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SUMMARY
The brain is spatially organized and contains unique cell types, each performing diverse functions and exhib-
iting differential susceptibility to neurodegeneration. This is exemplified in Parkinson’s disease with the pref-
erential loss of dopaminergic neurons of the substantia nigra pars compacta. Using a Parkinson’s transgenic
model, we conducted a single-cell spatial transcriptomic and dopaminergic neuron translatomic analysis of
young and old mouse brains. Through the high resolving capacity of single-cell spatial transcriptomics, we
provide a deep characterization of the expression features of dopaminergic neurons and 27 other cell types
within their spatial context, identifying markers of healthy and aging cells, spanning Parkinson’s relevant
pathways. We integrate gene enrichment and genome-wide association study data to prioritize putative
causative genes for disease investigation, identifying CASR as a regulator of dopaminergic calcium handling.
These datasets represent the largest public resource for the investigation of spatial gene expression in brain
cells in health, aging, and disease.
INTRODUCTION

In Parkinson’s disease (PD) there is preferential loss of dopami-

nergic (DA) neurons of the substantia nigra (SN) pars com-

pacta1,2 and intracellular accumulation of ⍺-synuclein. Charac-

teristic motor signs include tremor, bradykinesia, postural

instability, and rigidity, accompanied by non-motor features,

including dementia, depression, and psychosis.3 The disease af-

fects 1% of the global population above the age of 60 years.4

Age is the biggest risk factor for PD and SN DA neurons may

also be lost in healthy aged individuals.5–7 Overexpression of

⍺-synuclein through locus multiplication causes PD and in vivo

overexpression of human ⍺-synuclein in the SNCA-OVX mouse

model recapitulates DA neuron loss.8,9

Single-cell RNA sequencing has advanced our understanding

of cell-specific expression in complex tissues, such as brain.10–15

To isolate individual cells, the tissue is dissociated, resulting in

destruction of the tissue architecture and gene expression arti-

facts.16 Spatial transcriptomics preserves this architecture; how-

ever, current sequencing-based spatial technologies do not

consistently achieve single-cell or subcellular resolution at high

throughput.17 Fluorescent in situ hybridization-based methods

offer superior sensitivity at the individual probe level at lower
This is an open access article und
throughput. Spatial enhanced resolution omics sequencing

(Stereo-seq) offers nanoscale-resolution spatial expression data,

detecting thousands of genes simultaneously.18

Single-cell and spatial transcriptomics capture minute quanti-

ties of RNA, resulting in lower measurement accuracy compared

to bulk RNA sequencing.19 Translating ribosome affinity purifica-

tion (TRAP) enables cell-type-specific sequencing with measure-

ment sensitivity comparable to bulk RNA.20–26 TRAP mRNA is

ribosome bound and engaged in translation, providing a more ac-

curate indicator of protein abundance.27

TRAP and RiboTag (a related ribosomal profiling technology)

have previously been used to study DA neuron gene expression

in mice under healthy conditions and after exposure to the toxin,

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).26,28,29 The

DA neuron aging process has never been characterized using

this technology, nor the effects of overexpression of ⍺-synuclein.

Single-cell and single-nuclei RNA sequencing have been used

to study DA neuronal expression across a range of species,

including humans11,30,31 and mice.13,14,32,33 A comparison of

aged and young DA neurons, in a spatial context and comple-

mented with data from other brain cell types, is so far lacking.

In this study, we combined the advantages of Stereo-seq and

TRAP to characterize the spatial expression signature of individual
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cells in mouse brain, with a focus on DA neurons. We optimized a

protocol to segment individual cells fromStereo-seqdataandsub-

sequently identified 29 cell types across 18 brain sections. By

considering the location of each cell, we identified genes with

spatially variable expression, such as in SN and ventral tegmental

area (VTA)DAneurons. BycontrastingDAneurongene expression

with other cell types, we identified strongly specific, yet under-

studied, markers, including Slc10a4 and Cpne7. Using both long-

and short-read sequencing of translating mRNA captured by

TRAP, we discovered splice variants specific to DA neurons. We

further investigated whether DA axons harbor actively translating

ribosomes. To aid the investigation of putative causative genes in

PD, we demonstrated how measures of expression specificity

from Stereo-seq and TRAP can be used to prioritize candidate

genes of interest from GWAS regions. By this process, we identi-

fied a role for CASR in regulating intracellular calcium handling in

DAneurons.Wefinallycomparedagedandyoungbrains, revealing

an SN-specific loss of DA neurons and expansion of activatedmi-

crogliawith age. Further,we identifieda rangeofage-anddisease-

related expression changes in multiple cell types, including DA

neurons, spanning multiple PD-relevant pathways.

RESULTS

Integrated transcriptomic profiling in the brain
To combine the advantages of spatial resolution with the sensi-

tivity of the TRAP platform, we generated Rosa26fsTRAP::

DATIREScre (DAT-TRAP) mice, which express eGFP-L10a in

DAT-expressing cells (Figure 1A).34,35 DAT-TRAP mice were

crossed with SNCA-OVX mice and aged to 18 months to inves-

tigate the effects of overexpression of human ⍺-synuclein and

aging on DA neuron gene expression (Figures 1A and 1B).

TRAP samples were prepared from 56 mice by dissecting the

ventral midbrain and the dorsal and ventral striatum, and incu-

bating each homogenate in paramagnetic beads coated in

anti-eGFP antibody (STAR Methods; Figure 1G). Stereo-seq

samples were prepared from 18 mice by cutting 10-mm cryopre-

served sections from fresh frozen brains (STAR Methods).

Stereo-seq single-cell spatial transcriptomic profiling
enables the identification and annotation of distinct cell
types in the brain
To generate in situ transcriptomic data, 18 cryopreservedmouse

brain sections were individually mounted onto DNA nanoball-

patterned arrays for library preparation. All sections were
Figure 1. Integration of Stereo-seq and TRAP for high-resolution gene
(A) Transgenic mouse model: Rosa26fsTRAP::DATIREScre mice were crossed with

(B) Mice were aged to 18+ months in order to study the effect of healthy and Pa

(C) Stereo-seq array, with spatial transcript map from a single brain section.

(D) Conversion of transcript expression map to segmented individual cells. Se

complexity.

(E and F) Demonstration of spatial compartmentalization of annotated cell types: S

visualized. Dispersed cell types were also identified (e.g., astrocytes and inhibito

(G) Dissection and TRAP processing schematic, before performing short- and lon

captured by anti-GFP antibody-coated paramagnetic beads.

(H) Confirmation of eGFP colocalization with tyrosine hydroxylase (TH), a marker o

composite.

(I) Demonstration of the specific enrichment of DA marker genes and depletion o
analyzed as a single group (encompassing both age groups

and genotypes) to validate Stereo-seq analysis methodology

(Figure 1C; STAR Methods). We produced a spatial map of tran-

script detection to visualize the intensity of RNA capture across

each brain (Figure 1D). In each map, we observed distinct

anatomical compartments and cell boundaries. We developed

a custom image-processing pipeline to segment individual cells

from Stereo-seq brain sections (Figure 1D; STAR Methods; Fig-

ure S1 for a detailed example). In the first stage, cells were

filtered based on the number of detected genes, to exclude

low-complexity cells and putative multiplets (STAR Methods;

Figure S2C). Uniform manifold approximation and projection

(UMAP) visualization of all 18 brains confirmed that no obvious

batch-related differences were present (Figure S2A).We isolated

355,307 high-quality transcriptomes with spatial coordinates

from 18 mouse brains. In total, 14,494 genes were detected

across all brains, with a median of 626 genes per cell with

high-confidence cell segmentation. A summary of the quality

control workflow and outcomes is shown in Figure S2C.

