources of each VM
or container are denoted by R where (R = r1, r2, ..., ru).
All the ECs are connected to a remote virtualised cloud. In
this section, we briefly discuss the law of motion and the

service migration approach in connected vehicles. A list of
all mathematical notations and their description is shown in
Table 1.

TABLE 1: List of mathematical notations

Notation Description
H List of servers so that h ∈ H

VM List of VMs so that vm ∈ VM
x Position
t Time
s Speed
s′ Instantaneous speed
v(t) Velocity
v′(t) Instantaneous velocity
X(t) Displacement
a Acceleration
a′ Instantaneous acceleration
a(t) Acceleration at time t
tmig Migration time
toff The point at which migration is proffered
t1 Previous time (distance)

Rpast Previous service execution time
t2 Remaining time (distance)

Roffset The time at which the migration cost is recouped
C Constant
Vi Amount of VM data to be migrated in each round
Ti The time of each round in the migration

Tdown VM down time during the migration process
Vmem Size of the VM (to be migrated)

The displacement is the change in position x of a moving
object and can be computed through 4x = xf − xi, where
4x is the displacement, xf is the final position, and xi is
the initial position. Subsequently, we can compute the total
displacement as the sum of all displacements between two
points. To calculate the other physical quantities of a moving
object, we must introduce the time variable t. The elapsed
time, given by 4t = tf − ti, is the amount of time it takes
to travel between two points – where tf is the time noted at
position xf , and ti is the time when the object is at position
xi. The time variable allows us to specify not only where the
object is but also for how long it has been there (its position)
during its travel, but also how fast (speed) the object is
traveling. How fast and quickly an object is traveling can
be illustrated by the rate at which the position changes with
time, known as velocity v that is the ration between 4x
and 4t. However, a car cannot travel at a constant speed,
velocity, and the displacements may variate across the entire
route. Therefore, we assume its instantaneous velocity v′

while assuming ti = t and tf = t + 4t such that limit
4t→ 0.

v′(t) = lim
4t→0

x(t+4t)− x(t)

4t
=

dx(t)

dt
(1)

Through dividing the total distance traveled by the elapsed
time, we can compute the average speed s. However, the in-
stantaneous speed s′ the absolute value of the instantaneous
velocity |v′|. The acceleration is the rate at which velocity
changes i.e. the ration between the velocity 4v and time
4t. Actually, the acceleration denote the rate of change in
speed of the moving object. The instantaneous acceleration
is given by:

a′(t) = lim
4t→0

v(t+4t)− v(t)

4t
=

dv(t)

dt
(2)

3

Therefore, instantaneous acceleration is the derivative of
the velocity function, analogous to how velocity is the
derivative of the position function. Speed is measured as
distance moved over time and is given by:

speed (s) =
Distance

time
=

x2 − x1

t2 − t1
=
4x

4t
(3)

Speed is commonly measured in meters per second (m/s)
or kilometers per hour (km/h). Note that identifying the
expected maximum speed or velocity of a user might dictate
duration for migration completion, as illustrated in Sec. 3.1.
Using the above equation, if we know the speed and the
distance traveled by a moving object, we can find its time at
a particular position.

time =
Distance

speed
(4)

This is also possible to compute the time factor from the
velocity equation since velocity is the ration of displacement
and time.

time =
Displacement

velocity
(5)

To keep it simple, we assume that the distance between
two base stations or edge clouds and the speed of the car
are known in advance. We discovered the velocity func-
tion by taking the derivative of the position function, and
similarly, we discovered the acceleration function by taking
the derivative of the velocity function. We can calculate
the velocity function from the acceleration function and the
position function from the velocity function using integral
calculus1. We can take the indefinite integral of both sides
for Eq. 1 and Eq. 2 to find the velocity and position, respec-
tively:

v(t) =

∫
a(t)dt+ C1 (6)

x(t) =

∫
v(t)dt+ C2 (7)

where C1 and C2 are constants of the integration. Now,
if we describe the problem of the connected car service
migration i.e. when the services should be migrated or at
which time a vehicle is expected to enter a new edge cloud?
The estimated entrance time can help in improving the
agility of the services while the running service is already
migrated to the destination.

3 PROPOSED SOLUTION

As shown in Fig. 1, prior to when a particular car enters
a specific coverage area of the edge cloud, its running
services should be migrated to from the source edge to
the target edge. There are two situations: (i) when the
coverage areas overlap; and (ii) when there is no overlap.
In respect of overlapping regions, certain threshold values
should be defined to judge the strength of the edge signals
and implicitly trigger service migrations. In respect of non-
overlapping coverage areas, the time and distance factors
will help to explicitly trigger migration decisions. Note that

1. https://courses.lumenlearning.com/suny-
osuniversityphysics/chapter/3-6-finding-velocity-and-displacement-
from-acceleration/

t1 and t2 refer to ti and tf , respectively. Furthermore, tmig

is the duration needed for completion of the migratable
service and toff is the point at which the migratable service
is ready for running on the destination edge cloud [10],
[11]. Thus, our method and intention is to ensure that
the service is being migrated before toff – otherwise the
performance of the service is not guaranteed to meet service
level agreements (SLAs). The main objective of the service
migration problem is to compute the toff value (expected)
in such as way that:

tmig + toff ≤ Tmig (8)

where Tmig is the expected time of car entrance to the
destination edge cloud. In other words, the vehicle should
be given resource before Tmig on the destination cloud.
Too earlier toff values may waste resources since there
will be two services running for the duration of migra-
tion tmig . Similarly, too later toff values may degrade the
performance of the service since service migration is not
completed yet. In the former case, it is possible to run the
service on a remote cloud that covers large geographical
area. The toff can be estimated using Eq. 9.

