
 ORCA – Online Research @ Cardiff

This is a n Op e n Acces s doc u m e n t dow nloa d e d fro m ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/16 9 1 7 2/

This is t h e a u t ho r’s ve r sion of a wo rk t h a t w as s u b mi t t e d to / a c c e p t e d for

p u blica tion.

Cit a tion for final p u blish e d ve r sion:

Cai, Bolia ng, Wei, Ch a n gyu n a n d Ji, Ze 2 0 2 4. Dee p r einfo rc e m e n t lea r ning wit h

m ul tiple u n r el a t e d r e w a r d s for AGV m a ple ss n aviga tion. IEEE Tra n s a c tions on

Auto m a tion S cie nc e a n d E n gin e e rin g

P u blish e r s p a g e:

Ple a s e no t e:

Ch a n g e s m a d e a s a r e s ul t of p u blishing p roc e s s e s s uc h a s copy-e di ting, for m a t ting

a n d p a g e n u m b e r s m ay no t b e r eflec t e d in t his ve r sion. For t h e d efini tive ve r sion of

t his p u blica tion, ple a s e r efe r to t h e p u blish e d sou rc e . You a r e a dvis e d to cons ul t t h e

p u blish e r’s ve r sion if you wis h to ci t e t his p a p er.

This ve r sion is b eing m a d e av ailabl e in a cco r d a nc e wi th p u blish e r policies. S e e

h t t p://o rc a .cf.ac.uk/policies.h t ml for u s a g e policies. Copyrigh t a n d m o r al r i gh t s for

p u blica tions m a d e av ailabl e in ORCA a r e r e t ain e d by t h e copyrigh t hold e r s .

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Deep Reinforcement learning with Multiple

Unrelated Rewards for AGV Mapless Navigation
Boliang Cai, Changyun Wei and Ze Ji*

Abstract—Mapless navigation for Automated Guided Vehicles
(AGV) via Deep Reinforcement Learning (DRL) algorithms has
attracted significantly rising attention in recent years. Collision
avoidance from dynamic obstacles in unstructured environments,
such as pedestrians and other vehicles, is one of the key chal-
lenges for mapless navigation. Autonomous navigation requires
a policy to make decisions to optimize the path distance towards
the goal but also to reduce the probability of collisions with
obstacles. Mostly, the reward for AGV navigation is calculated
by combining multiple reward functions for different purposes,
such as encouraging the robot to move towards the goal or
avoiding collisions, as a state-conditioned function. The combined
reward, however, may lead to biased behaviours due to the
empirically chosen weights when multiple rewards are combined
and dangerous situations are misjudged. Therefore, this paper
proposes a learning-based method with multiple unrelated re-
wards, which represent the evaluation of different behaviours
respectively. The policy network, named Multi-Feature Policy
Gradients (MFPG), is conducted by two separate Q networks
that are constructed by two individual rewards, corresponding
to goal distance shortening and collision avoidance, respectively.
In addition, we also propose an auto-tuning method, named Ada-
MFPG, that allows the MFPG algorithm to automatically adjust
the weights for the two separate policy gradients. For collision
avoidance, we present a new social norm-oriented continuous
biased reward for performing specific social norm so as to reduce
the probabilities of AGV collisions. By adding an offset gain
to one of the reward functions, vehicles conducted by the pro-
posed algorithm exhibited the predetermined features. The work
was tested in different simulation environments under multiple
scenarios with a single robot or multiple robots. The proposed
MFPG method is compared with standard Deep Deterministic
Policy Gradient (DDPG), the modified DDPG, SAC and TD3
with a social norm mechanism. MFPG significantly increases the
success rate in robot navigation tasks compared with the DDPG.
Besides, among all the benchmarking algorithms, the MFPG-
based algorithms have the optimal task completion duration
and lower variance compared with the baselines. The work has
also been tested on real robots. Experiments on the real robots
demonstrate the viability of the trained model for the real world
scenarios. The learned model can be used for multi-robot mapless
navigation in complex environments, such as a warehouse, that
need multi-robot cooperation.

Note to Practitioners—Autonomous navigation for AGVs in
complex and large-scale environments, such as factories and
warehouses, is challenging. AGVs are usually centrally controlled

Boliang Cai is with the College of Mechanical and Electrical Engineering,
Hohai University, Changzhou, China and the School of Engineering, Cardiff
University, Cardiff, United Kingdom (e-mail:caib4@cardiff.ac.uk)

Changyun Wei is with the College of Mechanical and Electrical Engineer-
ing, Hohai University, Changzhou, China (e-mail: c.wei@hhu.edu.cn.)

Ze Ji (corresponding author) is with the School of Engineering, Cardiff
University, Cardiff, United Kingdom (e-mail: jiz1@cardiff.ac.uk).

This work was supported in part by the National Natural Science Foundation
of China under Grant 61703138, China Scholarship Council under Grant
CSC202106710026, and in part by the Fundamental Research Funds for the
Central Universities under Grant B200202224 and B200204036.

and depend on reliable communications. However, centralized
control is not always reliable due to poor signal strengths or
crashes of the server, and hence unsuitable due to the require-
ments of accurate information of the dynamic environments and
fast responses of decision making. Therefore, it is necessary
for the vehicles to perform reliable decision making based on
only onboard sensors and processors, for efficient and safe
autonomous navigation. Existing methods, such as simultaneous
localization and mapping (SLAM) and motion planning algo-
rithms, have been widely used. However, they are neither flexible
nor generalizable enough. This paper proposes a method for
autonomous navigation based on reinforcement learning (RL),
which allows vehicles to gain experience through cumulative
rewards by continuously interacting with the environment. The
RL-based controller is designed for optimising its performance
in two independent aspects, namely collision avoidance and
navigation, which are quantified as separate rewards. Instead
of carefully hand-crafting a combined reward, our proposed
approach trains the agent using the two rewards separately to
obtain one optimal policy. It is clearly easier and more practical
to design the individual rewards than manually combining them.
Besides, the algorithm includes a mechanism for incorporating
social norms to encourage the vehicles to follow the right-hand
rule, such that they can avoid pedestrians or other vehicles in a
socially acceptable manner. This is achieved by adding a contin-
uous bias on the collision avoidance reward. Experiments using
simulation environments and real robots suggest that the method
is generalizable to multi-robot systems, while guaranteeing safety.
In future research, we will focus on incorporating uncertainties
of sensor readings for safe and reliable autonomous navigation.

Index Terms—Collision Avoidance, Deep Reinforcement Learn-
ing, Mapless Navigation, Motion Planning, Multiagent Systems

I. INTRODUCTION

A
Major breakthrough in Reinforcement Learning (RL),

in recent years, is the combination of artificial neural

networks (ANN) with RL algorithms, which fostered the

development of neural controlled RL algorithms, such as

Deep Q-Networks (DQN), Actor Critic (AC) etc. Deep Re-

inforcement Learning (DRL) algorithms have gained remark-

able achievements for complex tasks, such as the Go [1],

video games [2] [3], robotics [4] [5] and so on. Despite

the great success of DRL in different domains, DRL faces

many challenges related to its efficiency and practicality.

Many new methods have emerged to tackle various challenges

related to the efficiency or practicality issues, such as Sim-

To-Real to transfer simulation-trained agents to the real-world

environments [6] [7]. On the other hand, many new algorithms

have emerged in recent years, such as DDPG [6], Soft Actor

Critic (SAC) [8], and Proximal Policy Optimization (PPO)

[9], have attracted rising attention for solving robot control

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

problems. However, when a task is composed of multiple sub-

tasks, the reward definitions are usually constructed by simply

combining rewards of each individual state from the corre-

sponding sub-tasks. Decoupled sub-tasks could have unrelated

rewards, meaning that a simple combination of rewards can

result in unbalanced weighted rewards for individual sub-tasks,

causing the policy to be trained inadequately.

From the robotics perspective, mapless navigation and

collision avoidance for AGVs are widely discussed in the

robot control field. Classical methods for robot autonomous

navigation are usually map-based algorithms that may re-

quire pre-built maps using techniques such as simultaneous

localization and mapping (SLAM) [10] and path planning

will be carried out using the map. The emergence of DRL

algorithms, however, provides another avenue for autonomous

AGV navigation in unknown scenes that allows a robot to

plan its path without a pre-built map. DRL-based mapless

navigation algorithms [8] [11] [12] are proposed with stronger

adaptability and robustness to unknown environments.

For RL algorithms, a reward is often defined in a simplified

manner with empirically determined constant values, meaning

that the reward needs to be pre-designed and regulated with

fine-tuned parameters. The rewards for AGV navigation tasks

are usually conditioned by two environmental states, the

distance of the agent towards the target and the surroundings

of the agent, which are used to construct two individual re-

wards, namely the distance-shortening reward and the collision

avoidance reward in our work. Methods such as [11] [12]

[8] combine the rewards together as a single value function.

However, the irreconcilable criteria or the difference between

the two independent rewards make the simple combination

unable to represent the optimal policy value of the agent.

Therefore, a multi-feature-based policy gradient optimization

algorithm considering multiple task features is proposed in this

paper. Considering that the reward for each feature is dealt

with separately, the value of each action of each sub-task also

needs to be calculated individually. In the algorithm, multiple

critic networks are used to calculate Q values using separate

rewards.

On the other hand, inspired by traffic flow control in

human societies, the collision avoidance reward function in

our work includes a social norm element that is introduced

to encourage robots to keep on one side of the path when

avoiding collisions with other robots, humans, or dynamic

objects, i.e. the right hand side in our case. In addition, we

also introduce a modified Prioritized Experience Replay (PER)

algorithm to allow efficient transition sampling in our case

with two separate rewards, as mentioned above.