Spatial transcriptomics enables the identification and annota-

tion of distinct cell types using both expression and location fea-

tures. Twenty-nine distinct cell types were consistently identified

across all brains sections by unsupervised clustering (STAR

Methods; Figures 1E and 1F; summary of all identified cell types

in Table S1). Cell types were labeled according to both their

anatomical localization and the genes most distinctively ex-

pressed (marker genes). For example, neuronsweredistinguished

from glia by the expression of Snap25 and by patterned localiza-

tion in regions, such as the hippocampus or thalamus (Figures 1E

and 1F). Distinct subpopulations of cells could be visualized,

such as neurons of the CA1, CA3, dentate gyrus, and subiculum

in the hippocampal region, or GABAergic nuclei within the

midbrain. Oligodendrocytes, astrocytes, microglia, and erythro-

cyteswere readily identifiable bymarker expression: oligodendro-

cytes,Olig1,Mbp, Sox10,Mog; astrocytes:Gfap, Slc1a3,Atp1a2,

Mt3; microglia, Tyrobp/Dap12, Ftl1, Cts(a/b/d/f/h/l/s/z), Aif1,

Tmem119, Cd68; erythrocytes, Hba- and Hbb- genes. Mapping

the identity of every cell to its spatial position of origin gives con-

fidence in ascribing greater annotation detail than with expression

data alone (e.g., labeling CA1 vs. CA3 hippocampal neurons).

TRAPgenerates a highly sensitive ‘‘translatomic’’ profile
of DA neurons
TRAP complements Stereo-seq by generating a highly sensitive

measure of gene expression in a target cell type. In addition,
expression profiling
SNCA-OVX mice to enable the capture of DA mRNA in a model of PD.

rkinsonian aging.

gmented cells were subsequently filtered based on transcriptome size and

patially distinct populations of the cortex, hippocampus, and thalamus can be

ry cortical neurons). A total of 29 distinct cell types were identified.

g-read RNA sequencing. eGFP-tagged ribosomes in DAT-expressing cells are

f DA neurons. Scale bars, 2,000 mm for individual channels and 250 mm for the

f marker genes of other neighboring cell types in DAT-TRAP mRNA (n = 56).
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mRNA captured by TRAP is engaged in translation, providing a

more accurate readout of gene expression compared to conven-

tional transcriptomic technologies.27 For deep characterization

of the DA neuron translatome, short- and long-read sequencing

wereperformedonDAT-TRAPsamples (Figure1G). Thedissected

ventral midbrain and striatum were processed to enrich for cell

body- and putative axon-localized transcripts, respectively. Spe-

cificexpressionof theTRAPtransgenewasconfirmedby immuno-

histochemical staining for eGFP, which showed distinct colocali-

zation to tyrosine hydroxylase (TH), a marker of DA neurons

(Figure 1H). In DAT-TRAP samples, canonical markers of DA neu-

rons were robustly enriched, relative to RNA from bulk tissue ho-

mogenate, while markers of other cell types present in the ventral

midbrain were depleted (Figures 1I and S2D). We compared our

DAT-TRAP enrichment data with those of a public DA neuronal

RiboTag dataset28 and confirmed correlated results, but stronger

enrichment of DA genes using TRAP (Figure S2E). Principal-

component analysis (PCA) of DAT-TRAPsamples showedamajor

distinction between DAT-TRAP samples and tissue homogenate

samples, indicating the importance of using cell-type-specific

RNA over bulk homogenate RNA (Figure S2F).

Functionally and spatially distinct populations of DA
neurons are detected by single-cell spatial
transcriptomic profiling
DA neurons are primarily situated in the ventral midbrain and can

be separated into SN and VTA populations by their mediolateral

position. SN DA neurons are particularly vulnerable to age-

related and Parkinsonian degeneration. By spatially resolving

each expression profile, DA neuronal analyses could be focused

to thosemost relevant to PD.We sought to identify DA neurons in

our Stereo-seq data and to characterize spatially dependent

changes in their expression. In total, 6,378 DA neurons were

robustly detected across all 18 brains (Figure 2A). Canonical

marker genes, Th, Slc6a3 (DAT), Ddc (Dopa decarboxylase),

and Slc18a2 (VMAT2) were strongly enriched in DA neurons,

relative to other cell types (Figure 2A). Highly specific markers

were also identified with an underreported role in DA function

(e.g., Slc10a4, Cpne7): SLC10A4 is a member of the bile acid

transporter family and regulates vesicular uptake of dopamine.36

CPNE7 is a calcium-dependent phospholipid-binding protein

that regulates autophagy and axonal/dendritic extension in other

cells.37 To integrate DA neuron-related data from Stereo-seq

and TRAP experiments, a meta-analysis was performed across

both enrichment comparisons (Figure 2B). Of the top 100 DA

neuron markers identified by Stereo-seq, 98 were also enriched

in TRAP samples, confirming the strong concordance of both

technologies (Figure S3A). The spatial specificity of each marker

could be qualitatively confirmed by visualizing the expression of

each gene in situ (Figure S3C).

We used the coordinate positions of Stereo-seq DA neurons to

identify 142 genes with significant evidence of spatially variable

expression (false discovery rate [FDR]-adjusted p < 0.01; STAR

Methods). This revealed a gradient of expression aligning with

the SN (e.g., Cplx1, Nrip3) and VTA (e.g., Calb1, Aldh1a1) of the

ventral midbrain (Figures 2C and 2E). Geneswith spatially variable

expression in other brain cell types are reported in Table S2. Two-

hundred and twenty differentially expressed genes were identified
4 Cell Reports 43, 113784, March 26, 2024
between the two subpopulations (FDR-adjusted p < 0.05),

including established (VTA, Calb1, Calb2; SN, Kcnj6 [Girk2],

Cplx1) and putative markers (SN, Ndnf, Rab3c, Rab6b; VTA,

Ahi1, Nnat). Greater Sox6 and Otx2 expression was observed in

the SN and VTA, respectively, by determining the number of cells

in which each was detected (Figure 2D). The spatial visualization

of marker gene expression demonstrated that although an SN-

VTA distinction is evident, cells from either population can be

found in the other brain region. Where possible, the functional

study of DA neurons could benefit from stratification of neurons

based on the expression of SN-VTA markers.

TRAP reveals the specificity of transcript expression in
DA neurons
To focus on genes actively translated in DA neurons, a measure

of gene enrichment was calculated by comparing the abundance

of transcripts in DAT-TRAP mRNA and bulk tissue homogenate

mRNA. Across all DAT-TRAP samples, 23,292 genes were de-

tected. Of these genes, 4,828 were found to be more abundant

compared to TOTAL RNA. This indicated the subset of the

transcriptome that is predominantly translated in DA neurons.

We next compared DAT-TRAP samples to published TRAP/

RiboTag datasets from glutamatergic and GABAergic neurons,

astrocytes, microglia, and oligodendrocytes in ventral midbrain.

Overall, 2,504 genes were found to be significantly specifically

expressed in DA neurons22,24,38–40 (STAR Methods; FDR-

adjusted p < 0.01) (Figure S3B). We leveraged the combination

of short- and long-read sequencing technology to profile the

specific splice variants that define DA neurons: 1,617 alterna-

tively spliced genes were detected, relative to ventral midbrain

RNA (Figures S3D and S3E). Interestingly, splicing was not

restricted to genes enriched in DAT-TRAP samples: 817 genes

demonstrated evidence of differential transcript usage without

gene-level enrichment, suggesting that a substantial component

of cell-type-specific function could be conferred by splicing and

not relative gene-level abundance.

We hypothesized that DA axons locally translate mRNA, due to

their extensive projection length into the striatum. We used TRAP

to capture putative axonalmRNA from the dorsal and ventral stria-

tum (Figure 1G). In striatal DAT-TRAP samples, we observed an

enrichment of 1,803 genes (FDR-adjusted p < 0.01), including ca-

nonical DA neuron markers, Th and Slc6a3 (DAT) (Figure S4A).