toff =
4x

s
× tmig (9)

The migration time tmig can be computed using Eq. 10.
However, we will use a more robust approach - as described
in subsequent section.

tmig =
FaaSsize

B
(10)

where B is the bandwidth of the network that can be used to
migrate the function. In order to minimize tmig , we assume
that each FaaS has a redundant, periodically synchronized,
copy on the remote cloud. Once a migration decision is
triggered, instead of directly transferring the source FaaS to
the destination, the FaaS service is copied from the remote
cloud. The steps are shown in Alg. 1. The migration duration
and downtime (performance loss) is computed through the
mathematical model as demonstrated in Sec. 3.1.

3.1 Migration Time (Performance)
Modeling the performance of migration includes numerous
factors including the VM memory size, network transmis-
sion rate, the migration algorithm and the workload features
i.e. memory dirtying rate. The key parameters are VM size
(Vmem), network traffic (Vmig), total migration time (Tmig),
down time (Tdown), memory transmission rate (R), memory
dirty rate (D), threshold for last round (Vth) and writable
working set (W) to transfer hot pages. To minimize Tdown,
live migration copy the dirty pages at previous round of
transmission iteratively. Consider that there are n rounds,
which completes the pre-copy algorithm then the volume of
data at round i is Vi and the elapsed time is Ti for 0 ≤ i ≤ n.
The data transmitted and time during each round is given
by:

Vi =

{
Vmem if i = 0
D.Ti−1 if i > 0

(11)

Ti =
D.Ti−1

R
=

Vmen.D
i

Ri+1
(12)

4

FaaS FaaS

FaaS

Fig. 1: The proposed service migration strategy for autonomous cars

Consider that D < R on average, and ω denotes the ratio of
D to R then:

ω =
D

R
(13)

Combining equations 11, 12 and 13, we get:

Vi = Vmem.ωi (14)

The total network traffic is given by:

Vmig =
n∑

i=0

Vi = Vmem.
1− ωn+1

1− ω
(15)

The total migration time is given by:

Tmig =
n∑

i=0

Ti =
Vmem

R
.
1− ωn+1

1− ω
(16)

The migration downtime contains two different parts: (1) the
time to transfer lasting dirty pages in stop-and-copy period
i.e. Tn; and (2) the time to resume the VM at destination
host i.e. Tresume which has slight variation and can be
characterized as constant value of 20ms. The migration
downtime is given by:

Tdown = Tn + Tresume (17)

The inequality Vn ≤ Vth can be written as Vmem.ωn ≤ Vth

to calculate the total number of rounds for algorithm con-
vergence, which is given by:

n = logω.
Vth

Vmem
(18)

From the above studies, we determine that a VM having
small memory image and trivial ω would cause a smaller
amount of network traffic leading to shorter Tmig , therefore
is a better nominee for migration. Note that if ω is smaller,
then the pre-copy technique will converge faster. If the D is
even larger than the R then the amount of data transmitted
in each round i will beat the VM size, which will increase
the total migration time even the migration will not be
accomplished. We do not consider such situation in our
modeling, but Xen have solved this issue using the writable
working set technique. The pages which are rottenly dirtied
i.e. hot pages are ignored to transfer till the last round of
migration. More details on such type of study can be found
in [12]. Earlier studies have shown that migration durations
has an important impact over the network traffic, quality
of service, and service performance [13]. In this work, we
assume stateful migration which means that the entire VM is

5

Algorithm 1: Service migration technique
Input: List of MECs (C), Service migration requests

(M), Velocity v′(t)
Output: Service placement

1 for each m ∈M do
2 for each m ∈M compute toff using Eq. 9 ;
3 if tmig + toff ≤ Tmig then
4 for each c ∈ C do
5 if c has enough resources for m then
6 allocate m to c;
7 break ;
8 end if
9 end for

10 if m did not fit in any available c then
11 look for another c and allocate m;
12 else
13 “m cannot be allocated”;
14 “push the m request into Q (queue)”;
15 end if
16 end if
17 end for
18 return output

being migrated. However, stateless migrations i.e. migrating
just the relevant data, as needed for a given service, would
require short durations. In this context, those services that
require large amounts of history will have high performance
impacts [11].

4 PERFORMANCE EVALUATION

In order to evaluate the feasibility and performance of the
proposed model, we use different approaches to service
placement and migration [14]. Furthermore, we assume the
relocation problem as a binpacking issue and prefer to solve
it with heuristics rather than optimality. We assume that the
services are running in VMs that we resemble to functions
(FaaS). In case, a service is being migrated several times
within a pre-defined threshold time, which means that the
vehicle is traveling fast enough, we relocate that service to
the remote cloud. We use the Google dataset for service
execution times and migration statistics [9]; and the cars
mobility data from [15]. The Google’s dataset, which is an
extended version of a previous 2011 dataset, includes details
about job scheduling from 8 heterogeneous Google clusters
for May 2019.