Our contributions are summarized as follows:

• We introduce a DRL-based approach for mapless naviga-

tion, known as Multi-Featured Policy Gradient (MFPG)

that incorporates unrelated reward signals, correspond-

ing to multiple objectives in terms of path length and

safety. These rewards serve the purpose of approximating

distinct state-action values. By optimizing the policy

based on these values, we ensure the above-mentioned

objectives of reachability and safety in AGV navigation.

• An adaptive approach is introduced to balance the impact

of each state-action value in relation to the actor. To

achieve this, the standard deviation of each state-action

value is used as the guiding factor for determining the

weight applied to the distinct policy gradients.

• A PER is used to accelerate the training in the paper,

however, due to the irreconcilable criteria of the two critic

networks, we extend the Prioritized Experience Replay

(PER) algorithm by incorporating the approximation er-

rors of both state-action values as the priority indicator.

• Built upon the MFPG framework, we develop an innova-

tive technique for visualizing the preferences established

by the reinforcement learning algorithm. We visualize

the state-action distribution of each individual Q neural

network. As a result, the preferences of the two Q neural

networks can be effectively visualized, thereby enhancing

the interpretability of the MFPG approach.

The remainder of this article is organized as follows. Section

II introduces related work. Section III describes the working

principle of our proposed MFPG algorithm. The mapless

navigation and collision avoidance problems with MFPG are

detailed in Section IV. Last, the experiments and discussions

are provided in Section V, followed by the conclusion in

Section VI.

II. RELATED WORKS

Control methods for multi-vehicle navigation tasks can be

categorized into two main directions: centralized methods and

decentralized methods [13]. Centralized methods for vehicle

navigation have been widely applied in formation control [14],

goods transportation [15] etc. Most centralized methods as-

sume that all robots in the team can access the central server at

runtime with negligible delays [16]. Therefore, the connection

between the server and the robots guarantees the safety and

optimality of the navigation policy [17]. However, situations of

robots in the real world are more dynamic and unpredictable

than the assumptions [13]. Such differences make it hard for

centralized robots and servers to be deployed in large-scale

fields and safety-critical scenarios, such as warehouses or

many public areas. One disadvantage of centralized methods

is that the high cost and complexity of such real-time commu-

nication systems will greatly impede the deployment of such

systems in the aforementioned scenarios such as warehouses

[13]. Delays of signals could result in failures and accidents in

the working space that will be critical. Besides, such methods

are highly dependent on the computing power of the central

server that will drastically increase as the number of vehicles

increases [17]. Therefore, the scalability of such systems will

be limited, making it impractical for system upgrades with an

increased number of vehicles. Centralized methods need to be

fully aware of the surroundings for decision-making for all

vehicles and, hence, will be more complicated to implement.

Decentralized methods, however, allow robots to make

decisions based on local measurements of their surroundings

independently, meaning that the robots are less dependent on

the communication system, hence more robust and responsive

under unreliable communication [13]. Many works, such as

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Social Force [18] and Artificial Potential Field (APF) [19],

have been introduced in a decentralized manner. Inspired by

the behaviours of charged particles in electric fields, these

methods model the interaction between robots and obstacles

as the function of the distance from the controlled robot to

its surroundings [20]. Besides, fuzzy logic combined with

classical control theory emerges as an approach for Unmanned

Aerial Vehicles (UAVs) guidance and navigation with limited

computational resources [21]. These methods are efficient and

simple for navigating single vehicles. However, the methods

are not suitable for situations involving confrontation with

multiple vehicles, and collision avoidance between vehicles

is not considered in the policy. Besides, due to the simplicity

of these algorithms, the parameters usually need to be tuned

empirically to meet the needs of specific circumstances.

Therefore, decentralized MPC methods, such as [22] [4],

are employed. In [22], a distributed path planning system is

introduced for planning near-optimal solutions. The method

can prevent collisions robustly and allow altruistic behaviors

between vehicles that monotonically decrease the global cost

function [23]. Another representative method designed for

multiple vehicles is the Optimal Reciprocal Collision Avoid-

ance (ORCA) and its variations [24]. The methods are proven

to be efficient for multi-robot systems with millisecond-

timescale control in simulation environments. However, such

methods aim to adjust their parameters in a heuristic way ac-

cording to the surrounding states of the robots. The adjustment

procedure could not be completed in real time to produce

an optimal policy when encountering a complex scenario.

Besides, the assumptions of the approaches that fully sensor-

detectable shapes, speeds, as well as the positions of other

robots, make it difficult to practically apply the method in a

real-world environment. In order to enhance the performance

of the model in the real world, modifications are proposed

to enhance the inter-communication between robots [25]. In

the modified approaches, the controlled robot receives the

state information from the robots nearby via a communication

protocol for better state sharing [26]. However, the algorithms

also encountered problems similar to those in the centralized

methods. Particularly, the reliability of communication can

affect the performance of the algorithm significantly.

In recent years, applications of Deep Neural Networks

(DNN) have shown great potential in many challenging do-

mains. The ability of DNNs to construct nonlinear mapping

relationships in a high-dimensional space makes it suitable

to be applied for robot control problems. Existing navigation

algorithms based on the DNNs can be categorized into two

parts: imitation learning (IL) and DRL. Imitation learning

methods allow learning end-to-end mapping of policy [27] [28]

in a supervised manner. The IL methods often receive sensor

representations, such as Lidar readings and raw images, as

the state input along with a label, which is usually the action

corresponding to the state input. The sensor representations

and the corresponding actions can be obtained from the

demonstrations of the experts or from the simulation scenes.

Besides, it is worth noting that the trained model is conditioned

by the quality of the dataset [29]. Owing to that the trained

model only requires the representation input, the model can

be applied in both single and multi-agent tasks. In [27], video

images are used as the input for the neural network, which

generates actions for the robot to execute, for the task of lane-

following. A conditional imitation learning approach is pro-

posed to divide the neural networks into several branches for

separate tasks [28]. These methods are simple, but cannot han-

dle complex traffic situations, such as multi-lane and crossing,

resulting in inadequate mapping from the high dimensional

state input to the actions. Therefore, semantic abstraction

IL was proposed, taking semantic images, such as High-

Definition (HD) maps [30] and bridgeye views (BEVs) [31] as

the input. Compared with the redundant raw image inputs, the

semantic images provide a concise and informative abstraction

of perceptual results with a better environment consistency.

The properties of the semantic abstraction make the IL more

generalizable and efficient, because the semantic abstraction

diminishes state space and helps the DNNs learn meaningful

context cues [5]. Overall, the IL methods perform well for

states that are included in the training data but generalize

poorly to unknown states. This is referred to as the distribution

mismatch [32].

RL algorithms, on the other hand, focus on interaction

between the environment and the policy, and aim to improve

the policy according to the environmental feedback. DRL al-

gorithms can be categorized into two main approaches: value-

based and policy-based methods. The value-based methods,

such as DQN, DDQN etc., have been widely examined in

robot navigation tasks [5] [33] [34].

A deep Q-learning with graph attention representation is

introduced to address the safety aspect of the lane-following

task [5]. Graph attention layers and BEVs are adopted to

obtain a compact state representation of the DQN algorithms

for the lane-following tasks. The policy is defined to control

the linear velocity of the vehicle in the discrete action space,

while the steering control is performed with a typical PID con-

troller. In [33], AUV navigation uses the earth’s geomagnetic

information for state representation, where a set of discrete

heading angles are selected as the action space. Dueling double

deep Q-learning with PER is used for AGV path planning in

[34], in which an action set composed of 3 linear and 5 angular

velocity values are defined. Although the value-based methods

aforementioned are effective and simple, they neglect the fact

that robot control in the real world is based on the continuous

action space.

Different from value-based methods, policy-based methods

generate continuous action commands, which allow more

flexible manoeuvring in complex environments [35]. Policy-

based DRL has been investigated and deployed for navigation

tasks [8], [12], [20], [36]–[38]. An end-to-end DDPG naviga-

tion method proposed in [36] defines a distance-conditioned

reward function and receives the position of the controlled

robot and its destination as the input state. The policy generates

commands for the six thrusters directly. However, further

analysis of the reward is required to obtain a better navigation

performance. An asynchronous advantage actor-critic structure

is adopted in [37] for the exploring task in an underwater

scenario. The paper proposes a multiple policy network fusion

method to facilitate the AUV’s exploration task. In this context,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

the upper policy receives input from sonar sensor readings

and determines the activation of specific sub-policies. Once

activated, the policy generates necessary actions for executing

navigation or avoidance manoeuvres independently. In [20],

a multiplicative controller fusion-based method is introduced,

integrating an APF-based method with SAC for addressing

robot navigation tasks. In the method, an end-to-end actor-

critic structure is adopted as one of the controllers, which takes

the laser sensor readings, historical action information and the

destination of the robot as input. The APF controller receives

laser readings and the robot’s destination for computing navi-

gation commands. This algorithm computes the desired actions

based on the outputs from both the APF module and the

SAC agent. However, the method is limited, when the APF

and policy controllers generate conflicting commands with

separate lower variances. The above methods mainly focus on

single robot navigation tasks in static scenes, which, however,

cannot be directly deployed for decentralized robot navigation

tasks, which present higher uncertainty and complexity during

interactions between robots and obstacles.

One of the actor-critic methods applied in decentralized

robot navigation is SA-CADRL [12] that considers a social

norm punishment in the reward function for avoiding others.