Wecomparedour enrichment datawith a previously reportedpro-

teomic characterization of the striatal DA axonal compartment

and found significant overlap between enriched genes/proteins

(hypergeometric test, p = 1.71e�29). The abundance of DA

neuronmarker genes in striatal DAT-TRAP samples was substan-

tially lower than in midbrain-derived samples, however. We also

observed the enrichment of markers of cell types other than DA

neurons (e.g., Gfap, Gad1, Gad2). We performed immunohisto-

chemical staining for TH and GFP in mouse brain sections at the

level of the striatum (Figure S4B). GFP puncta could be identified

that colocalized with TH; however, the overall signal was sparse.

Heritability enrichment analysis identifies CASR as a
regulator of intracellular calcium handling in DA neurons
Using Stereo-seq and TRAP data, we designed an approach to

prioritize candidate genes for sporadic PD investigation. We



Figure 2. High-resolution single-cell spatial mapping of subpopulations of DA neurons

(A) Confirmation of the spatial distribution of cells annotated as DA neurons.

(B) Top marker genes of DA neurons identified from Stereo-seq and TRAP data, including less commonly recognized Slc10a4, Gap43, and Cpne7. Genes are

ranked by the mean fold enrichment in DA neurons from both technologies.

(C) Markers of SN and VTA neuronal populations.

(D) Comparison of Otx2 and Sox6 detection rate by region, demonstrating greater expression in VTA and SN, respectively. Whiskers represent the largest value

within 1.53 the interquartile range of the first or third quartile. p = 1.99e�5 (Sox6) and 4.58e�8 (Otx2), logistic regression.

(E) Spatial representation of region-specific marker expression (Calb1 is VTA; Cplx1, Aldh1a1, Rab3c are SN). n = 18 brains, 6,378 cells for all Stereo-seq an-

alyses, n = 56 for TRAP analyses.
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reasoned that enrichment and specificity measures could be

used to partition PD heritability according to causative cell types,

as demonstrated previously.33,41 We measured the cell-type-

specific enrichment and specificity index (pSI) (STAR Methods)

of genes containing SNPs at an r2 > 0.5 and located within ±1

Mb of 107 common risk variants for sporadic PD42; 248 out of

303 genes were considered after retaining genes withmouse ho-

mologs (Table S3). We observed a broadly neuronal pattern of

candidate gene enrichment in Stereo-seq data (Figure 3A),

with SN DA neurons demonstrating the greatest mean enrich-
ment. Candidate genes were generally depleted in glial cell

types; however, Ctsb, Dpm3, Inpp5f, Rps12, Sbds, Scarb2,

and Stx4a were commonly enriched between glia and DA neu-

rons (Figure 3A). In TRAP data, DA neurons and oligodendro-

cytes were jointly found to specifically express the greatest num-

ber of candidate genes (Figure 3B). Together, our results indicate

a primary role for DA neurons in conferring genetic risk of spo-

radic PD; however, the common enrichment of a minority of

genes across distinct cell types also supports cell-type-agnostic

disease processes, as reported previously.43
Cell Reports 43, 113784, March 26, 2024 5
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We sought to demonstrate how cell-type-specific gene

expression could be used to prioritize candidate genes contain-

ing variation in linkage disequilibrium with lead PD SNPs. We

observed that for 63 out of 91 testable PD GWAS loci, the lead

SNP localized to a gene not considered specific or enriched in

DAT-TRAP samples. Notable exceptions included rs356182,

rs356203, rs256228, rs5019538 (SNCA), rs620513 (FGF20),

rs11158026 (GCH1), and rs649339 (SYT17), in which the most

proximal gene was also the most significantly enriched and spe-

cifically expressed. We focused on risk variant rs55961674, an

intronic variant of KPNA1. In DAT-TRAP samples, Kpna1 was

depleted and in low abundance, relative to bulk ventral midbrain

homogenate RNA, indicating low, nonspecific expression in DA

neurons. Three candidate genes within the rs55961674 search

window were significantly enriched by TRAP, specifically ex-

pressed (compared to other TRAP/RiboTag datasets) and con-

tained variants in linkage disequilibrium with the lead SNP (Fig-

ure 3C). Casr, encoding the calcium sensing receptor, was

selected for further investigation, based on demonstrating the

most specific expression to DA neurons.

We first validated specific Casr protein expression in DA neu-

rons of the mouse ventral midbrain (Figure 3D). Intriguingly, we

observed a distinctly cytoplasmic pattern of expression specif-

ically in DA neurons, while neighboring cells showed depleted

cytoplasmic signal and intense nuclear staining. To confirm

this difference, we compared the ratio of cytoplasmic to nuclear

Casr intensity and found significantly higher cytoplasmic expres-

sion in TH-positive than TH-negative cells of the ventral midbrain

(Figure 3D; STAR Methods).

We next sought to investigate CASR expression and function

in human induced pluripotent stem cell (iPSC)-derived DA neu-

rons. We observed that CASR protein was prominently ex-

pressed in TH-positive neurons, with a diffuse cytoplasmic signal

(Figure 3E). To evaluate whether CASR protein was functional

and able to modulate intracellular calcium levels and dynamics

in iPSC-derived DA neurons generated from a patient with PD

carrying an SNCA triplication mutation, we measured cyto-

plasmic calcium in cells treated for 1 h with R568 (10 mM), a pos-

itive allosteric modulator of CASR.44 To estimate the levels of

calcium stored in the intracellular compartments, we stimulated

the cells with ionomycin (5 mM) and measured the increase in cy-

toplasmatic calcium using Fura-2AM.45 A significant difference
Figure 3. Mapping, expression, and function of PD GWAS risk loci

(A) Log2-fold enrichment or depletion of candidate PD GWAS genes in each ann

enriched in neurons and depleted in glia. Whiskers represent the largest value w

(B) The number of candidate PD GWAS genes found to be significantly specifica

dendrocytes jointly specifically expressed the greatest number of candidate g

neurons), 3 (oligodendrocytes), 6 (microglia), and 6 (astrocytes).

(C) Linkage disequilibriummeasures (R2 and D0 ) for rs55961674, indicating the can

between the lead SNP and neighboring loci. Log2-fold change and pSI values ind

specifically expressed candidate gene.

(D) Immunohistochemical confirmation of specific Casr expression in TH-positive

in neighboring nuclei of TH-negative cells (open arrows). The cytoplasm:nucleus ra

rank-sum text (n = 8, p = 0.0078). Scale bars, 150 mm for individual channels and

(E) Immunocytochemical confirmation of CASR expression in TH-positive iPSC-d

(F) Confirmation of CASR-mediated regulation of intracellular Ca2+ handling: R568

response to ionomycin administration; n = 3 per genotype; two genotypes; two-w

genotype; F = 92.8, p = 0.0006; each colored line in the left panel is a representa
in ionomycin-evoked calcium release was observed between

Parkinson’s and control iPSC-derived DA neurons before treat-

ment with R568 (Figure 3F). Acute treatment led to increased

evoked calcium release in both genotypes, bringing the pa-

tient-derived neurons into the range of the healthy control base-

line samples (Figure 3F).

By integrating expression specificity data, GWAS summary

statistics, and the ability to functionally study gene function in

iPSC-derived DA models, we can identify genes with a putative

disease role in DA neurons.

Stereo-seq captures age- and disease-induced
expression changes across distinct cell types, loss of
nigral DA neurons, and neuroinflammatory expansion of
microglia
Age remains themost important risk factor for neurodegeneration.

We therefore examined aging-related changes in expression

across all 29 cell types identified by Stereo-seq (Figure 4A). A

range of cell types demonstrated differential expression (FDR-

adjusted p < 0.05), most notably oligodendrocytes, cortical excit-

atory neurons of layers 1–3, thalamic neurons, and astrocytes.