4.0.1 Experimental Set-up
Our simulated MEC environment consists of a main data-
center and 30 edge servers which are related to 30 separate
edge locations. These edge servers are connected to the
main cloud through a 1GB/s network cable. There are 100
servers in the datacenter that belongs to five different CPU
architectures, i.e. 20 servers of each type, as shown in Table.
2. Moreover, each edge server also belong to these five
server types. The linked connected vehicles’ services were
supposed to be run by virtual computers of four differ-
ent sizes and speeds. All services are assumed to utilize
their provisioned resources as normally distributed. Table

3 shows the frequency of VMs in vCPUs (cores), which
were translated to ECUs (EC2 Compute Units) and mapped
to MIPS ratings. The ECU is characterized as having the
”equivalent CPU capability of a 1.0-1.2 GHz 2007 Opteron
or 2007 Xeon processor” and is rated per vCPU/core; hence,
the VM total rating is the multiple of cores (number) and
ECU rating. The rating is then converted to MIPS for
compatibility with iFogSim, which does not accept ECU.
The considerable disparity in VM storage capacity assures
heterogeneity, however we are aware that this will have
a significant influence on migration costs [16]. In order to
be compatible with the iFogSim [15], [16], [17], the speeds
of different hosts and Containers, VMs were matched to
millions of instructions per second (MIPS). We assume a
reliable connection among cloud and edges i.e. zero packet
loss. This should be noted that latency is computed using
0.02k2 (seconds), where k is the distance of hop from the
edge where services are running [18]. In our previous work
[14], we have described performance details for numerous
workloads or applications which are operating on these
hosts.

TABLE 2: Servers characteristics for simulated MEC setup
[ECU = CPU speed (GHz) × number of cores]

CPU Speed No of No of Memory Storage
model (MHz) Cores ECUs (GB) (TB)
E5430 2,830 8 22.4 16 4
E5507 2,533 8 20 8 8
E5645 2,400 12 28.8 16 4

E5-2650 2,000 16 32 24 8
E5-2651 1,800 12 21.6 32 12

TABLE 3: Various types of VM instances and their charac-
teristics – MEM means memory & vCPU denotes a hyper-
threaded core

Instance No of No of Speed MEM Storage
type vCPUs ECUs (GHz) (GB) (GB)

MIPS
t1.micro 1 1 1.0 0.613 1
t2.nano 1 1 1.0 0.5 1

m1.medium 1 2 2.0 3.75 410
m3.medium 1 3 3.0 3.75 4

4.0.2 Evaluation Metrics
We consider total number of migrations (within the edges
and edge-cloud), performance degradation (migration du-
ration), and response time (in minutes) as the performance
metrics. Moreover, service execution time, i.e., runtimes of
all VMs (seconds), and accuracy of the prediction approach
are also measured. To check the model performance in
predicting accurate migration times the true positive rate
(TPR) is calculated using Eq. 19.

TPR =
TP

TP + FN
(19)

The true positive (TP) is defined as the number of times
when migrations are correctly triggered. Similarly, false neg-
ative (FN) consists of the times that migration are triggered

6

incorrectly. Higher TPR values demonstrate larger accuracy
and vice versa.

4.1 Experimental Results
The experimental results are shown in Table 4. We use
two different approaches to migration durations i.e., past
runtimes from the Google’s data (Past), prediction through
simple regression (SR), and Boosted Trees (BT). Moreover,
all vehicles were assumed running at speed of 80KM/h
to 120KM/h (with random change). We assume a simple
2 × 2 topology with 4 intersection point and each edge
(road) is considerably long to simulate speed variations. We
assume that each vehicle once entered in the square, it can
move in any direction (random selection) [19]. Vehicles are
simulated through a poison process but the total number
is restricted to ensure enough bandwidth. The speed of the
vehicles are increased when congestion drops to low level
and decreased vice versa. The accuracy is the percentage of
migratable services whose were moved to the destination
within the estimated time. Once the service time is over
(VMs runtimes) the vehicles are assumed to reach their
destination. Finally, VMs sizes denote the service types
(applications or workloads), which are randomly picked, for
simulation purposes only. This should be noted that each
VM denotes a connected vehicle to make consistency with
the iFogSim simulator. The latency and migration durations
were observed dependent on the placement and migration
policies. Similarly, increasing the network bandwidth es-
sentially improves the migration process through reducing
their durations.
We observed that the placement and migration techniques
both have significant impacts over the latency, both in
cloud and fig, and network congestion; therefore, number
of migrations. Subsequently, higher number of migrations
increases the service execution time. The fewer number of
migrations ensures short execution times and lower laten-
cies. We also observed that a good prediction approach, such
as boosted trees, might increase the number of migratable
services; the more migratable services may mean higher
probabilities of unsuitable migrations, therefore, lower ac-
curacies. Fig. 2 shows the latencies which we observed in
the fog infrastructure and cloud. We noted longer latencies
for cloud due to increasing distances and number of running
applications. However, fog latencies are significantly lower
than the cloud and has lower impacts due to number of
services. The experiments were run 10 times and the error
bars show the variations among the outcomes.
Table 5 shows the network traffic for various experiments.
With increasing number of services, a significant growth
for the network traffic was observed. The proposed method
“ApMove” decreases the network traffic through reducing
the number of migrations. Higher number of migratable
services decreases the accuracy and, subsequently, the TPR.
ApMove can reduce approximately 36.42% migratable ser-
vices compared to AlwaysMigrate approach at comparabale
service execution times to the NoMigrate technique (∼1.01%
loss in performance). For the NoMigrate approach, albeit
we observed longer latencies in the fog; however, migration
techniques could play a significant role in reducing the fog
latencies. These outcomes are also dependent on the predic-
tion approaches used for services’ runtimes. For example,