The purpose of the social norm punishment is to form social

rules, such as the left- or right-hand rule, in the algorithm. In

a similar method, GA3C-CADRL [39], states of other robots

observed by the controlled robots are transmitted to a Long

Short-Term Memory (LSTM) unit to extract the surrounding

features. The features are extracted with the state of the

controlled robots as the input of the policy network [12]. It is

worth mentioning that both the above methods do not require

inter-communication between vehicles. They present similar

approaches for solving the vehicle confrontation problems. A

similar pattern has also been observed in [40], wherein they

employ an LSTM module to capture the dynamic properties

of UAV, in conjunction with multiple critic networks. SA-

CADRL [12] forms a common knowledge base between the

vehicles that similar action trends will be taken to avoid

collisions, while GA3C-CADRL [39] focuses on forecasting

motions of other vehicles in complex dynamic situations. The

Control Barrier Function (CBF) is employed in [41] as the task

indicator and the work applies the mixed Nash equilibrium of

the game theory in solving the deadlock problems of UAVs

under the transmission obstruction scenarios. In our work, we

adopt the idea of the SA-CADRL [12] for collision avoidance

between vehicles and propose a continuous social norm bias

to control the behaviors of social norms.

On the other hand, the reward functions in most previous

works are defined as a single value function, conditioned by

the state of the vehicle. However, in safety-critical tasks, a

single reward function for the policy could not be sufficient to

evaluate the quality of the decision. Therefore, several research

works focused on this aspect and proposed methods from the

reward-oriented perspective.

For example, Zhang [11] defined the reward by combining

rcollision, rtarget and rnormal as a single value function,

where rnormal is the distance difference between the robot

and its destination at two consecutive time steps, rtarget

represents the navigation ability of the robot but neglects the

surroundings of the robot, and rcollision is the punishment if

encountering collisions with obstacles. Similarly, Chen [12]

defined the reward as the social norm reward rnorm and

collision avoidance reward rcol. A safety navigation tasks

are framed in the context of a Constrained Markov Decision

Process (CMDP) and penalty indicators are incorporated into

the reward function in [42]. The rewards of these approaches

are simply combined by adding them together. However, the

works are not sufficient using a rough single reward value to

indicate the performance for each action taken by the vehicles.

Therefore, the task in our method is decomposed into two sub-

tasks, where each sub-task is evaluated by a different reward

value separately.

III. MULTI-FEATURE POLICY GRADIENTS

A. Preliminaries

RL problems can be described as the discrete-time Markov

Decision Processes (MDP), formalized by a set of states S,

a set of actions A. An MDP state transition at time t can be

defined as:

Pt = (st, at, rt+1(st, at), st+1). (1)

where st, st+1 ∈ S represent the states at time step t and t+1,

at ∈ A is the action of state st and rt(st, at) is the reward of

at in st at the time step t.
RL algorithms can be broadly categorized into value-based

and policy-based solutions. The most well-known value-based

algorithm is Q-learning, which maps actions at given states

with corresponding values in a tabular manner. To alleviate

the difficulties of RL algorithms in high dimensional space,

researchers introduced the ANN that can be deployed to

approximate the values and relationships between states and

actions. The introduction of ANN significantly reduces the

volume of the Q table as used in classic value-based RL.

Policy-based methods use the policy gradient method for func-

tion approximation [43] that can model and optimize policies,

hence mapping the relationship directly between states and

actions in the continuous space. In this approach, a policy is

defined as a mapping from states to actions, as follows:

πθ : S 7→ A, (2)

where θ represents the parameter vector of the policy network

πθ, S is the states and A is the mapped actions. An action at
at the time-step t can be calculated from the policy πθ with a

given state st:

at = πθ(st) (3)

In an MDP, the probability of that agent transferred from

s1 to sT can be described as:

pθ(τ) = p(s1)

T
∏

t=1

(pπθ
(at|st)p(st+1|st, at)), (4)

in which, τ = {s1, a1, . . . , aT−1, sT } is a specific trajectory

of a training episode. pπθ
(at|st) is the probability that policy

πθ chooses action at given state st. p(st+1|st, at) is the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

probability of reaching st+1 after agent takes the action at
at state st. In order to measure the value of action at at

state st that contributes to the final results of each trajectory

quantitatively, an expected discounted reward is introduced to

calculate the value of each action at at state st. For each

trajectory, the expected discounted reward can be described

as:

J(θ) = Eτ∼pθ(τ)[

T
∑

t

γT−trt(st, at)]

=

∫

πθ(τ)Qπθ
(τ)dτ

≈ 1

|N |
∑

i∈N

T
∑

t

γT−tr(si,t, ai,t)

(5)

where N is the size of the sampled experience replay buffer,

and Qπθ
(τ) =

∑

t

γtrt(st, at) is the Q value of each action at

at state st.

Deep Deterministic Policy Gradient (DDPG) is a model-

free algorithm that constructs the policy network, which maps

from the state space to the actions of the agent. The policy

optimizes its parameters according to the gradient generated

from the Q-value networks.

A neural network is used for storing the Q-values corre-

sponding to each agent state, formulated as below:

Cψ : S× A 7→ Q(s, a), (6)

where ψ represents the parameters of the critic network. The

critic network updates its parameters by reducing its loss value,

defined as:

Lψ(Pt) = EPt
[Q∗(st, at)−Q(st, at)]

2, (7)

where, C∗
ψ∗ = Q∗(s, a) is the target Q value can be calculated

using a K-step-constant critic network, whose parameter ψ∗

is copied from Cψ . Q∗(s, a) is the target Q value calculated

by the following:

Q∗(st, at) = EPt
[r(st, at) + γmax

a′
Q′(st+1, a)]

= EPt
[r(st, at) + γQ′(st+1, a

′(st+1))],
(8)

where Q′ is a stable Q value network used to calculate target Q

values, and parameters in Q′ are copied from the Q network

after certain training steps. Similarly, a′ represents a stable

policy network for assistance of calculating target Q values.

Parameters in a′ are updated by copying the policy network a
periodically.

As the training goes on, J(θ) will gradually converge to

stable values. It is expected that a better policy will get a higher

expected reward. Therefore, the policy gradient methods that

optimize parameters θ of policy πθ for gaining a higher

expected reward can be calculated using:

∇θJ(θ) =
∫

τ

∇θπθ(τ)Q(τ)dτ

= Eτ∼πθ(τ)[∇θlogπθ(τ)Q(τ)]

(9)

According to Equation 5 and Equation 9, the policy gradient

is calculated using:

∇θJ(θ) ≈
1

|N |
∑

i∈N

(

T
∑

t=1

∇θlogπθ(ai,t|si,t)∇πθ
Q(si,t, ai,t))

(10)

After calculating the gradient, the parameters are updated

as below:

θ′ ← θ + λ∇θJ(θ). (11)

where θ′ represents the updated parameters, and λ is the

learning rate for the policy update procedure.

B. Gradient Calculation for Multiple Uncombinable Rewards

In this section, we introduce our proposed work, named

Multi-Feature Policy Gradient (MFPG). Rewards of mapless

navigation, denoted by rNav ∈ RNav , and that of collision

avoidance, denoted by rCA ∈ RCA, are considered separately

in this work. Here, the MDP state transition is reshaped as:

P ′
t = (st, at, r

CA
t+1, r

Nav
t+1 , st+1). (12)

Considering the uncombinability characteristic of the two

rewards, the policy πθ needs to be optimized using gradients

constructed from two separate Q networks. Two policy gradi-

ents are used to optimize the policy πθ that can be calculated

as described in Section III-A.

The gradients constructed from rCA and rNav are denoted

by ∇θJCA(θ) and ∇θJNav(θ):

∇θJCA(θ) = ∇θJ(θ)
∣

∣

∣

∣

Q(st,at)=Q∗

CA
(st,at)

∇θJNav(θ) = ∇θJ(θ)
∣

∣

∣

∣

Q(st,at)=Q∗

Nav
(st,at)

(13)

After policy gradients are calculated, θ is updated using:

θ′ = θ + λΦ · [∇θJNav(θ),∇θJCA(θ)]T, (14)

where Φ = [ϕNav, ϕCA] represents the weights of both

featured policy gradients that can adjust the performance of

the model by changing the value of each individual weight.

The main procedure can be seen in Algorithm 1. A brief flow

chart is shown in Figure 1.

Here we provide the proof of the convergence for the

MFPG. Since MFPG is derived from the DDPG [6], this paper

only focuses on the equality between the gradient calculated

from the original value network and the gradients from the

two value networks in MFPG.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Env

Q∗

Nav
Q∗

CA

Policy Gradient

πθ

st+1,RNav st+1,RCA

∇πθ
Q∗

Nav
∇πθ

Q∗

CA

udpate

st+1, st

at

θ′

a
= θa + α∇θπθ ·Φ[∇πθ

Q∗

Nav
,∇πθ

Q∗

CA
]T

MFPG

1

Fig. 1: Flow chart of Multi-Feature Policy Gradients.

Convergence proof for MFPG. For a single Q value function

Q and two reward RNav and RCA:

Q =

T
∑

i=t

γi−tR(st, at)

=

T
∑

i=t

γi−t(ϕCARCA(st, at) + (ϕNavRNav(st, at))

= ϕCA
T
∑

i=t

γi−tRCA(st, at) + ϕNav
T
∑

i=t

γi−tRNav(st, at)

= ϕNavQNav + ϕCAQCA

(15)

It can be induced from Equation 15 that the Q value function

calculated from the linear combination of the two rewards

is identical to the linear combination of the two reward-

constructed Q value functions. Therefore, the gradient calcu-

lated from the Q value function Q follows:

∇θJ(θ) =
∫

τ

∇θπθ(τ)Q(τ)dτ

=

∫

τ

∇θπθ(τ)(ϕCAQCA(τ) + ϕNavQNav(τ))dτ

= ϕCA∇θJCA(θ) + ϕNav∇θJNav(θ)
(16)

Equation 16 meaning that the linear combination of the

gradients [∇θJCA(θ),∇θJNav(θ)] is in coincidence with the

gradient calculated from Q. The convergence proof for DDPG

using a single gradient has been proposed in [6]. Therefore,

the convergence ability of the MFPG is proved.