Pathway enrichment analysis showed that a range of biological

processes were affected, including axon ensheathment (oligo-

dendrocytes), regulation of synaptic transmission and intracellular

calcium ion homeostasis (excitatory cortical neurons), and regula-

tion of catecholamine secretion (astrocytes).

We next compared gene expression between SNCA-OVX and

wild-type brains, stratified by age group (Figure 4B). In TRAP

samples, overexpression of SNCA could be confirmed on a

background of normal Snca abundance (Figure S4C). No other

genes were identified as significantly differentially expressed in

DA neurons between control and SNCA-OVX by TRAP. In Ste-

reo-seq, changes were detected across a range of cell types

(FDR-adjusted p < 0.05), especially excitatory and inhibitory

midbrain neurons, cortical excitatory neurons of layer 5, and

CA1 neurons of the hippocampus. Among the most significantly

differentially expressed genes were Ywhah,Ahcyl1,Nsamt1, and

Usp2, each implicated in PD-relevant areas of biology (Ahycyl1

interacts with Tau, Nsamt1 plays a role in essential tremor, and

Usp2-deficient mice display altered locomotor activity).

By capturing individual cells, Stereo-seq enabled the compar-

ison of cell number per cell type between conditions. We
otated cell type from Stereo-seq data. Genes were, with exceptions, generally

ithin 1.53 the interquartile range of the first or third quartile.

lly expressed in each TRAP/RiboTag cell type tested. DA neurons and oligo-

enes; n = 56 (DAT-TRAP samples), 6 (GABAergic neurons), 6 (glutamatergic

didacy of >8 genes for consideration. There is significant linkage disequilibrium

icate enrichment specificity to DA neurons. CASR was the most enriched and

cytoplasm of themouse ventral midbrain (filled arrows). Casr could be detected

tio of Casr signal was significantly greater in TH-positive cells; pairedWilcoxon

100 mm for the composite panel.

erived DA neurons. Scale bars, 100 mm for all panels.

(a positive allosteric modulator of CASR) increased the Fura2 peak amplitude

ay repeated measures analysis of variance (ANOVA) by treatment group and

tive trace for each genotype:treatment group.

Cell Reports 43, 113784, March 26, 2024 7



(legend on next page)

8 Cell Reports 43, 113784, March 26, 2024

Resource
ll

OPEN ACCESS



Resource
ll

OPEN ACCESS
detected an expanded microglial population in aged brains

(Figure 4C; FDR-adjusted p < 0.1). The expansion of activated

microglia in aged brains was restricted to the midbrain, corpus

callosum, and external capsule. Immunohistochemical staining

for Dap12/Tyrobp, a marker of microglia (and the most enriched

Stereo-seq marker of this population) confirmed an in-

crease in the number of Dap12-positive cells with a microglial

morphology. We also observed an SN-specific loss of DA neu-

rons with age, highlighting the vulnerability of this subpopulation

of neurons compared to VTA (Figure 4D).

TRAP reveals the extent of age-induced expression
changes in DA neurons
WeusedTRAP toprovide a deeper focusonDAneurondifferential

gene expression with aging. Greater measurement sensitivity and

cohort size led to the discovery of 667 genes with altered expres-

sion in agedTRAPsamples (399upregulated, 268 downregulated,

FDR-adjusted p < 0.01) (Figure 4E). Thirteen candidate PDGWAS

genes were among the differentially expressed genes, including

Gpnmb, also found to be enriched in both DA neurons and oligo-

dendrocytes,and inagreementwithpreviousage-relatedneuronal

findings.10 We used 1,931 high-confidence protein-protein inter-

actions to subdivide differentially expressed genes into function-

ally related clusters (Figure 4F; STAR Methods). Each cluster of

genes was distinctly enriched for terms related to neuronal func-

tion, with particular importance in PD (e.g., lysosomal V-ATPase

activity, locomotory behavior, and synaptic endocytosis). By tak-

ing the directionality of expression change into account, gene

set enrichment analysis further indicatedanupregulationof synap-

tic and lysosomal-related genes (e.g., Syt1, Syt11, Sv2a, Ap2b1,

Atp6v0a1, Atp6v0d1, Atp6v1e1, and Atp6ap1) and a downregula-

tion of mitochondrial and PD-related genes (mt-Co1,mt-Nd1,mt-

Nd4,mt-Nd5, andmt-Cyb) (Figure 4G).

DISCUSSION

In this study, we generated a single-cell-level spatial transcrip-

tomic map of gene expression in the adult mouse brain and pro-

duced a high-fidelity translatome-level profile of DA neuron gene

expression. By integrating these two datamodalities, we charac-

terized the distinctive expression features of DA neurons,

demonstrated how expression specificity can be used to priori-
Figure 4. High-resolution age-related changes in gene expression

(A) Spatial representation of cell types ranked by overall aging-associated differen

multiple aging-relevant processes.

(B) Spatial representation of cell types ranked by overall genotype-associated

expression is subtler, compared to age.

(C) Odds ratio analysis of cell type abundance with age in Stereo-seq annotated c

the external capsule. Confirmatory immunohistochemical staining for Tyrobp/D

increase microglial count in aged brain sections. Wilcoxon rank-sum test; n =

mean ±99% confidence interval. Representative fields from young and old midb

(D) A comparison of DA neuron number in SN and VTA confirmed SN-specific loss

a random effect.

(E) Volcano plot of the fold change and FDR of genes comparing aged and youn

within the genes significantly differentially expressed.

(F) Protein-protein interactions among TRAP differentially expressed genes were

(G) Gene set enrichment analysis identifies and confirms the up- or downregula

organization and lysosomal biology were upregulated with age, as indicated by
tize candidate causal genes in PD, and examined the changes

that occur in the brain and DA neurons specifically with age.

We identified 29distinct cell types by unsupervised clustering of

cells, based on their expression properties. The spatial compart-

mentalization of distinct cell types could bemapped to anatomical

regions, as in the case of neuronal populations of the hippocam-

pus, thalamus, andmidbrain. The ability to spatially visualize each

cluster aided the annotation of cell types; however, asmethods of

spatial transcriptomic analysis develop, we anticipate the integra-

tion of spatial information directly into the clustering process,

wherein cells with close spatial proximity or patterned localization

(e.g., cortical, intestinal and dermal layers) and matched expres-

sion are more considered more similar.

The capture area of each Stereo-seq array is 100 mm2 in this

study, larger than existing available spatial transcriptomic tech-

nologies (Visium, 42.25 mm2; Slide-Seq 7.1 mm2),46–48 and each

Stereo-seq array contains 40 billion capture spots (Visium,

5,000; Slide-Seq, tens of thousands). We leveraged this greater

size and density of information to spatially resolve individual cells

across the brain. By achieving nanoscale resolution, single-cell

spatial data were generated without the need for deconvolu-

tion-based methods. We also did not require matched single-

cell RNA-seq samples for cell identity annotation.

By integrating Stereo-seq and TRAP data, we identified the

expression features most specific to DA neurons in comparison

to neighboring cell types. While Stereo-seq provided spatial

context, single-cell resolution, and a greater number of unique

cell types for comparison, TRAPdemonstrated greatermeasure-

ment sensitivity. By integrating short- and long-read sequencing

data from TRAP RNA, we have been able to profile the state of

splicing in DA neurons, revealing differential transcript usage

across more than a thousand genes. We detected 817 instances

of alternative splicing in which individual isoforms were enriched

by TRAP, but the overall gene-level count was not. This finding

indicates that mouse DA neurons actively translate a larger num-

ber of genes than are detectable from only gene-level count

data. Our understanding of cell-type-specific expression is

strengthened by considering transcript-level expression data.