10 100 500 1000
Number of services (VMs)

0

500

1000

1500

2000

La
te

nc
y

(s
ec

on
ds

)

Fig. 2: Latencies observed in fog and cloud

“SR” increases the number of migratable services than the
“Past” and “BT” than the “SR”. Thus, a good prediction
technique may not be always better than a worse method
in producing outcomes. Besides, service placement policies
have also shown significant impacts over the obtained re-
sults, which are not reported here.
As shown in Fig. 3, the network capacity has an impact
on the end to end delay and migration durations; however,
migration frequency is not affected. How often migrations
are triggered is mostly affected by the migration approach.
Furthermore, migration ratio can negatively affect the re-
sponse time. This should also be related to the available net-
work bandwidth for migration traffic. This should be noted
that when the same experiments with same experimental
parameters were carried out in containers (or microservices
and functions), instead of VMs, we observed reduced la-
tencies and quicker migration durations, therefore, smaller
execution times (the best performance) [20]. Similarly, re-
duced network traffic, both in the remote cloud and fog
infrastructure, further reduces the end to end delays. We
believe, network traffic along with service execution times
could also be minimized through using an approach that
migrates less data e.g. zip the data before transferring it
over the network [10].

4.2 Results Discussion
The migration duration is significantly dependent on the
VM capacity and transfer time of the network [21]. More-
over, the service latency depends over the distances and
capacities of the links between cloud-fog and fog-vehicle.
Subsequently, the latency relies on the migration strategy.
There is a trade-off between migration durations and service
latencies when service migrations are considered. On the
one side, service migration aids in bringing services closer
to cars, resulting in a low latency value once the transfer is
complete. Transferring service-related files to the target edge
server, on the other hand, takes time. When the transferred
files are enormous, the migration time can take quite a long
time. However, if the service is not migrated, the packet
must travel a considerable distance to reach the edge server
or cloud that hosts the service’s VMs, resulting in significant

7

TABLE 4: Experimental results (for number of migrations, the “+” denotes number of services being migrated from fog
to cloud and “-” represents cloud to fog migrations) – NoMigrate means service always running in the cloud while
AlwaysMigrate means services are migrated between edges along with the vehicles; exec. time is the sum of service
runtime and latency

Service Migration Runtime Migratable Accuracy Latency (seconds) Total Service TPR
placement approach approach services % % Fog Cloud migrations exec. time

NoMigrate

Past

0 100 1211.67 922.2 0 20821 1
AlwaysMigrate 7.9 87.6 611.67 2156.54 1203(+0,-0) 28995 0.876
SimpleMigrate 3 67.6 198.45 1258.89 123(+12,-5) 21690 0.676

ApMove 1.90 98.1 183.67 1145.1 119(+22,-3) 20849 0.981

NoMigrate

SR

0 100 1091.13 823.55 0 22799 1
AlwaysMigrate 8.67 81.65 557.23 2095.43 1283(+0,-0) 29164 0.816

FillUp SimpleMigrate 3.79 89.92 199.81 1301.13 117(+21,0) 24891 0.899
ApMove 1.53 71.11 190.99 1211.98 112(+10,-6) 22794 0.7

NoMigrate

BT

0 100 1001.3 1121.3 0 21988 1
AlwaysMigrate 10.78 79.79 587.51 2100.65 1178(+0,-0) 28902 0.8
SimpleMigrate 4.53 83.1 199.89 1287.3 129(+17,-1) 21967 0.831

ApMove 1.53 93.98 188.88 1212.7 121(+13,-4) 21915 0.94

0

1000

D
e
l
a
y

(
s
e
c
o
n
d
s
)

128

2000

3000

256

Bandwidth (MB)

ApMove
512 SimpleMigrate

1024 AlwaysMigrate
NoMigrate

0

10

20

30

F
r
e
q
u
e
n
c
y

128

40

50

256

Bandwidth (MB)

512 ApMove
1024 SimpleMigrate

AlwaysMigrate

0

500

M
i
g
r
a
t
i
o
n

d
u
r
a
t
i
o
n
s

(
s
)

128

1000

1500

256

Bandwidth (MB)

512 ApMove
1024 SimpleMigrate

AlwaysMigrate

Fig. 3: Results in terms of end to end delay (latency), migration frequency, and durations for different network bandwidth

TABLE 5: Network traffic (Killobytes)