C. Adaptive Policy Weight Calculation

In this section, we expand upon the proposed frame-

work by introducing an adaptive gradient weight adjustment

method, replacing the previous heuristic approach. This adap-

tive method is based on the assumption that the standard

deviation of the separate state-action values is scale equivalent,

i.e.:

ι =
σ(Q∗

Nav(s, π(s|θ∗))
σ(Q∗

CA(s, π(s|θ∗))
≈ 1, ∀s ∈ S (17)

Here, σ(·) represents the standard deviation of (·). The param-

eter ι is the scale ratio of two state-action values, which are

Algorithm 1: Adaptive Multi-Feature Policy Gradients

Input: Environment in and out

Output: Policy πθ
1 Initialization Policy network πθ, Critic networks CψCA

and CψNav
.;

2 Initialize the target networks πθ∗ , C∗
ψ∗

CA

and C∗
ψ∗

Nav

.;

3 Initialize MDP transition set M with max volume m;

4 Initialize episode k = 0, max episode km , update

counters for actor Ka, critic Kc;

5 Initialize scale weight: wn = expn [−1 : 0] and scale

ratio queue qn = [1 . . . , 1]n;

6 while k ≤ km do

7 Get current state st;
8 Select action at = πθ(st);
9 Apply action to environment and get next state

st+1 and next reward rt+1.;

10 Store new MDP state transition to experience

buffer M =M ∪ P ′
t ;

11 if |M | ≥ m then

12 Sample experience replay buffer N using

prioritized experience replay described in

Section III-D ;

13 Update critic networks CψCA and CψNav by

minimizing L(ψCA) and L(ψNav) ;

14 Calculating batch Q values Q∗
ψCA

,Q∗
ψNAV

according to the sampled states and estimating

Q value scale Equation 17;

15 Update scale ratio queue by ι 7→ qn and

estimate the historical scale ratio η by

Equation 18;

16 Estimate the gradient weight Φ = [1/
√
η,
√
η];

17 Calculate ∇θJCA and ∇θJNav using

Equation 13;

18 θ′ ← θ + λΦ · [∇θJNav(θ),∇θJCA(θ)]T;

19 end

20 if k//Ka ∈ Z
+ then

21 θ∗ ← θ;

22 end

23 if k//Kc ∈ Z
+ then

24 ψ∗
Nav ← ψNav ;

25 ψ∗
CA ← ψCA ;

26 end

27 k = k + 1
28 end

29 return πθ

obtained from the target critic neural networks, indicating to

what extent one critic influences the task policy in comparison

to the other one. Equation 17 reveals two properties of the

reward values. Firstly, the ratio ι between the two standard

deviations is set approximately to 1, which implies that both

rewards have equal contributions to the policy. However, it

is worth noting that ι can also be set to any preferred value

to obtain different behaviours. Secondly, to ensure training

stability, the reward values should have a similar distribution

across the entire state-action space, i.e. ι should remain

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

relatively stable.

Hence, we apply historical weighting factors to qn =
[ι−(n−1), . . . , ι0], which is a queue storing the past n scale

ratios, following a FIFO manner. The weighting factors wn are

the exponential of n points equidistant sampled from [−1, 0],
such that the weight for the nearest scale ratio ι0 receives the

highest weight of 1 and the earlier weights will undergo an

exponential decrease. Specifically, the scale ratio is calculated

as follows:

η =
qn · (wn)

Σn((wn))
, (18)

At the initial stage, elements inside the queue are all set to 1.

Finally, the gradient weights are obtained, as follows:

Φ = [1/
√
η,
√
η]. (19)

To summarize, calculating the adaptive gradient weights

requires two primary steps. Firstly, Equation 17 estimates the

scale ratio of the two state-action values from a statistical

perspective. The assumption ι ≈ 1 implies an ideal situation

where both state-action values leverage the same level of

influence on the policy. Secondly, the gradient weight esti-

mation integrated with the historical scale ratio is employed

to guarantee stability, as demonstrated in Equation 18. There-

fore, the gradient weights Φ in Equation 19 are derived from

multiple training sample batches. By following the previous

steps, the adaptive gradient weight can keep the impact of

separate navigation and collision avoidance state-action values

on policy balanced.

D. Modified Prioritized Experience Replay

Usually, experience transitions are sampled from a memory

buffer uniformly without considering their significance, hence

presenting low efficiency. To address this limit, the PER is

proposed to prioritize experience, so that important transitions

can be replayed more frequently [44]. Conventionally, the PER

algorithm was used as a sampling method aiming to improve

the effectiveness in reducing the loss of the critic network in

the model [45]. However, the circumstance in our approach

is different from the condition proposed as with the original

situation of PER. Because of the irreconcilable criteria of the

two critic networks, it is difficult to compute the importance

sampling weight and sampling probability. In this work, we

address this problem by introducing some changes to allow

the combination of two different loss functions of both critic

networks in the PER framework.

When an MDP transition is selected for training, the Tem-

poral Difference (TD) error of the transition can be calculated

using Equation 7, which will be recorded as the importance

sampling weight of the transition. The probability of transition

qi ∈M to be sampled can be calculated according to:

p(qi) =
Lψ(qi)

α

Σq∈MLψ(q)
α . (20)

In Equation 20, α is an indicator of the priority for the

corresponding transition, where uniform sampling is applied

if α = 0.

Here, a new method is proposed to calculate the sampling

probability of the MDP transitions:

p(qi) =
(ζ1L

Nav
ψ (qi) + ζ2L

CA
ψ (qi))

α

Σq∈M (ζ1LNavψ (q) + ζ2LCAψ (q))α
. (21)

where ζ1 and ζ2 are the importance weights for both loss

components. The values of the two weights need to satisfy

ζ1 + ζ2 = 1, where, in this paper, ζ1 and ζ2 are set to 0.5.

When a new transition qi is added into the experience buffer

M , its default loss value (LNavψ (qi) + LCAψ (qi))
α will be set

to 1.

Conventionally, the PER algorithm adopts the approxima-

tion error as the sampling priority for each sample. Here,

we modify the indicator to be the linear combination of the

training loss of both the critic networks. This means the

accuracies of both collision avoidance and navigation state-

action values of all the samples are taken into consideration.

Hence, the modified PER can incorporate the sampling priority

of the samples from both collision avoidance and navigation

standpoints.

When the sampling of the buffer is completed, the impor-

tance sampling weight can be calculated using:

wi = (
1

|N | ·
1

p(qi)
)β , (22)

in which β is an annealing bias that ranges from 0.4 to 1. The

detailed steps for updating the Critic networks are described

in Algorithm 2:

Algorithm 2: Updating Approach for Critic Networks

Input: Critic CψNav
,CψCA

, experience buffer M
Output: Updated Critic network Cψ′

Nav
,Cψ′

CA

1 Initialize accumulated weighted changes∆Nav , ∆CA;

2 Sampling experience transitions from M using

Equation 21;

3 foreach qi ∈ N do

4 Calculate wi using Equation 22;

5 Compute loss of critic neural networks LNavψ (qi)

and LCAψ (qi);

6 Calculate weight importance sampling weight wi
using Equation 22;

7 Update accumulated weighted changes:

8 ∆Nav = ∆Nav + wi · LNavψ (qi)∇ψNav
QNav(s, a) ;

9 ∆CA = ∆CA + wi · LCAψ (qi)∇ψCA
QCA(s, a);

10 end

11 update parameters:

12 ψ′
Nav ← ψNav + η∆Nav ;

13 ψ′
CA ← ψCA + η∆CA ;

14 return Cψ′

Nav
,Cψ′

CA

When a new transition is added to the replay buffer, the tran-

sitions that existed in the buffer with the minimum sampling

probability will be replaced by the new transition:

qmin ⇐ qnew, (23)

in which, the operator ⇐ denotes that the transition on the

left of the operator will be replaced by that on the right and

the probability of the new one p(qnew) will be reset to 1.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

IV. MAPLESS NAVIGATION AND COLLISION AVOIDANCE

A. Parameterization

This subsection describes the environment configuration for

mapless navigation in this work. Figure 2 depicts the system

overview of vehicle navigation with collision avoidance. The

black arrows depict the positive and negative orientations in

the polar coordinate space. Following the right-handed rule,

“P” represents the positive direction of rotation, while “N”

represents the negative direction. The red lines represent the

laser beams of a 2-D planar laser range finder. The purple

triangle is the position of the target. The arrow on the green

line represents the index of the laser beam on the sensor that

starts from 0 at the beginning and ends at 128.

Laser Sensor

Vehicle

Target Position

Current Orientation

Target Coordination

Index of Laser Sensors

P

N

Fig. 2: Detail of vehicle navigation and collision avoidance.

The state of a vehicle can be represented by the following

components:

• Laser range finder readings Slaser = [l1 . . . l128] that

represent the surrounding occupancy information of the

vehicle. In this paper, 128 laser beams are used for

sensing obstacles around the vehicle.

• Coordinate of the target location in the polar coordinate

representation of the vehicle. This is denoted by a pair of

values (ρ, ϑ), where ρ is the Euclidean distance between

the vehicle and the target and ϑ is the angle between the

target and the heading direction of the vehicle.

• The action ωt−1 that the vehicle executed in the previous

state.

The Euclidean distance ρ can be calculated using:

ρ =
√

(xo − xt)2 + (yo − yt)2, (24)

in which (xo, yo) and (xt, yt) are the coordinates of the vehicle

and the target. ϑ can be calculated by:

ϑ = sign(v⃗o × v⃗t) arccos(
v⃗o · v⃗t
|v⃗o||v⃗t|

), (25)

where v⃗o and v⃗t represent the vehicle motion direction and the

target direction with respect to the vehicle base in the polar

coordinate.

Finally, the state is represented by concatenating the above

three parts, as formulated below:

St = [l1 . . . , l128, ρ, ϑ, ωt−1]. (26)

where a 131-dimension input vector is constructed, comprising

laser range values, target location and previous action, to

describe the state of the vehicle.