The single-cell resolution of Stereo-seq enabled the distinction

of SN and VTA DA neurons in ventral midbrain. Although we de-

tected subtypes within both populations, we have not reported

them here, as their identity could not be accurately predicted
tial expression. Pathway overrepresentation analysis of each cell type revealed

differential expression, stratified by age group. The magnitude of differential

ell types revealed the expansion of microglia in midbrain, corpus callosum, and

ap12, the leading transcriptomic marker of this cell population, confirmed an

3 (young brains), 5 (old brains), p = 0.036; data here are represented as the

rain sections stained for Dap12/Tyrobp (STAR Methods). Scale bar, 100 mm.

with age. p = 0.0213, mixedmodel, Poisson regression with mouse of origin as

g TRAP samples (n = 56). Thirteen candidate PD GWAS (labeled) genes were

used to identify functionally distinct clusters.

tion of pathways relevant to aging in DA neurons. Genes related to synaptic

the enrichment score.
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by gene expression in testing data. We expect the addition of

further Stereo-seq samples, coupled with improved spatial clus-

tering method development, will lead to the robust identification

of further DA neuron subtypes in our data.

We used measures of expression specificity from Stereo-seq

and TRAP to demonstrate how genes within disease risk loci

can be prioritized for investigation. We showed that candidate

causal gene expression was most specific to SN DA neurons,

supporting the hypothesis that selective vulnerability may be in

part conferred by the selective expression of causative genes.41

We focused on a window surrounding rs55961674 for study, as

this SNP falls within the intronic region of KPNA1, a gene consid-

ered to not be expressed abundantly or with specificity in DA

neurons. By leveraging the sensitivity of TRAP and the diversity

of cell types detected in Stereo-seq, we could rank linkage-

associated genes surrounding rs55961674 by their expression

specificity. We demonstrated specific DA cytoplasmic expres-

sion of CASR in two model systems (mouse and human) and

showed that CASR regulates intracellular calcium handling in hu-

man DA neurons. The specificity of cytoplasmic CASR expres-

sion to DA neurons and demonstration of its functional role in

regulating intracellular calcium handling indicates that variation

in this gene could contribute to PD disease risk. Long-term func-

tional study of this gene is of interest, such as by generating a DA

neuron-selective knockout Casr mouse model.

The large capture area of the Stereo-seq array, combined with

single-cell-level resolution, enabled parallel region-dependent

and cell-type-dependent comparison. We identified an age-

dependent reduction in SN DA neuron cell number. This sup-

ports previous findings that DA neuron number declines with

age1,2 and demonstrates the ability of Stereo-seq to identify a

subtype of DA neuron that is most vulnerable to aging. In addi-

tion, we detected and confirmed the expansion of microglia

with age, expressing a variety of pro-inflammatory markers. Pre-

vious investigations into changes in microglial number with age

have reported disparate findings, depending on the species

and brain region investigated.10,49,50 However, age-related neu-

roinflammation has been shown previously to significantly

contribute to degeneration in PD.51

A surprising finding in this study was the absence of detect-

able gene expression changes in DA neurons due to SNCA over-

expression. The age-dependent pattern of SN DA neuronal loss

in SNCA-OVX mice is considered to recapitulate the slow pro-

gression of PD pathology in patients. We would suggest that

the transcriptional effects of SNCA overexpression (at the level

achieved by the SNCA-OVX model) are subtle. To capture DA

neuron-specific gene expression changes induced by the inter-

action of SNCA overexpression and aging, it may be necessary

to sample a greater number of time points and replicates. In

addition, the SNCA-OVX mice used in this study also expressed

Snca (STAR Methods). The expression of wild-type Snca may

ameliorate disease-related pathology previously observed in

Snca�/� SNCA-OVX mice. However, our Stereo-seq analysis

did enable the detection of transcriptional changes due to

SNCA overexpression in other cell types.

We leveraged the sensitivity of TRAP to assess the evidence

for axonal translation in DA neurons. We observed enrichment

of DAmarkers, Th, Slc6a3 (DAT), and Slc18a2 (VMAT2) in striatal
10 Cell Reports 43, 113784, March 26, 2024
TRAP samples; however, we also observed enrichment of

markers of other cell types. Furthermore, the abundance of DA

markers in striatal TRAP samples was markedly lower than in

midbrain-derived samples. We detected GFP puncta in striatum

that colocalized with TH, although overall signal was sparse.

Hobson et al. previously used RiboTag, a similar technology to

TRAP, to study axonal translation in DA neurons and concluded

that there was no evidence for the process occurring. We

conclude that we do see evidence for axonal translation in DA

neurons by TRAP, although we suggest that the scale of activity

is substantially lower than at the level of the cell body. The

enrichment of markers of other cell types in striatal TRAP sam-

ples also indicates the likelihood of low-level ectopic expression

of the eGFP-L10a transgene in neighboring cells, as has been re-

ported in DAT-Cre lines.52

Limitations of the study
An ongoing challenge for droplet-based single-cell and emerging

spatial transcriptomic technologies will be to increase the sensi-

tivity of gene detection. Lower detection sensitivity leads to zero

inflation, in whichmany genes are detected at the population level

but are largely undetectable at the individual cell level.53,54 The po-

wer to detected differential expression is limited by zero inflation.

Lateral diffusion of RNA also limits the resolving capacity of cur-

rent spatial transcriptomic methods.55 To minimize the impact of

diffusion, we segmented individual cells by spatial read intensity,

excluding lower-intensity background regions. In addition, we

excluded all cells that co-expressed markers of neurons and

glia. TRAP demonstrated greater detection power (over 15,000

genes per sample), offering the most inclusive and sensitive mea-

sure of DA gene expression currently available. The limitation of

TRAP is its specificity to cell subpopulations. DA neurons of the

SN and VTA could not be reliably separated during tissue pro-

cessing due to their proximity, so measurements reflect the aver-

aged expression of these regions. With greater detection sensi-

tivity and/or sample number, further DA neuron subpopulations

may become identifiable.

Together, our spatial transcriptomic and translatome profiling

of DA neurons represent a valuable resource to the neuroscience

community. Our spatial data can be used to prioritize candidate

causal genes involved in conferring genetic risk of brain-related

diseases other than PD. In addition, these data can be used as a

reference for the development of analytical approaches to

spatial research. Our TRAP data provide a reference for the

querying of genes or isoforms specific to DA neurons in health

and with age. We have combined all results from analyses in

this study into a database for public access: spatialbrain.org.
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anti-eGFP antibody (clone 19C8) Heintz Lab; Rockefeller

University

RRID:AB_2716737

anti-eGFP antibody (clone 19F7) Heintz Lab; Rockefeller

University

RRID:AB_2716736

anti-TH Abcam RRID:AB_1524535

anti-GFP Invitrogen RRID:AB_221569

anti-CASR Abcam RRID:AB_2071489

DAPI Thermo Fisher Scientific RRID:AB_2307445

anti-TYROBP/DAP12 Abcam RRID:AB_3086739

anti-MAP2 Abcam RRID:AB_2138147

anti-TH Millipore RRID:AB_90755

Alexa Fluor-conjugated anti-rabbit/chicken secondary

antibodies

Thermo Fisher Scientific RRID:AB_2536183, RRID:AB_2921074

Chemicals, peptides, and recombinant proteins

R 568 Tocris Cat# 3815; CAS 177172-49-5

Deposited data

Raw and analyzed sequencing data This Paper GEO: GSE215276 and CNGBdb: CNP0003397

CASR ICC data This Paper https://doi.org/10.5281/zenodo.10476097

CASR IHC data This Paper https://doi.org/10.5281/zenodo.10401754

TYROBP IHC data This Paper https://doi.org/10.5281/zenodo.10401777

Fura-2-AM data This Paper https://doi.org/10.5281/zenodo.10669197

Astrocyte TRAP data Sakers et al.24 GSE74456

GABAergic neuron RiboTag data Paul et al.38 N/A

Oligodendrocyte RiboTag data Voskuhl et al.39 GSE118451

Microglia TRAP data Vasek et al.56 GSE161460

GABAergic neuron TRAP data Ouwenga et al.40 GSE121162

Experimental models: Organisms/strains

Rosa26fsTRAP mice (B6.129S4-Gt(ROSA)26Sortm1(CAG-

EGFP/Rpl10a,-birA)Wtp/J)