VMs Cloud traffic Fog traffic
SimpleMigrate ApMove SimpleMigrate ApMove

10 2389 2298 1786 1702
100 3409 3367 1894 1893
500 4325 4103 2021 1991
1000 4943 4204 2190 2089

latency as the vehicle goes away.
The mobility of connected cars, or IoT devices, can have
an impact on edge/fog computing performance, especially
when they switch among edges often. Such service migra-
tion operations in a logical multi-tier computing infrastruc-
ture like edge/fog are dependent on: (i) the location of
connected devices; (ii) the direction of the mobility; (iii)
the car’s speed; and (iv) the recognition of a transitional
edge to which the migratable service can be uploaded,
with the notable exception of network area storage, and
later on can be downloaded to continue running. The per-
formance metrics of the edge/fog environment, such as
network latency, application performance, and service QoS,
can all change dramatically based on them. In order to see
similar impacts, we implemented the mobility model from
the MobFogSim simulator [15], [17]. Moreover, the mobility

data was taken from realtime traces in terms of latitude and
longitude values [22]. Since, iFogSim2 supports microser-
vices; therefore, we assumed that services are running in
a container/microservice instead of VMs. We modified the
migration model to account for: (i) migration costs (in terms
of performance loss); (ii) migrations among edges; and (iii)
migrations from fog to cloud and vice versa. The service
was assumed running in three different modules i.e. client,
processing, and storage. All other parameters including
cars speeds, networks, and datasets were kept the same as
described in [8], [15].
The results are shown in Table 6 and Fig. 4. We observed
that slower networks may increase migration times but
may reduce the total number of migrations and vice versa.
Furthermore, slower networks increases the service latency
and the network traffic. Interestingly, the car speeds may
significantly affect the total number of triggered migrations
but the migrations duration are trivially affected. We noted
that when cars are moving faster, up to a particular range,
the service latency may be higher than if they keep moving
slower. The latency variations could be reduced through
improving the network speeds. Network traffic is affected
by the total number of migrations, migration scheme, speed
of the vehicles, mobility patterns, and network bandwidth.

8

TABLE 6: Experimental results for the proposed “ApMove” migration technique in terms of variations in car speed, and
network type [the values are average and the ± denote the standard deviation across 10 experiments, a slow network has
lower bandwidth and lower transfer rates than the medium and fast networks]

Speed Network Migration time Number of Latency Execution time Network traffic
(kmph) type (seconds) migrations (seconds) (seconds) (Mbps)

slow 567.78±13.7 43±2 1689.78±45.78 26934±109.45 2093.45±55.65
50-60 medium 489.9±9.21 48±1 732.65±12.6 26542±107.33 1893.12±36.78

fast 273.67±5.32 57±2 92.64±8.59 26128±101.9 1253.09±12.98
slow 589.09±12.89 38±2 1763.12±43.87 27002±121.4 2102.3±51.09

80-90 medium 433.34±12.01 45±1 810.09±14.78 26992±114.56 1883.9±31.32
fast 268.32±3.44 52±2 105.03±11.23 27005±123.89 1267.97±10.58

slow 555.68±6.49 36±3 1901.65±56.89 27012±19.67 2098.4±43.95
110-120 medium 487.08±5.01 39±1 854.2±12.98 27009±17.74 1892.89±18.88

fast 298.06±2.21 46±2 115.4±6.31 27011±18.46 1309.11±9.9

50-60 80-90 110-120
Speed of the vehicle (kmph)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

L
at

en
cy

 (
se

co
n

d
s)

Slow network
Medium
Fast

Standard Dev.

50-60 80-90 110-120
Speed of the vehicle (kmph)

0

10

20

30

40

50

60

70

N
u

m
b

er
 o

f
m

ig
ra

ti
o

n
s

Slow network
Medium
Fast

Standard Dev.

50-60 80-90 110-120
Speed of the vehicle (kmph)

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

E
xe

cu
ti

o
n

 t
im

e
(s

ec
o

n
d

s)

×104

Slow network
Medium
Fast

Standard Dev.

Fig. 4: Results for the proposed “ApMove” methodology in terms of latency, number of migrations, and service execution
times for different network types and vehicle speeds [the service execution time is non-significantly affected by the car
speed and network type]

We also noted that service execution times are also de-
pendent on the users’ mobility, speed, and network traffic.
However, as shown in Fig. 4, the service execution time
is non-significantly affected by the car speed and type of
the network. These little variations are probably due to the
latency occurred due to differences in bandwidth of the
networks. Our generalization of the outcomes suggest that
at ∼0.004% – 2.99% performance loss, the service response
time could be improved significantly i.e. 7.45% – 9.04%. Fur-
thermore, approximately 17.39% migrations were avoided
as compared to the simple migration approach. The costs
savings due to service execution times were observed from
4.3% to 11.63%. We believe these savings will be higher for
more congested networks.