In this work, the action space is defined by the vehicle’s

angular velocity, which ranges from −1 to 1 rad/s. The

vehicle’s linear velocity is maintained at a constant value of

0.5 m/s.

B. Reward

In this work, rewards functions are constructed by 2 main

parts, namely reward for encouraging the robot to move

towards the goal, named distance-shortening, and reward for

collision avoidance, which are introduced next respectively.

1) Reward function for distance-shortening: The distance-

shortening reward function is defined based on the distance

between the vehicle and its target. We define the condition

for a robot to arrive at the goal by comparing a pre-defined

threshold with the distance of the robot to the goal in this work.

If the distance is less than the threshold, a fixed reward of 10
is used. Otherwise, the reward is defined as the hyperbolic

tangent of the distance difference between the vehicle and its

target at two consecutive time steps, namely the current state

st and the previous state st−1. The reward can be therefore

formulated as follows:

RNav(st) =

{

100 ρ ≤ ϵ
rrel ∈ [−9.9, 9.9] else

(27)

where ϵ is the threshold value used to evaluate if the vehicle

reached the target and is set as 0.5 in this work. rrel is defined

as:

rrel = k1 tanh(k2(ρt − ρt−1)) (28)

where k1, k2 are the gain values used to control the shape

of the reward curve. In this paper, k1 and k2 are assigned

as 28 and 30 separately. This reward value is clipped by two

boundary values. If rrel ≥ 9.9, RNav will be set 9.9 and if

rrel ≤ 9.9, RNav will be −9.9. Equation 28 ensures that the

agent will gain a positive reward if the current state st is closer

to the target than its previous state st−1. Contrarily, a negative

reward will be applied if the current state is further from the

target than its previous state.

2) Reward function for Collision Avoidance: This work

proposes a collision avoidance reward function based on

laser range finder data that incorporates a continuous social

norm adjustment mechanism. In multi-vehicle navigation and

collision avoidance problems, the actions of other vehicles

have an important impact on the judgement of the controlled

vehicle. Here, a social norm for reducing the probability of

vehicle collisions is applied to the multi-vehicle navigation and

collision avoidance problem. The social norm adds an offset

gain to the collision reward function to encourage the robot

behaviours to be biased to match the social norm of human

society.

Human societies commonly employ either the left-hand

or right-hand traffic rules for controlling traffic flows. When

people walk on streets, people have the tendency to move to

one side of the road to avoid collisions with others, depending

on if it is the traffic rule. Therefore, inspired by human

behaviours, an intrinsic property for robots to obey either the

left-hand or right-hand traffic rule would be helpful for traffic

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

flow control. This intrinsic property can be added to the models

by applying a modification to the reward function to prevent

vehicles from colliding with each other. In our work, we add an

offset gain in order to change along with the index of the laser

beams, the model is expected to perform a common tendency

when confronted with other robots.

In this paper, RCA is divided into 2 parts, namely a normal

reward function and an offset gain distribution.

The normal collision avoidance reward function can be

described as:

Rlaser(lm) = −e−kl(lm−ol) (29)

where lm = min(l1, l2, . . . l128) is the minimum laser range

value. kl and ol are the gain and distance offsets used to

determine the shape of the curve. The reward is designed as

Equation 29 so that the reward will decay exponentially with

the decrease of the distance to the closest obstacle from the

vehicle and the reward is always negative here.

The offset gain value is introduced to mimic the behaviour

of social norms and is defined by the orientation of the nearest

obstacle, as follows:

K(z) = U −D × (1− z), (30)

where z ∈ [0, 1] is the normalized index of the laser beam

with the minimum value, U denotes the upper bound of the

offset gain value, and D is the range between the upper and

lower bounds. In this paper, U is set to 3 and D is set to

2.5. Here a right-hand order is used, so that a higher reward

will be produced if the closest obstacle is on the right-hand

side of the vehicle. Likewise, a lower reward will be used if

the closest obstacle is on the left-hand side. In summary, the

reward for collision avoidance can be represented as:

RCA(st) =

{

−100 lm ≤ δ
Rlaser(lm) ·K(z) ∈ [−9.9, 9.9] else

(31)

δ is a threshold value used to judge if the vehicle has crashed.

In this paper δ is set to 0.375.

C. Main Procedure of The Algorithm

The MFPG agent is trained in a multi-vehicle environment

such that the process of experience accumulation will be accel-

erated. Therefore, the state of each vehicle will be passed to the

agent for determining the optimal action. At the initial stage

before training, transitions are first collected by conducting

the APF algorithm. After the experience buffer reaches the

maximum volume, the training procedure will start. The main

procedure of training is illustrated in Figure 3.

At the beginning of each episode, the states of the vehicles

sit(i ∈ {1, . . . 4}), along with the previous states st−1, actions

at−1, and rewards of the actions rCA,it , rNav,it , will be sent to

the PER buffer for storing transitions as well as the controller

to generate the subsequent action at. Before the buffer is fully

filled, APF will be used to instruct the vehicles to produce

motions and transitions that will be appended to the experience

buffer. Once the buffer is fully filled, while learning from the

𝒔𝒔𝒕𝒕, 𝒔𝒔𝒕𝒕+𝟏𝟏
𝑹𝑹𝑵𝑵𝑵𝑵𝑵𝑵
𝑹𝑹𝑪𝑪𝑪𝑪 𝝅𝝅𝜽𝜽Experience

buffer 𝑀𝑀
PER controller MFPG

APF

𝑀𝑀 ≥ 𝑚𝑚?Y

N

𝒔𝒔𝒕𝒕

𝑵𝑵𝒕𝒕𝑵𝑵𝒕𝒕
Experience

Transitions

Environment

Fig. 3: Main procedure of training.

State131

ReLU(FC256)

ReLU(FC512)

ReLU(FC256)

A1

1

(a) Neural structure for
actor.

State131

ReLU(FC64)

State′64Action1

ReLU(FC256)

ReLU(FC512)

ReLU(FC256)

Q1

1

(b) Neural structure for
critic.

Fig. 4: Structure of neural networks.

PER buffer, the actor neural network πθ will start processing

to produce actions for the vehicles. The structure of the actor

and critic networks can be seen in Figure 4. The actor network

is a simple MLP, which maps the agent state space to the

regularized vehicle steering commands. The critic network

takes the concatenation of the action at−1 and a hidden layer

that is calculated from the state st−1 as the input.

At the same time, when new MDP transitions are added to

the buffer, those transitions with lower probabilities will tend

to be replaced, as described in Equation 23.

V. EXPERIMENTS

A. Preparation

This work is tested in both simulation and real-world envi-

ronments. This section introduces the test environments, and

compares our work with the standard DDPG-based mapless

navigation [11] and a modified DDPG algorithm for perfor-

mance benchmarking in terms of both navigation and obstacle

avoidance aspects. The simulation scenarios for experiments

are listed below:

• an obstacle-free square cage,

• a large-scale warehouse environment with obstacles (in-

cluding one additional warehouse-like environment with

a larger size), and

• an unstructured complex environment (including more

narrow and more obstacles).

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

The algorithms are implemented based on the robot oper-

ating system (ROS) and tested on Ubuntu 18.04. The plat-

form has an Intel i7-9750H (6C12T, 2.6GHz) CPU, 16 GB

memory, and a GPU of Nvidia GTX 1060Ti (6GB memory).

The algorithm scripts are all implemented using Python with

TensorFlow 1.14. 4 mobile robots (TurtleBot 3) are used in

the simulation environment, and each is equipped with a 2-D

laser radar simulated that ranges from 0.3m to 3.5m, updated at

45Hz with preset normal noises. In this paper, unless otherwise

specified, all state parameters are normalized. In addition, we

have also tested the work on three real robots in a real-world

environment.

B. Multi-robots Navigation in Simulated Scenes

In this section, two experiments are performed in both

scenarios separately. The maps used for the simulation envi-

ronments are shown in Figure 5a and 5b respectively. One of

the environments is an open area with no obstacles in the space

(Figure 5a). Since the scene is small and without any static

obstacles, the robots can sense each other more frequently

than in the other environments, meaning that evaluating the

performance of the methods in terms of avoiding other robots

dynamically is more evident. Therefore, the focus of this scene

is to test the ability of collision avoidance with other moving

robots. The other environment (Figure 5b) is to simulate a

warehouse-like environment, which is designed to evaluate the

overall navigation performance of the robots.

Here, the standard DDPG is adopted as the baseline algo-

rithm, based on Zhang’s work [11]. The reward function in

the baseline is defined as:

Rbaseline(st) =
RNav(st) +RCA(st)|K(z)=1

2
(32)

where K(z) = 1 means that the DDPG will have no preference

in terms of the social norm. To make sure the comparison is

fair, the method above is modified by incorporating the social

norm into consideration in the DDPG algorithm for testing.

The reward of the social-normed DDPG here can be then

defined as:

RSN (st) =
RNav(st) +RCA(st)

2
(33)

Here, the hyperparameters of the two algorithms are identical

to the MFPG detailed in the previous section. Besides, the arti-

ficial potential field (APF) method adopted as our exploration

method is also examined as a non-RL baseline.

Firstly, to examine the collision avoidance capability of

the navigation model, training and evaluation are performed

in the simple collision-free open space (Figure 5a). Four

robots are initialized at the four corners of the room with

their target destinations set at the diagonal directions of the

initial positions in the room. In this environment, owing to the

shape and area of the environment (5 meters on each side),

the maximum number of steps for each training episode is

set to 180. The learning rate of the actor network is set to

1e − 2, and that of critic networks is set to 1e − 3. Besides,

Φ in Equation 14 is set to [0.65, 0.35]. After 750 episodes

of training, each of the algorithms obtained a stable policy.