JAX RRID:IMSR_JAX:022367

DATIREScre mice (B6.SJL-Slc6a3tm1.1(cre)Bkmn/J) JAX RRID:IMSR_JAX:006660

SNCA-OVX mice (B6.Cg-Tg(SNCA)OVX37Rwm

Sncatm1Rosl/J)

JAX RRID:IMSR_JAX:023837

Experimental models: Cell lines

JR053 (Control iPSC line 1) EBiSC JR053-1

SFC067-03 (Control iPSC line 2) EBiSC SFC067-03-01

SFC156-03 (Control iPSC line 3) EBiSC SFC156-03-01

SFC856-03 (Control iPSC line 4) EBiSC SFC856-03-01

SFC831-03 (SNCA triplication iPSC line - clone 1) EBiSC SFC831-03-01

SFC831-03 (SNCA triplication iPSC line - clone 3) EBiSC SFC831-03-03

SFC831-03 (SNCA triplication iPSC line - clone 5) EBiSC SFC831-03-05

Oligonucleotides

See Table S4

Software and algorithms

Analysis code This Paper https://doi.org/10.5281/zenodo.10401701

Minimap2 v2.18 Li57 RRID:SCR_018550
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Salmon v1.4.0 Patro et al.58 RRID:SCR_017036

Python v3.9 Van Rossum et al.59 RRID:SCR_008394

Fiji v1.53q Schindelin et al.60 RRID:SCR_002285

SciPy v1.9.0 Virtanen et al.61 RRID:SCR_008058

Scanpy v1.9.1 Wolf et al.62 RRID:SCR_018139

DESeq2 v1.36.0 Love et al.63 RRID:SCR_015687

R v4.2.1 R Core Team64 RRID:SCR_001905

Bioconductor v3.15 Huber et al.65 RRID:SCR_006442

Homologene v1.4.68.19.3.27 NCBI Resource

Coordinators66
RRID:SCR_002924

biomaRt v2.52.0 Durinck et al.67 RRID:SCR_019214

Fgsea v1.22.0 Korotkevich et al.68 RRID:SCR_020938

MSigDB v7.5.1 Subramanian et al.69 RRID:SCR_016863

Guppy v4.5.2 Oxford Nanopore

Technologies Ltd

https://community.nanoporetech.com/docs/

prepare/library_prep_protocols/Guppy-

protocol/v/gpb_2003_v1_revax_14dec2018/

guppy-software-overview

CellProfiler v4.2.5 Stirling et al.70 RRID:SCR_007358

SpatialDE2 Kats et al.71 https://github.com/PMBio/SpatialDE

Ashr v2.2-63 Stephens, M72 https://cran.r-project.org/web/packages/

ashr/index.html

pSI v1.1 Dougherty et al.73 https://www.rdocumentation.org/packages/

pSI/versions/1.1

DRIMSeq v1.30.0 Nowicka and Robinson

et al.74
https://bioconductor.org/packages/release/

bioc/html/DRIMSeq.html

Other

Resource website This Paper https://spatialbrain.org/
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Richard

Wade-Martins (richard.wade-martins@dpag.ox.ac.uk).

Materials availability
This paper generated a cross between B6.129S4-Gt(ROSA)26Sortm1(CAG-EGFP/Rpl10a,-birA)Wtp/J (RRID:IMSR_JAX:022367),

B6.SJL-Slc6a3tm1.1(cre)Bkmn/J (RRID:IMSR_JAX:006660) and B6.Cg-Tg(SNCA)OVX37Rwm Sncatm1Rosl/J (RRID:IMSR_

JAX:023837). All three lines are available from JAX.

iPSC lines used as part of this study are available from the authors. Please contact the lead contact for access/more details.

Data and code availability
d All raw data from TRAP experiments have been uploaded to the Gene Expression Omnibus (GEO accession number:

GSE215276). The Stereo-seq raw data that supports the findings of this study have been deposited into CNGB Sequence

Archive (CNSA) of China National GeneBank DataBase (CNGBdb) with accession number CNP0003397. All processed

data, including results of all analyses are provided at spatialbrain.org. Imaging data of CASR and TYROBP immunohistochem-

istry samples have been deposited for public access at Zenodo (CASR IHC: https://doi.org/10.5281/zenodo.10401754, CASR

ICC: https://doi.org/10.5281/zenodo.10476098, TYROBP IHC: https://doi.org/10.5281/zenodo.10401777).

d All original code has been deposited at https://github.com/legbar/spatialbrain and is publicly available as of the

date of publication (https://doi.org/10.5281/zenodo.10401701). Protocols for laboratory collection and processing of

samples as described in this study are published as a collection at protocols.io (https://doi.org/10.17504/protocols.io.

36wgqj75kvk5/v1).

d Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon

request.
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Animals
All experiments and procedures conducted on animals were carried out in accordance with United KingdomHomeOffice regulations

under the Animal (Scientific Procedures) Act (1986), and were approved by the local ethical review board of the Department of Phys-

iology, Anatomy andGenetics at the University of Oxford. All micewere housed in the University of Oxford Biomedical Services Build-

ing. Mice had access to standard food and water ad libitum. Mouse holding rooms were maintained at 22�C and 60 to 70% humidity

on a 12-h light-dark cycle. All mice were bred on a C57/BL6 background (MGI Cat# 2159769, RRID:MGI:2159769). For all experi-

ments, animals of both sexes were used unless indicated otherwise. Animals used for both Stereo-seq and TRAP technologies

were littermates.

iPSC-derived dopamine neurons
The generation and characterization of iPSCs from healthy individuals or PD patients carrying a triplication of the SNCA locus were

described in Haenseler et al.75 The three control and three SNCA-Triplication patient lines underwent a differentiation process

following the protocol described by Fedele et al.76 with slight modifications as outlined in Williamson et al.77 Briefly, the cells were

initially patterned for 10 days, followed by expansion of midbrain floor plate progenitors for 19 days. Subsequently, the progenitors

were differentiated for an additional 10 days, then replated and matured for a further 5 weeks until reaching DIV 60 for imaging.

METHOD DETAILS

Transgenic model generation
Homozygous Rosa26fsTRAP mice were bred with homozygous DATIREScre mice to generate heterozygous Rosa26fsTRAP::DATIREScre

offspring that were used for TRAP experiments. Rosa26fsTRAP parents were crossed and bred to be hemizygous hSNCA+ (SNCA-

OVX): Offspring were a mixture of hemizygous hSNCA+ and hSNCA-. All animals were wild-type mouse Snca+/+, due to the position

of the ROSA26-eGFP-L10a locus being on the same chromosome as Snca (chromosome 6). Routine ear-clipping, digestion and

PCR-genotyping was performed as described in Hunn et al.7 Primer sequences used for confirmation of transgene expression

are supplied in Table S4.8,9,34,35

TRAP
Mice were sacrificed by cervical dislocation, the ventral midbrain and striatal tissue were rapidly dissected and affinity purification of

eGFP-tagged polysomes was performed.20 Briefly, dissected tissue was immediately dounce homogenized in lysis buffer containing

20mMHEPES KOH, 150mMKCl, 10 mMMgCl2, 0.5 mMDTT, 100 mg/mL cycloheximide, RNasin (Promega) and SUPERase-in (Life