5 RELATED WORK

In [2], the authors have demonstrated a comprehensive
review of the literature on cloud computing’s application in
ITS and connected vehicles, as well as, taxonomies and use
cases. Moreover, they have identified areas in which more
research is needed to enable vehicles and ITS to employ
edge cloud computing in a completely managed, intelligent,
and automated manner. The importance and problems of
Software Defined Networks (SDN) for better network man-
agement in smart and connected automobiles are discussed
in [23]. The authors have also demonstrated the importance
of embracing cloud, edge, and fog computing for processing
huge quantity of realtime data produced by a network of
interconnected vehicles, as well as, the challenges that come

with this emerging technology. In [24], the authors have
proposed a cloud Communication-as-a-Service (CaaS) in
order to: (i) enable continuous communication to vehicles
beyond the range of roadside units; (ii) ensure Quality
of Service (QoS) in terms of throughput, delay, response
time, and packet loss rate; and (iii) deal with resource con-
straints in vehicular networks. Moreover, a vehicular cloud
architecture (V-Cloud) built of three layers is presented to
implement these solutions. The vehicular cloudlet layer is
designed through a collection of vehicles that are grouped,
connected to the network, in such a way that form a tree
topology. Similarly, the second layer is dubbed to a roadside
cloudlet that is a, local, cloud created between a group of
RSUs. Lastly, the central remote cloud is created by a group
of servers on the Internet, is the third tier of the V-Cloud
architecture.
In [25], the authors have elaborated the well-known virtual
machine (VM) migration problem in a roadside cloudlet-
based vehicular network, determining (1) whether a VM
should be migrated or not, and (2) where a VM should
be migrated, in order to reduce the overall network cost
for both VM migration and normal data traffic. The authors
have formulated the problem as a mixed-integer quadratic
programming (MIQP) problem after treating it as a static
off-line VM placement challenge. The fog computing ar-
chitecture is described in [26], along with its various ser-
vices and applications. Then, with a focus on service and
resource availability, the authors haved explored security
and privacy challenges in fog computing environments.

9

TABLE 7: Summary of the related works

Matching related work ApMove
criteria [5] [7] [18] [19] [21] [24] [25] [26]

Framework X X X X X
Migration prediction X X X

Mobility patterns X X X X X
Service performance X X X X X X

Latency X X X X X X X X
Service placement X X X X X X X X

Migrations
Among edges X X X X X
Edges to cloud X

Virtualization is a critical technique in edge, fog, and cloud
computing because it allows VMs to cohabit and share re-
sources on a real server (host). These VMs could be targeted
by malware, or the physical machine accommodating them
might suffer a system failure, resulting in the loss of services
and resources. In order to assess whether to proceed the
stop-and-copy stage during a system failure or an assault on
a edge node, a smart, conceptual, pre-copy live migration
technique is demonstrated, which predicts the downtime
after each and every iteration.
In [5], the authors argue that exploiting 6G mobile networks
has the potential to reduce communications delays, in par-
ticular, for execution of latency-critical and realtime tasks.
The 6G-enabled NIBs i.e. network in boxes, are installed in
connected cars, for instance, can connect with MEC servers
or dissimilar NIBs present in other cars. Albeit, these NIBs
can deliver adaptable and dynamic computing resources
to run real-time Internet of Vehicle (IoV) applications,
however, the communication and computational operations
have high energy costs. The authors have successfully built
an NIB task migration technique (NTM) for IoV in order to
obtain an optimal balance, to control the existing tradeoff,
between energy usage and time cost during the service
transfer. In [7], researchers have elaborated the possible
benefits of networked autonomous cars through looking
at five different use-cases: (a) vehicle platooning; (b) lane
switching; (c) intersection management; (d) road friction
estimation; and (e) energy management. According to [7],
while connectivity can significantly improve the connectiv-
ity of autonomous vehicle and help the development of ex-
isting transportation effectiveness, the level of benefits that
can be realised is dependent upon several factors including
connected vehicle penetration rate, traffic scenarios, and the
process of amplifying off-board data into vehicle control
frameworks.
The research conducted in [19] offers the VVMM-U (uni-
form), VVMM-LW (the least workload), VVMM-MA (mo-
bility aware), and MDWLAM strategies for vehicular vir-
tual machine migration (mobility and destination workload
aware migration). Simulations with varied levels of vehicu-
lar traffic congestion, VM sizes, and levels of load restriction
are used to evaluate their performance against a set of met-
rics. The most advanced technique (MDWLAM) considers
both the original host’s workload and mobility, as well as
the prospective destinations’. A legitimate destination will
have adequate time to accept the workload and, if required,
relocate the increased load as a result of this. Authors in [27]

give an introduction of the general topic of vehicle behavior
prediction and discusses its obstacles. Then, it classifies and
reviews the most current solutions based on deep learning
approaches using three criteria: (i) input representation; (ii)
type of output; and (iii) prediction approach. The research
also assesses the efficacy of a variety of well-known reme-
dies, identifies research gaps, and suggests new research
possibilities [28], [29].
In [30], the authors have provided an overview of the
fundamentals and enabling technologies of federated learn-
ing FL. Furthermore, a comprehensive analysis is offered
that details several FL applications in wireless networks,
as well as, their challenges and limitations. Beyond 5G
and 6G communication technologies, the efficacy of FL is
being investigated. The goal of this survey is to present
an overview of the current state of FL applications in key
wireless technologies, which will serve as a foundation for
gaining a thorough grasp of the subject. Finally, the authors
suggest a path forward for future research. In [6], authors
have extended the investigation by looking at strategies
that take advantage of off-board data collected from V2X
communication channels in addition to vehicle sensory data.
The findings illustrate that adding off-board information
with sensor information has the capability to potentially
develop low-cost, robust localization systems that could
be highly accurate; nevertheless, their performance is di-
rectly proportional to the speed and rate at which adjacent
connected vehicles or infrastructure are connected, and also
the quality of network service [13]. The “Follow-Me-Cloud”
system uses a Markov-process-based decision method to
make cost-effective, performance-optimized service choices,
while two separate methods based on software defined
networking technologies or the locator/identifier separation
protocol are suggested to guarantee service continuity and
uninterrupted execution [18]. The summary of the compar-
ison between our proposed technique “CoLocateMe” and
other closely related works is given in Table 7. We believe,
the comparison would also help readers to quickly identify
gaps for further research.