To evaluate each policy, the statistical results can be seen

in Table 4. The minimum covering area of each algorithm

and trajectory of the vehicles of the MFPG are shown in

Figures 5a. To benchmark the performance, there are a few

different criteria considered in the work. First, the area of

the minimum circle that covers all vehicles can be used

to evaluate the control optimality of the proposed solution.

This is named as the minimum covering area. The minimum

covering area, along with the success rate and average target-

reaching duration are all used to indicate the performance of

the proposed algorithm.

It can be seen from Table I that the proposed MFPG

outperforms the standard DDPG in success rate, average

duration and covering area. In comparison with the social

normed DDPG, the proposed MFPG algorithm significantly

improves the success rate, while the social normed DDPG

performs slightly better in terms of covering area and average

duration. By contrast, the APF method is substantially worse

than all the other RL algorithms.

The Q values of each state-action pair can be seen in

Figure 6. The change of QNavMFPG shows an upward trend,

while QCAMFPG declines because the networks receive negative-

only rewards. The Q value of the standard DDPG grows

steadily, while the trend of DDPG with the social norm

is unstable during most of the training process and finally

converges to a relevantly low level.

Secondly, the other experiment is performed in the simu-

lated warehouse, aiming to test the overall navigation perfor-

mance of the models in a larger-scale scene.

However, the tests show that the socially normed DDPG has

performed with considerably low success rates. Therefore, the

socially normed DDPG is considered not worth comparing

for the task of this scenario and hence is not included in

this study. The proposed method is only compared with the

standard DDPG as the baseline in this experiment. In the

simulated warehouse, five locations are marked for testing

purposes and four robots are deployed in the environment.

Four of the locations are represented by the green circles and

the fifth is located in the centre of the scene (Figure 5b).

The target destinations of separate robots are chosen randomly

from the rest four positions. In the experiments, we only use

the green circles as the candidates for the initial positions and

destinations for the robots. Here, the maximum step and φ
are set to 250 and 28.3, respectively. The learning rates for the

networks in this scenario are set to 1e−3 for the actor network

and 5e−1 for critic networks, respectively. The weight vector

Φ = [ϕCA, ϕNav] is set to [0.45, 0.55], meaning that, in this

scenario, the actor network will evaluate collision avoidance

with a higher importance than navigation.

Figure 5b illustrates the trajectories of vehicles controlled

by the MFPG in the simulated warehouse. The statistical

results of the performance are shown in Table II in terms

of three metrics, namely successful rate, collision distance

and covering area. Here, the collision distance is defined as

the Euclidean distance between the target and the location of

the collision. A smaller collision distance would indicate that

the vehicle managed to move closer to the destination, hence

more desirable. If the vehicle reaches the target, the collision

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

Car1
Car2
Car3
Car4

(a) Robots navigation in an obstacle-
free area.

Car1
Car2
Car3
Car4

(b) Robots navigation in the simulated
warehouse.

Rob1

Rob2

Rob3

Rob4

Rob5

Rob6

Rob7

Rob8

(c) Robots navigation in the simulated
warehouse with 8 robots.

Fig. 5: Trajectories of the proposed navigation model performed in the simulated environments.

TABLE I: Statistical comparison between algorithms

Method Success Rate Average Duration Covering area

DDPG 94.25% 16.41 2.381
Social normed
DDPG

86.0% 14.89 0.785

MFPG 94.75% 15.96 1.525
APF 20.375% 21.364 5.474

TABLE II: Performance Comparison between Standard

DDPG, MFPG and APF

Method Success Rate
Crash Distance Covering area
mean std mean std

Standard DDPG 73.267% 4.52 6.45 60.76 34.4
MFPG 80.5% 2.84 5.27 5.50 12.23

APF 0.5% 17.75 3.51 636.74 170.24

distance will be 0. According to Table II, the comparison of

the success rates among the methods suggests that MFPG

outperforms the standard DDPG. Similarly, the comparison

of collision distances in the table between both algorithms

suggests that MFPG has a more stable navigation performance.

In addition, the covering area indicates that MFPG has a more

optimal control policy than the standard DDPG. On the other

hand, with regard to the Non-RL algorithm, the APF has the

lowest success rate. A comparison of the success rate between

Table I and Table II indicates that the APF can be easily

stranded in local regions, leading to local minima.

Similarly to that of the square cage, the Q values of each

state-action pair during the training are illustrated in Figure 7.

The Q values of DDPG fluctuate around the zero point and

finally reach the highest value at about the 15000th step, while

the Q values of both the MFPG-based methods show similar

trends as shown in Figure 6.

To test the generalization capability of the trained model, a

test with 8 robots in the simulated warehouse is performed. 8

positions are marked in the simulated warehouse coloured in

green as depicted in Figure 5c. Each robot selects a random

pair of all candidate positions that are symmetric about the

origin as their initial positions and destinations. Here, ROS

runs at a 90Hz update rate. Other parameters are identical to

the previous model. The trajectories of the eight robots are

shown in Figure 5c.

0 1000 2000 3000 4000 5000 6000
Step

-100

-50

0

50

100

150

200

250

Q
 V

al
ue

QNav
MFPG

QCA
MFPG

QDDPG

QSN−DDPG

Fig. 6: Q values of each State-Action pair in the square cage

environment.

0 5000 10000 15000 20000 25000 30000
Step

-100

-50

0

50

100

Q
 V

al
ue

QNav
MFPG

QCA
MFPG

QDDPG

Fig. 7: Q values for each State-Action pair in the warehouse

environment.

C. Benchmark and Case Study

In this section, we compare our proposed algorithms with

three existing methods: the original DDPG, Soft Actor-Critic

(SAC), and Twin-Delayed DDPG (TD3). We analyze the sen-

sitivity of our proposed MFPG with different gradient weights

and conduct a case study using a set of trajectories. Each

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

algorithm is trained with different reward weights/gradient

weights separately. For the comparison between the baseline

algorithms and the adaptive MFPG, we carry out a set of

experiments with different reward weights to construct the

reward function, defined as follows:

Rbaseline =
Φbaseline · [RNav, RCA]

2
, (34)

Here, the reward weight Φbaseline is also applied to RNav and

RCA in our adaptive MFPG method.

The experimental results between our proposed algorithms

and the baselines are shown in Table III. The success rates

of the algorithms vary with the changes in the reward weight,

reaching its peak when the reward weights are approximately

Φ = [1, 3]. In the meantime, the average duration of successful

runs increases as the proportion of the collision-avoidance

weight increases with all algorithms, except for the adaptive

MFPG. Increasing the weight for collision avoidance results

in the policy becoming more cautious about its surroundings,

and this leads to increased time consumption. The increase

in weight shifts the policy’s attention towards safety, while

neglecting the navigation task reward. On the other hand, the

comparison with other algorithms indicates that our proposed

MFPG algorithm has the shortest average duration with sta-

ble performance. However, Soft Actor-Critic (SAC) shows a

higher capability for navigation. Meanwhile, the performance

of the DDPG is not satisfactory, the optimal success rate is

23.5%. The TD3 algorithm exhibits comparable performance

to our proposed MFPG and Adaptive MFPG methods, al-

though it requires significantly more computation time and

has a greater degree of variance. SAC achieves the highest

success rate among all the algorithms. This is due to the fact

that, in SAC, the Q value is not only composed of the reward,

but also the entropy of the policy. This encourages the policy

to explore more and avoids getting stuck in local optima. As a

result, SAC is more likely to find the optimal policy. However,

according to the proof presented in Section III-B, the MFPG

algorithms are expected to exhibit similar performance, which

contrasts with the actual result obtained. We attribute this

difference to the decoupling effect [46], [47] of the neural

network parameters. In theory, it would be natural to assume

that the policy gradient from 1) a combined reward-constructed

critic network is identical to 2) the summation of gradients

computed from separate reward-constructed critics. However,

in the second case of gradient summation from separate critics,

the policy gradients are computed by separate networks with

different parameters. This means the gradients are constructed

from distinct representations and each gradient is independent

from the influence of the other. Thus, this is different from the

gradient computed in the reward-summation manner. While

the decoupled agent may not be able to accurately reflect the

full state-action value function, it can be sufficient to do so

over a subspace relevant to solving the particular task [48].

The variation of Q values during training are plotted in

Figure 8. It is evident that the navigation State-Action value of

the MFPG-based algorithms shows an increasing trend, while

the collision avoidance value decreased and stabilized after

20,000 steps with a small standard deviation. The SAC method

converged the fastest after 8,000 steps and stayed below 0.

On the other hand, TD3 fluctuated around 0, making it almost

impossible to adjust policy performance according to the State-

Action value. Meanwhile, the DDPG method increased at a

relatively low speed and eventually stabilized at 80 after 43000

steps.

0 10000 20000 30000 40000 50000
Step

-100

0

100

200

300 TD3
SAC
MFPG-Nav
MFPG-CA
DDPG
Ada_MFPG-Nav
Ada_MFPG-CA

Fig. 8: Q value of each State-Action pair compared with other

baselines (reward weight = [1,1]).

In addition, we provide visualization of the state-action

value distribution as well as the corresponding actions with

respect to a few key waypoints selected according to some

given trajectories in challenging environments, as shown in

Figures 9 and 10. To the best of our knowledge, this is the

first attempt to visualize the distinct state-action values that

provide an interpretation of the potential preferences exhibited

by the agent within a framework of multi-reward-guided DRL.

The test is carried out using MFPG with gradient weights

[1, 3], which has the optimal performance among all MFPG-

based algorithms. In the figure, we depict the laser scan

range (painted in blue), action (black arrow), and the Q value

distribution, along with separate action values ranging from

-1 rad/s to 1 rad/s. The black arrow represents the action

selected by the policy under the given circumstance. It is

important to note that we evaluate the State-Action values of

each algorithm using pre-defined trajectories. Therefore, the Q

value distributions and the actions in the figures only represent

the algorithm’s preference under the given situation, but do

not affect the subsequent actions themselves. Here, we only

present one trajectory with a reward weight/gradient weight

of [1,1]. For more trajectories and detailed case studies, we

encourage readers to refer to the supplementary materials.