Technologies) andComplete-EDTA-free protease inhibitors (Roche) in Rnase-free water. The lysate was cleared by two-stage centri-

fugation for 10 min at 2,000 x g and 20,000 x g. Each lysate was incubated with monoclonal anti-GFP antibodies (Heintz Lab; Rock-

efeller University Cat# Htz-GFP-19C8 and Htz-GFP-19F7, RRID:AB_2716737 and RRID:AB_2716736), coated on paramagnetic

beads through a streptavidin-biotin-protein L linker (Pierce; Thermo Fisher Scientific) for 18 h at 4�C. To remove non-specifically

bound material, including RNA, beads were washed 6 times in a high-salt solution containing 20 mM HEPES KOH (pH 7.4),

350mMKCl, 10mMMgCl2, 1%NP-40, 0.5 mMDTT, 100 g/mL cycloheximide, and Rnasin and Superasin. RNAwas extracted using

the Rneasy Micro Plus kit (Qiagen). RNA quantity and integrity were measured using the Quant-it RiboGreen RNA Assay Kit (Thermo

Fisher) and Agilent 2100 Bioanalyzer, respectively. RNA-seq library preparation was performed using the NEBNext Ultra II Directional

RNA kit. Transcript level quantification was performed using Salmon (v1.4.0, RRID:SCR_017036).58

Long-read sequencing and data processing
Twelve TRAP samples and three TOTAL samples were sequenced using the Oxford Nanopore Technologies MinION platform. TRAP

samples were equally divided by age and genotype (N = 3 per age:genotype). Library preparation was performed using the cDNA-

PCR kit (SQK-PCS109). Raw fast5 data was basecalled and demultiplexed using Guppy (v4.5.2). Read data from FASTQ files were

aligned to the mm10 genome (Gencode M25 GRCm38.p6) using minimap2 (v2.18, RRID:SCR_018550).57 Transcript level quantifi-

cation was then performed using Salmon (v1.4.0, RRID:SCR_017036).58

Stereo-seq library preparation and sequencing
Stereo-seq libraries were prepared using one chip per brain, across 18 brains in total.18 In brief, Stereo-seq samples were first pre-

pared by collecting postmortem mouse brains and flash-freezing at �80�C. 10 mm tissue sections were collected �3.5 mm from

bregma (to optimize capture of DA neurons in the SN and VTA) using a Leica CM1950 cryostat and adhered to each Stereo-seq

chip (BGI Research). The chip was placed on a warming plate at 37�C for 3 min and fixed in methanol at �20�C for 30 min. The

chip was incubated with 100 mL 0.1% pepsin at 37�C for 12 min for permeabilization and washed with 0.13 SSC buffer containing

0.05 U/mL RNase inhibitor. RNA captured by the DNA nanoball on the chip was reverse transcribed at 42�C for 90 min. Tissue was

removed from the chip by incubating with tissue removal buffer at 55�C for 10 min. After washing with 0.13 SSC buffer, the chip with

cDNA was incubated with 400 mL cDNA release buffer at 55�C for 4 h cDNA was purified and amplified using cDNA primer. A total of
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20 ng of cDNA was fragmented, amplified, and purified to generate each cDNA sequencing library. The cDNA library was sequenced

on an MGI DNBSEQ-Tx sequencer with the read length of 50 bp for read 1 and 100 bp for read 2.

Immunohistochemistry
Mice were anesthetized by intraperitoneal injection of 150 mL pentobarbital. Upon loss of the pedal withdrawal reflex, the thoracic

cavity was opened, and 25 mL of phosphate-buffered saline (PBS) was administered transcardially, followed by 25 mL of 4% para-

formaldehyde (PFA), diluted in PBS. The brain was extracted and stored overnight in 4% PFA at 4�C. Brain tissue was next dehy-

drated, and paraffin embedded through graded alcohols, histoclear (ThermoFisher Scientific) and paraffin solution. Tissue blocks

were finally sectioned at 7 mm using a Leica microtome (Leica Microsystems, Wetzlar, Germany) and mounted on glass slides

(VWR, Superfrost Plus).

Sections were prepared for immunofluorescence by performing dewaxing in histoclear, rehydration in graded alcohols, antigen

retrieval by microwave heat (20 min) and citrate buffer (ab96678, Abcam). Tissue was blocked for 1 h at room temperature using

10% donkey serum in TBS. Primary antibodies to TH (AbcamCat# ab76442, RRID:AB_1524535, 1:500), GFP (Thermo Fisher Scientific

Cat# A-11122, RRID:AB_221569, Invitrogen, 1:1000), CASR (Abcam Cat# ab79038, RRID:AB_2071489, 1:100) and TYROBP/DAP12

(Abcam Cat# ab283679, RRID:AB_3086739, 1:100) were prepared in blocking solution and incubated overnight at 4�C. Slides were

washed using TBS and incubated in secondary antibodies (Alexa Fluor-conjugated anti-rabbit/chicken A-31573, RRID:AB_2536183

and A78952, RRID:AB_2921074 1:1000) and DAPI (Thermo Fisher Scientific Cat# D3571, RRID:AB_2307445, 1:5000) for 1 h at room

temperature. Slides werewashed and coverslipsmounted using FluorSavemountingmedium (Millipore, Massachusetts, United States

of America).

For detection and quantification of Tyrobp/Dap12-positive cells and analysis of Casr-positivity, two custompipelines were built using

CellProfiler (RRID:SCR_007358), provided in the accompanying GitHub repository to this manuscript.70 To calculate the Casr cyto-

plasm:nucleus ratio, a 10 pixel-wide cytoplasmic object was created, originating from each DAPI-positive spot (nucleus). Each nucleus

and cytoplasmwas classified either as TH-positive or TH-negative, based on overlapping cytoplasmic TH signal. Objects with only par-

tial TH overlap were filtered, to ensure accurate classification. The maximal Casr intensity for each object was recorded and summa-

rized for each mouse by calculating the mean across objects. The Casr cytoplasm:nucleus ratio represents the ratio of these means.

Immunocytochemistry
After R568 treatment, the iPSC derived DA neurons were fixed in 4%PFA. Cells were permeabilized for 10 min a solution of 5%NDS,

1% BSA and 0.5% Triton X-100. Samples were blocked in a solution of 5% NDS and 1% BSA for 1 h. Cells were then incubated for

16 h O/N at 4�C with the following primary antibodies: CASR (Abcam Cat# ab79038, RRID:AB_2071489, 1:500), MAP2 (Abcam Cat#

ab92434, RRID:AB_2138147, 1:1000), tyrosine hydroxylase (Millipore Cat# AB1542, RRID:AB_90755, 1:500). Cells were washed

twice in PBS and then incubated in secondary antibodies and DAPI for 1.5 h at RT. Cells were washed 3 times and stored in fresh

PBS until imaging. Cells were imaged using the OperaPhenix (PerkinElmer).

Fura-2
Fura-2 a.m. was prepared to 5 mM concentration in calcium-free HBSS supplemented with 20 mMHEPES. It was then diluted to the

final concentration of 2.5 mM in Neurobasal medium supplemented with B27 and L-glutamine, with DMSO (0.1%) or the CaSR pos-

itive modulator R568 (10 mM).

iPSC-derived DA neurons were incubated in the solution of Fura-2 a.m. and drug for 1 h at 37�C, 5% CO2 and then imaged on a

FlexStation 3Multi-ModeMicroplateReader (MolecularDevices) at 37�C. The dyewas excited at 340 nmand 380 nmandwas detected

at 510 nm. Each well was imaged every 4 s for 100 s and injected with ionomycin (final concentration 5 mM) after a baseline of 28 s.

For the analysis, the 340/380 ratio was computed, and then the baseline was subtracted from all the timepoints, to obtain a normal-

ized trace for each well. The maximum intensity (peak amplitude) of the normalized trace was found and the area under the curve

(AUC) was calculated using the left rectangular approximation method.