6 CONCLUSIONS AND FUTURE WORK

Real-time applications for connected cars may develop
sensitivity to the quality of networks, for instance, longer
latencies between services and vehicles. As a result, their
needs may be fulfilled by the new fog technology, which
lets calculations to be performed at the network’s edge. In
this paper, we suggested a mathematical model that can be

10

used to migrate running services across various regions for
connected vehicles. Moreover, we computed an appropriate
time in order to start migrating the running application to
the destination server. Through a number of simulations,
over realtime workload traces from Google, we showed that
the proposed strategy migrates running services while en-
suring their expected levels of performance and minimizing
the response time.
In the future, we will use more accurate models to char-
acterize the network congestion, performance degradation,
latencies, infrastructure heterogineities. Similarly, we will
study energy efficiency in cloud/fog/edge infrastructure
through characterizing different use cases. In addition, the
connected services and their qualities are mainly dependent
on various service providers such as resource, application,
and network. These providers will have their own objectives
and, perhaps, may compete for optimizing their desirable
objectives. There are other questions that should be investi-
gated in the future: (i) how often might migration be needed
as a consequence of topology? and (ii) what assumptions
should be used with regard to cell size, or proximity of edge
servers to one or more radio masts?.

ACKNOWLEDGMENTS

This work is supported by the Abdul Wali Khan University,
Pakistan and the Discovery project under the Australia
Research Council (ARC).

REFERENCES

[1] L. Gillam, K. Katsaros, M. Dianati, and A. Mouzakitis, “Exploring
edges for connected and autonomous driving,” in IEEE INFOCOM
2018-IEEE Conference on Computer Communications Workshops (IN-
FOCOM WKSHPS). IEEE, 2018, pp. 148–153.

[2] P. Arthurs, L. Gillam, P. Krause, N. Wang, K. Halder, and
A. Mouzakitis, “A taxonomy and survey of edge cloud computing
for intelligent transportation systems and connected vehicles,”
IEEE Transactions on Intelligent Transportation Systems, 2021.

[3] L. Gillam, “Will cloud gain an edge, or, closer, to the edge,” in
International Conference on Cloud Computing and Services Science.
Springer, 2018, pp. 24–39.

[4] S. K. Datta, J. Haerri, C. Bonnet, and R. F. Da Costa, “Vehicles as
connected resources: Opportunities and challenges for the future,”
IEEE Vehicular Technology Magazine, vol. 12, no. 2, pp. 26–35, 2017.

[5] X. Xu, L. Yao, M. Bilal, S. Wan, F. Dai, and K.-K. R. Choo, “Service
migration across edge devices in 6g-enabled internet of vehicles
networks,” IEEE Internet of Things Journal, 2021.

[6] S. Kuutti, S. Fallah, K. Katsaros, M. Dianati, F. Mccullough, and
A. Mouzakitis, “A survey of the state-of-the-art localization tech-
niques and their potentials for autonomous vehicle applications,”
IEEE Internet of Things Journal, vol. 5, no. 2, pp. 829–846, 2018.

[7] U. Montanaro, S. Dixit, S. Fallah, M. Dianati, A. Stevens, D. Ox-
toby, and A. Mouzakitis, “Towards connected autonomous driv-
ing: review of use-cases,” Vehicle system dynamics, vol. 57, no. 6,
pp. 779–814, 2019.

[8] D. Gonçalves, C. Puliafito, E. Mingozzi, O. Rana, L. Bittencourt,
and E. Madeira, “Dynamic network slicing in fog computing for
mobile users in mobfogsim,” in 2020 IEEE/ACM 13th International
Conference on Utility and Cloud Computing (UCC). IEEE, 2020, pp.
237–246.

[9] M. Tirmazi, A. Barker, N. Deng, M. E. Haque, Z. G. Qin, S. Hand,
M. Harchol-Balter, and J. Wilkes, “Borg: the next generation,” in
Proceedings of the Fifteenth European Conference on Computer Systems,
2020, pp. 1–14.

[10] M. Zakarya and L. Gillam, “An energy aware cost recovery ap-
proach for virtual machine migration,” in International Conference
on the Economics of Grids, Clouds, Systems, and Services. Springer,
2016, pp. 175–190.

[11] M. Zakarya, “An extended energy-aware cost recovery approach
for virtual machine migration,” IEEE Systems Journal, vol. 13, no. 2,
pp. 1466–1477, 2018.

[12] B. Shi and H. Shen, “Memory/disk operation aware lightweight
vm live migration across data-centers with low performance
impact,” in IEEE INFOCOM 2019-IEEE Conference on Computer
Communications. IEEE, 2019, pp. 334–342.