At first glance, it is clear that the given trajectory maintains

a safe distance between the obstacles. Figure 9 shows that the

baseline algorithms generally exhibit lower Q values, reflecting

their cautious behaviours in navigating through the narrow

gaps between obstacles. Among the seven figures, SAC (Figure

9g) stands out with the most extreme Q value distribution. On

the other hand, TD3 (Figure 9e) presents the smallest range

of the Q values of [-20, 30].

At waypoint 1, according to the Q value distributions, all

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

TABLE III: Comparison of each algorithm in terms of Success Rate (SR) and Average Duration (AD) conditioned by different

Reward Weights (RW)/Gradient Weights (GW)

RW/GW [5,1] [3,1] [1,1] [1,3] [1,5]
metrics SR AD±std SR AD±std SR AD±std SR AD±std SR AD±std

MFPG 0.215 11.536 ±4.08 0.3525 20.71±6.31 0.365 21.876±9.31 0.425 26.128±9.97 0.36 26.138±14.4
Ada-MFPG 0.395 32.883±18.29 0.27 24.265±25.99 0.3275 29.436±22.46 0.3875 24.183±16.02 0.3125 19.670±16.17

DDPG 0 - 0.09 34.557±3.96 0.235 37.400±7.16 0.17 46.981±14.08 0.22 61.991±21.45
TD3 0.2900 34.829±5.39 0.3550 48.264±18.48 0.3425 67.023±25.57 0.4050 72.219±30.79 0.2675 85.299±40.56

SAC 0.32 36.921± 7.68 0.46 38.288± 9.43 0.4775 40.344±10.38 0.525 42.311±12.69 0.4625 46.225±15.26

critic networks detected potential risks at the current position,

while the baseline algorithms show positive bias towards the

robot’s left-hand side. Both collision avoidance critic networks

of the MFPG-based algorithms identify the risky areas in front

of the robot, while the navigation networks show higher values

towards the target direction. As a result, the policy selected a

left turn. From waypoint 1 to waypoint 4, all policies chose

actions that maximize the navigation critic policies.

At waypoint 5, a hairpin turn is used to examine the

response of the algorithms. All critic networks detected the

robot’s tendency to collide with an obstacle. In Figures 9c

and 9a, actions that maximize the navigation rewards are

located on the right side of the vehicle. However, the policy

network chose another action on the opposite side of the

desired navigation action, due to the influence of the collision-

avoidance critic network. Although the selected action was

not dangerous, it could result in a longer traveling distance

than its counterpart. However, among the baseline algorithms,

only TD3 selected the optimal action of a sharp right turn

that moves towards the target location while also avoiding

collisions. In contrast, the other two algorithms chose actions

that maximized the navigation reward, driving them straight

into obstacles and putting them in a hazardous situation. In

the subsequent steps, the robot successfully reached the target

location. At waypoints 6 and 7, the robot is expected to turn

left to reach the destination. The DDPG, SAC, and MFPG

algorithms opted to turn left, while TD3 opted to turn right,

which would have put the robot in a hazardous situation. In

contrast, the Ada-MFPG algorithm chose to proceed forward,

guided by the collision avoidance network. The robot finally

reached the target destination after waypoints 7 and 8.

Figure 10 depicts a trajectory where the robot collides

with obstacles. This trajectory is presented to identify the

underlying cause of failure. With waypoint 1, four robots opted

to turn left to avoid collisions, except the SAC algorithm chose

to proceed straight ahead, which is perilous.

The trajectory’s high-risk action commences at waypoint 6.

At this point, the robot is expected to be aware of the obstacle

in the right front direction of the robot, while turning right will

lead to the target location. The trajectories generated exhibit

a similar action to that of TD3, as illustrated in Figure 10e.

Based on waypoint 7 presented in Figure 10, it is evident

that all seven critic networks hold an optimistic attitude

towards the blind alley. This behaviour can be primarily

attributed to the laser sensor readings. As per the sensor data,

the robot detected a wide area in front of it, while the space on

the right side between the obstacles was narrow. Consequently,

the robot’s policy misjudged the situation, leading to the

collision at waypoint 7. After entering the blind alley, the

agent tried to escape from the environment by turning right.

However, the space within the blind alley is not enough for

turning back. Finally, at waypoint 7, the agent crashed into

the obstacle.

D. Experiments on Real Robots

In addition, to evaluate the generalization capability of the

navigation model, the experiments are also performed on real

robots in a real-world environment. Robot navigation in the

real world is different from the simulated scenarios. In the real-

world environment, the low accuracy of pose estimation and

the delay of the commands make the navigation procedures

more sophisticated than the simulated scenarios. Therefore,

experiments in unseen maps would be essential to examine

the validity of the model. In this work, experiments with a

single robot and multiple robots were performed to test the

navigation ability of the proposed method. Different types

of robots are deployed in the test, including two Turtlebot-

3 robots and one other customised mobile robot. Due to

the limited on-board computational power of the Turtlebot-

3 robots, they are connected to remote computers for data

processing and control. The other robot is controlled with an

onboard computer in the navigation experiments.

In the experiments, ROS runs at a lower update rate of 5Hz.

To avoid the poor stability of robot control caused by signal

delays, an action filter is used to improve the robustness of

the navigation procedure. Firstly, the output of the model is

scaled to a new bound using:

ât =
2

3π
arctan(16π(st)), (35)

where ât is the scaled output of the policy network π(s) at

the time step t. The action that the robot finally performed is

calculated as follows:

ap = [ât, ât−1, ât−2] · [0.625It, 0.25It−1, 0.125It−2]
T. (36)

where, [0.625It, 0.25It−1, 0.125It−2] are the weights for the

actions in the previous steps. It is an indicator function

conditioned by the action at and ϑ defined like:

It =

{

1 at · ϑ ≥ 0
0.7 else

. (37)

The indicator function has the effect of smoothing con-

secutive commands executed on the robot to avoid sudden

manoeuvrings and, on the other hand, can undermine those

actions that could result in the robot diverging away from

its target. Here, ϑ is the orientation of the target at the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

1

2
3

4 5

6

7 8

(a) Ada-MFPG (Nav).

1

2
3

4 5

6

7 8

(b) Ada-MFPG (CA).

1

2
3

4 5

6

7 8

(c) MFPG (Nav).

1

2
3

4 5

6

7 8

(d) MFPG (CA).

1

2
3

4 5

6

7 8

(e) TD3.

1

2
3

4 5

6

7 8

(f) DDPG.

1

2
3

4 5

6

7 8

(g) SAC.

Fig. 9: The State-Action value distribution in the complex environment based on the given successful navigation trajectory.

1

2

34
5

6

7

(a) Ada-MFPG (Nav).

1

2

34
5

6

7

(b) Ada-MFPG (CA).

1

2

34
5

6

7

(c) MFPG (Nav).

1

2

34
5

6

7

(d) MFPG (CA).

1

2

34
5

6

7

(e) TD3.

1

2

34
5

6

7

(f) DDPG.

1

2

34
5

6

7

(g) SAC.

Fig. 10: Action and Q value distribution under the complex environment given a failure navigation trajectory.

current time, and at is calculated using the actions at the

corresponding previous time steps. When calculating action

at+1 at state st+1, action at in Equation 36 is selected.

The control system architecture for multi-robot experiments

is shown in Figure 11. Three robots are controlled by separate

computers running identical navigation models. The positions

of each robot are estimated using the amcl package in ROS.

The estimated pose (ρ, ϑ) of the robot as well as the laser

sensors published with the frequency of 10Hz. Note that one

of the robots (robot 3) is controlled by the onboard computer,

while the others are controlled by remote PCs via wireless

connection, due to the hardware configurations of the work.

There is no difference in terms of functionality.

Firstly, the navigation ability of the robots in both static

and dynamic environments with moving obstacles is tested

using the robot with the onboard computer. The trajectories

of the robots in a static environment are shown in Figure 12.

Figures 13a and 13b show the snapshot sequences of the robot

in two dynamic environments with a human attempting to

block the robot.

Furthermore, to verify the navigation ability of the robot

to travel a longer distance, we deployed the MFPG with

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

字体
新解

Car1/scan

/Car1 /gmapping

/MFPG

/Car1/cmd_vel

/Car1/amcl

/Car2/cmd_vel

/Car2/amcl

/Car3 /gmapping

/MFPG

/Car3/amcl

/Car3/cmd_vel

Robot1：Controlled by the remote host

Robot2：Controlled by the remote host

Robot3：Controlled by the onboard host

/Car2 /gmapping

/MFPG

Car2/scan

Fig. 11: The control system overview in the multi-robot

experiments.

字体

新解

(a) Trajectory 1 in the environment with static obstacles
(camera view).

字体

新解

(b) Trajectory 2 in the environment with static obstacles
(camera view).

(c) Trajectory 1 in the environment with static obstacles
(Rviz).

(d) Trajectory 2 in the environment with static obstacles
(Rviz).

Fig. 12: Trajectories of robot navigation.

字体

1s

10s

11s

20s

21s

30s

31s

40s

(a) Slices 1 of the robot in the dynamic obstacles scene.

1s

6s

11s

16s

21s

5s

10s

15s

20s

25s

(b) Slices 2 of the robot in the dynamic obstacles scene.

Fig. 13: Trajectories of robot navigation in dynamic environ-

ments.