Stereo-seq data processing
Raw gene-by-spot data per sample were aggregated to create a 2-dimensional image of RNA signal for each sample using custom

Python (v3.9.0, RRID:SCR_008394) scripts. To segment individual cells, each imagewas subjected to a processing pipeline written in

Python (workflow illustrated in Figure S1). Steps taken: Mask generation from unspliced counts: Gaussian filter (sigma = 5), back-

ground subtraction (white tophat, 50 pixels), Otsu thresholding, conversion to mask, fill holes, watershed. Mask generation from

spliced + unspliced counts: As for unspliced counts. Watershed boundaries from the spliced + unspliced mask were then subtracted

from the unspliced mask. Objects were retained from the spliced + unspliced mask that overlapped with the unspliced mask. Each

cell was labelled using the label function in SciPy (v1.9.0, RRID:SCR_008058). Raw gene-by-spot data were then aggregated to the

gene-by-cell level and imported into scanpy (v1.9.1, RRID:SCR_018139).62

The initial Stereo-seq dataset contained 497,766 cells. In a first round of filtering, low complexity and putative doublet/triplet

cells were filtered. To remove low complexity cells, a minimum gene detection cutoff of 200 was selected. To remove putative

doublet/triplet cells, a maximum gene detection cutoff was set on a per-brain basis to the median number of genes detected +4 me-

dian absolute deviations. After first round filtering, 415,402 cells remained. Count data were subsequently processed using SCVI,
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including sample brain of origin as a categorical covariate, and the number of genes detected per cell as a continuous covariate.78 A

uniform manifold projection (UMAP) was generated for cells from each mouse brain and overlaid, showing a similar pattern of sep-

aration (Figure S1A).

Cell type identification was performed in two rounds. In a first pass, leiden clustering was performed at iteratively greater resolu-

tions.79 Cell types without clear spatial organization e.g., some glial types, were annotated based on marker gene enrichment. Re-

maining cells were then processed using SEDR in order to include spatial information in the clustering process.80Mclust was used for

clustering spatially defined cell types.81 If a cluster contained fewer than 200 cells, it was considered final and no further subclustering

was performed. Dopaminergic neurons were labelled according to their anatomical region (SN and VTA), based on their spatial

coordinates.

For differential expression analysis in Stereo-seq samples, gene counts were normalized to the total number of counts per cell and

log-transformed. Marker genes for each cluster were identified using the Wilcoxon rank-sum test, providing two-sided p values. The

identity of each cell type was annotated by integrating marker gene data with previous literature and by confirming the spatial dis-

tribution of clustered cells.

A second round of cell filtering was performed after clustering to remove cells that were enriched in both Snap25 and Plp1. We

suspected that these cells represent neuronal/glial contaminated mixtures, as previously reported in single cell data.82 After sec-

ond-round filtering, 355,307 cells remained.

Spatially variable gene detection
Spatially variable geneswere identified using SpatialDE2with default settings. Coordinates and full expressionmatrices of each brain

were supplied, divided by cell type. To combine results from separate samples, a meta-analysis was performed on the raw p values

from each sample, using Fisher’s method. The Benjamini & Hochberg correction for multiple comparisons was subsequently used

and genes were considered spatially variable with an adjusted p value of <0.01.

Stereo-seq cell type abundance analysis
To test for differential abundance of cell types between age groups, we used mixed effects modeling of associations of single cells

(MASC). MASC tests whether cell type membership of individual cells is influenced by an experimental covariate of interest, while

accounting for technical covariates and biological variation. We specified mouse genotype as a fixed covariate and mouse of origin

as a random effect in the generalized, mixed-effect model. Changes in cell type abundance were considered significant at

FDR-P < 0.01.

Differential gene expression analysis
Differential gene expression analysis in TRAP samples (including calculation of gene enrichment and depletion, relative to tissue ho-

mogenate RNA) was performed using DESeq2 (v1.36.0, RRID:SCR_015687) in R (v4.2.1, RRID:SCR_001905) with Bioconductor

(v3.15, RRID:SCR_006442). Adaptive shrinkage of log fold change estimates was performed using ashr. The following settings

were changed from defaults: minReplicatesForReplace = Inf, cooksCutoff = Inf, filterFun = ihw, lfcThreshold = log2(1.05). Genes

were classed as significantly differentially expressed with an FDR-adjust p value <0.01. Protein-protein interactions were obtained

using STRINGdb (version 11) with a minimum confidence threshold of 0.4.83

Specificity index (pSI) calculation
To calculate the specificity index of genes detected within TRAP/RiboTag datasets of dopaminergic neurons and other cell types

within midbrain, pSI (v1.1) was used with default settings.22,24,38–40,73 Genes were considered significantly specifically expressed

with an FDR-adjusted p value <0.01.

Differential transcript usage analysis
Differential transcript usage was performed using DRIMSeq (v1.24.0). To consider only genes containing more than 1 isoform,

with a minimum level of expression, the following parameters were used: min_samps_gene_expr = n * 0.75, min_gene_expr = 10,

min_samps_feature_expr = 10, min_feature_expr = 10, min_samps_feature_prop = 10, min_feature_prop = 0.1.

GWAS prioritization analysis
A list of 303 genes (sourced fromNalls et al., 2019 supplementary materials), containing SNPs at an r2 > 0.5 and located within ±1Mb

of 107 common risk variants for sporadic PDwas used for prioritization analysis.42 To convert between human andmouse gene sym-

bols, homologene (v1.4.68.19.3.27, RRID:SCR_002924) and biomaRt (v2.52.0, RRID:SCR_019214) were used.67,84 TRAP enrich-

ment (measured as the product of the log2 fold-change and FDR-adjusted p value) and specificity indices for DAT-TRAP samples

were used for gene prioritization, per lead SNP.
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Gene set enrichment analysis
Gene set enrichment analysis was performed using fgsea (v1.22.0, RRID:SCR_020938) with the following parameters: eps = 0, min-

Size = 10, maxSize = 500, nPermSimple = 10000. Pathway data were obtained from the Molecular Signatures Database (v7.5.1,

RRID:SCR_016863), using C2 Canonical Pathways from Kegg and C5 Gene Ontology sets.85,86

QUANTIFICATION AND STATISTICAL ANALYSIS

No statistical methods were used to predetermine sample sizes, but our sample sizes for TRAP analyses surpass those reported in

previous publications23,28,87 and our sample sizes for Stereo-seq samples are comparable with or exceed those of similar spatial

transcriptomic datasets.11 All statistical analyses were performed with R (v4.2.1) and Python (v3.9). All p values were modified to

an FDR of 1, 5 or 10% as described in the text with the Benjamini & Hochberg method.
Cell Reports 43, 113784, March 26, 2024 19


	Single-cell spatial transcriptomic and translatomic profiling of dopaminergic neurons in health, aging, and disease
	Introduction
	Results
	Integrated transcriptomic profiling in the brain
	Stereo-seq single-cell spatial transcriptomic profiling enables the identification and annotation of distinct cell types in ...
	TRAP generates a highly sensitive “translatomic” profile of DA neurons
	Functionally and spatially distinct populations of DA neurons are detected by single-cell spatial transcriptomic profiling
	TRAP reveals the specificity of transcript expression in DA neurons
	Heritability enrichment analysis identifies CASR as a regulator of intracellular calcium handling in DA neurons
	Stereo-seq captures age- and disease-induced expression changes across distinct cell types, loss of nigral DA neurons, and  ...
	TRAP reveals the extent of age-induced expression changes in DA neurons

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and study participant details
	Animals
	iPSC-derived dopamine neurons

	Method details
	Transgenic model generation
	TRAP
	Long-read sequencing and data processing
	Stereo-seq library preparation and sequencing
	Immunohistochemistry
	Immunocytochemistry
	Fura-2
	Stereo-seq data processing
	Spatially variable gene detection
	Stereo-seq cell type abundance analysis
	Differential gene expression analysis
	Specificity index (pSI) calculation
	Differential transcript usage analysis
	GWAS prioritization analysis
	Gene set enrichment analysis

	Quantification and statistical analysis