[13] J. Li, X. Shen, L. Chen, D. P. Van, J. Ou, L. Wosinska, and J. Chen,
“Service migration in fog computing enabled cellular networks to
support real-time vehicular communications,” IEEE Access, vol. 7,
pp. 13 704–13 714, 2019.

[14] A. A. Khan, M. Zakarya, R. Buyya, R. Khan, M. Khan, and O. Rana,
“An energy and performance aware consolidation technique for
containerized datacenters,” IEEE Trans. Cloud Comput., vol. 9, no. 4,
pp. 1305–1322, 2021.

[15] C. Puliafito, D. M. Gonçalves, M. M. Lopes, L. L. Martins,
E. Madeira, E. Mingozzi, O. Rana, and L. F. Bittencourt, “Mob-
fogsim: Simulation of mobility and migration for fog computing,”
Simulation Modelling Practice and Theory, vol. 101, p. 102062, 2020.

[16] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “ifogsim:
A toolkit for modeling and simulation of resource management
techniques in the internet of things, edge and fog computing
environments,” Software: Practice and Experience, vol. 47, no. 9, pp.
1275–1296, 2017.

[17] R. Mahmud, S. Pallewatta, M. Goudarzi, and R. Buyya, “Ifogsim2:
An extended ifogsim simulator for mobility, clustering, and mi-
croservice management in edge and fog computing environ-
ments,” arXiv preprint arXiv:2109.05636, 2021.

[18] T. Taleb, A. Ksentini, and P. A. Frangoudis, “Follow-me cloud:
When cloud services follow mobile users,” IEEE Transactions on
Cloud Computing, vol. 7, no. 2, pp. 369–382, 2016.

[19] T. K. Refaat, B. Kantarci, and H. T. Mouftah, “Virtual machine
migration and management for vehicular clouds,” Vehicular Com-
munications, vol. 4, pp. 47–56, 2016.

[20] R. Morabito, V. Cozzolino, A. Y. Ding, N. Beijar, and J. Ott,
“Consolidate iot edge computing with lightweight virtualization,”
Ieee network, vol. 32, no. 1, pp. 102–111, 2018.

[21] M. M. Lopes, W. A. Higashino, M. A. Capretz, and L. F. Bitten-
court, “Myifogsim: A simulator for virtual machine migration in
fog computing,” in Companion Proceedings of the 10th International
Conference on Utility and Cloud Computing, 2017, pp. 47–52.

[22] L. Codeca, R. Frank, and T. Engel, “Luxembourg sumo traffic (lust)
scenario: 24 hours of mobility for vehicular networking research,”
in 2015 IEEE Vehicular Networking Conference (VNC). IEEE, 2015,
pp. 1–8.

[23] R. M. Shukla, S. Sengupta, and M. Chatterjee, “Software-defined
network and cloud-edge collaboration for smart and connected
vehicles,” in Proceedings of the Workshop Program of the 19th Inter-
national Conference on Distributed Computing and Networking, 2018,
pp. 1–6.

[24] M. Garai, S. Rekhis, and N. Boudriga, “Communication as a
service for cloud vanets,” in 2015 IEEE Symposium on Computers
and Communication (ISCC). IEEE, 2015, pp. 371–377.

[25] H. Yao, C. Bai, D. Zeng, Q. Liang, and Y. Fan, “Migrate or
not? exploring virtual machine migration in roadside cloudlet-
based vehicular cloud,” Concurrency and Computation: Practice and
Experience, vol. 27, no. 18, pp. 5780–5792, 2015.

[26] O. Osanaiye, S. Chen, Z. Yan, R. Lu, K.-K. R. Choo, and M. Dlodlo,
“From cloud to fog computing: A review and a conceptual live vm
migration framework,” IEEE Access, vol. 5, pp. 8284–8300, 2017.

[27] S. Mozaffari, O. Y. Al-Jarrah, M. Dianati, P. Jennings, and
A. Mouzakitis, “Deep learning-based vehicle behavior prediction
for autonomous driving applications: A review,” IEEE Transactions
on Intelligent Transportation Systems, 2020.

[28] R. A. Addad, T. Taleb, H. Flinck, M. Bagaa, and D. Dutra, “Net-
work slice mobility in next generation mobile systems: Challenges
and potential solutions,” IEEE Network, vol. 34, no. 1, pp. 84–93,
2020.

[29] Z. Ning, J. Huang, and X. Wang, “Vehicular fog computing: En-
abling real-time traffic management for smart cities,” IEEE Wireless
Communications, vol. 26, no. 1, pp. 87–93, 2019.

[30] M. Al-Quraan, L. Mohjazi, L. Bariah, A. Centeno, A. Zoha,
S. Muhaidat, M. Debbah, and M. A. Imran, “Edge-native intel-
ligence for 6g communications driven by federated learning: A
survey of trends and challenges,” arXiv preprint arXiv:2111.07392,
2021.

	Introduction
	Background and Problem Description
	Proposed Solution
	Migration Time (Performance)

	Performance Evaluation
	Experimental Set-up
	Evaluation Metrics

	Experimental Results
	Results Discussion

	Related Work
	Conclusions and Future Work
	References