A

B

C

 2m

Door 2

Door 1

Fig. 14: The map of the experiment on a real robot in the

corridor.

gradient weight (1,3) on the real robot and carried out more

experiments in a corridor environment. The experimental scene

comprises a long corridor with two narrow doors, as displayed

in Figure 14. In the map, we selected Three Positions as the

candidates for start and target positions, namely A, B, and

C. Besides, two doors in the map are also annotated in the

figure. The maximum travel distance is 15m from Position A

to Position C. We proposed three trajectories to demonstrate

the performance of the robot. Due to the page restriction, we

only show one trajectory in the paper and encourage the reader

to refer to the supplementary materials for more details.

Figure 15 depicts the robot’s movement from position A

to position B, crossing two narrow doors. The robot began

from Step 1 and detected an obstacle on the right-hand side.

Accordingly, it decided to move towards the right front. Upon

reaching Step 2, the robot detected a dangerous situation from

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

the laser scan on its left front and reacted by turning right.

From Step 3 to Step 4, the robot attempted to pass through the

first narrow door and turned towards its target position. After

Step 4, the robot headed towards the target location and arrived

at Step 6 after passing through the second door. However, it

should be noted that, due to the slippery floor, the odometry

errors caused a discrepancy between the real trajectory and

the poses estimated by Lidar-based SLAM (Simultaneous Lo-

calization and Mapping), resulting in inaccurate localization.

In addition, navigation and collision avoidance between

the robots are also tested in a larger-scale environment. The

trajectories of three robots are shown in Figure 16 in red, green

and blue respectively at two timesteps (76 sec and 83 sec). It

can be clearly seen that the robots performed well in avoiding

collisions with other moving robots as expected.

VI. CONCLUSION

In this paper, an algorithm named MFPG and its extended

version based on DDPG with multiple irreconcilable rewards

is proposed for the mapless navigation problem. The method

is focused on the management of each Q value network

calculated from separate rewards that encourage the robot

to move towards the goal, named distance-shortening, and

collision avoidance respectively, and reconciling of the policy

gradients generated from the Q networks. We further extended

the proposed algorithm with an auto-tuning mechanism that

allows the policy to adjust the weights of the separate policy

gradients according to the standard deviation of the Q values.

As the result of the modification, the probability of each

transition being selected in the PER algorithm is adjusted

via a weight-controlled component to calculate the probability

of transition for being selected using two loss functions.

Furthermore, we assessed the preferences of each algorithm by

visualizing the distributions of state-action values separately

across various states.

In order to improve the performance of collision avoidance,

a continuous reward offset gain is proposed to form a specific

social norm, so as to avoid collisions in the circumstance of

vehicles crossing and passing.

Advantages. Experiments have shown that the proposed

MFPG requires a shorter duration and higher success rate

for passing and crossing in a wide obstacles-free space. In

the warehouse simulation environment, MFPG outperformed

its prototype algorithm and achieved optimal performance in

terms of duration.

Different from combining separate rewards into a single-

value reward to construct the Q value network, our proposed

approach of using multiple rewards to construct Q value net-

works separately can also be used to optimize the parameters

of the policy network. Additionally, a minor modification is

applied to the PER module to reduce the loss value of each

Q network effectively. Besides, experiments on the real robots

have shown that the algorithm can be transferred into the real

world.

Limitations. In this paper, we use only several indicators

to compare the performance of the proposed method and

baselines in the mapless navigation task. It is worth noting that

although the algorithm exhibits a moderate success rate and

an optimal average duration, one drawback of the algorithm is

the assumption of accurate localization of the agent that will

be the most considerable limitation in applying the algorithm

to real factories. Moreover, although the convergence of the

algorithm has been proved, the stability of the algorithm under

complicated scenarios still remains to be examined.

Future work. Besides addressing the limitations of the al-

gorithm, a little similarity can be found between the proposed

method and C-MDP-based RL problems, both of which use

multiple reward functions and several of which are related to

the safety constraints. It would be interesting to extend our

approaches to the constrained MDP problems, such as [49].

Another direction from the proposed algorithm is to examine

if the approach can be applied to the multi-objective and

multi-task problems, while incorporating more performance

indicators, such as trajectory smoothness etc [50]. Further-

more, in future, we will consider incorporating trajectory

smoothness in designing the social norm, as well as including

linear velocity in the action space that can encourage the

robot to vary its speed in its motion, in addition to only

rotating. Besides, it is interesting to quantitatively evaluate the

extent of the decoupling effect of multiple neural networks on

the preference of the algorithms [51] [52]. Finally, we will

integrate robot self-localisation methods of Visual SLAM or

Visual Odometry for real-world deployment. This is part of

our immediate future work [53].

REFERENCES

[1] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[3] D. Ye, Z. Liu, M. Sun, B. Shi, P. Zhao, H. Wu, H. Yu, S. Yang, X. Wu,
Q. Guo et al., “Mastering complex control in moba games with deep
reinforcement learning.” in AAAI, 2020, pp. 6672–6679.

[4] H. Cheng, Q. Zhu, Z. Liu, T. Xu, and L. Lin, “Decentralized navigation
of multiple agents based on orca and model predictive control,” in 2017

IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), Sep. 2017, pp. 3446–3451.
[5] P. Cai, H. Wang, Y. Sun, and M. Liu, “DQ-GAT: Towards safe and

efficient autonomous driving with deep q-learning and graph attention
networks,” 2021.

[6] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[7] T. Chaffre, J. Moras, A. Chan-Hon-Tong, and J. Marzat, “Sim-to-real
transfer with incremental environment complexity for reinforcement
learning of depth-based robot navigation,” in 17th International Con-

ference on Informatics, Automation and Robotics, ICINCO 2020, 2020,
pp. 314–323.

[8] J. C. de Jesus, V. A. Kich, A. H. Kolling, R. B. Grando, M. A. d.
S. L. Cuadros, and D. F. T. Gamarra, “Soft actor-critic for navigation
of mobile robots,” Journal of Intelligent & Robotic Systems, vol. 102,
no. 2, p. 31, 2021.

[9] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[10] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and map-
ping: part i,” IEEE robotics & automation magazine, vol. 13, no. 2, pp.
99–110, 2006.

[11] P. Zhang, C. Wei, B. Cai, and Y. Ouyang, “Mapless navigation for
autonomous robots: A deep reinforcement learning approach,” in 2019

Chinese Automation Congress (CAC), 2019, pp. 3141–3146.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

0

40
50

90
100

140

(a) Trajectory 1 view in camera.

1
2 3

4
56

(b) Trajectory 1 view in rviz.

Fig. 15: Trajectory 1 of real robot navigation in corridor environment.

(a) Trajactories of the robots in the large-scale scenario (76s).

(b) Trajactories of the robots in the large-scale scenario (83s).

Fig. 16: Trajactories of multi-robot navigation with collision

avoidance in a large-scale scenario.

[12] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware
motion planning with deep reinforcement learning. in 2017 ieee,” in
RSJ International Conference on Intelligent Robots and Systems (IROS),
2019, pp. 1343–1350.

[13] T. Fan, P. Long, W. Liu, and J. Pan, “Distributed multi-robot col-
lision avoidance via deep reinforcement learning for navigation in
complex scenarios,” The International Journal of Robotics Research,
p. 0278364920916531, 2020.

[14] C. De La Cruz and R. Carelli, “Dynamic model based formation control
and obstacle avoidance of multi-robot systems,” Robotica, vol. 26, no. 3,
pp. 345–356, 2008.

[15] J. Alonso-Mora, S. Baker, and D. Rus, “Multi-robot formation control
and object transport in dynamic environments via constrained optimiza-
tion,” The International Journal of Robotics Research, vol. 36, no. 9,
pp. 1000–1021, 2017.

[16] X. Wang, Z. Yan, and L. Zhong, “Centralized and decentralized methods
for multi-robot safe navigation,” in 2022 International Conference on

Machine Learning and Intelligent Systems Engineering (MLISE), 2022,
pp. 150–159.

[17] Z. Zhang, R. Han, and J. Pan, “An efficient centralized planner for
multiple automated guided vehicles at the crossroad of polynomial
curves,” IEEE Robotics and Automation Letters, vol. 7, no. 1, pp. 398–
405, 2022.

[18] D. Helbing and P. Molnar, “Social force model for pedestrian dynamics,”
Physical review E, vol. 51, no. 5, p. 4282, 1995.

[19] P. Vadakkepat, K. C. Tan, and W. Ming-Liang, “Evolutionary artificial
potential fields and their application in real time robot path planning,” in
Proceedings of the 2000 congress on evolutionary computation. CEC00

(Cat. No. 00TH8512), vol. 1. IEEE, 2000, pp. 256–263.

[20] K. Rana, V. Dasagi, B. Talbot, M. Milford, and N. Sünderhauf, “Multi-
plicative controller fusion: A hybrid navigation strategy for deployment
in unknown environments,” in IEEE International Conference on Intel-

ligent Robots and Systems, 2020.

[21] M. Innocenti, L. Pollini, and D. Turra, “A fuzzy approach to the guidance
of unmanned air vehicles tracking moving targets,” IEEE Transactions

on Control Systems Technology, vol. 16, no. 6, pp. 1125–1137, Nov
2008.

[22] Y. Kuwata and J. P. How, “Cooperative distributed robust trajectory op-
timization using receding horizon milp,” IEEE Transactions on Control

Systems Technology, vol. 19, no. 2, pp. 423–431, 2010.

[23] M. Hoy, A. S. Matveev, and A. V. Savkin, “Algorithms for collision-
free navigation of mobile robots in complex cluttered environments: a
survey,” Robotica, vol. 33, no. 3, pp. 463–497, 2015.

[24] J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal n-
body collision avoidance,” in Robotics research. Springer, 2011, pp.
3–19.

[25] D. Hennes, D. Claes, W. Meeussen, and K. Tuyls, “Multi-robot collision
avoidance with localization uncertainty.” in AAMAS, 2012, pp. 147–154.

[26] J. E. Godoy, I. Karamouzas, S. J. Guy, and M. L. Gini, “Implicit
coordination in crowded multi-agent navigation.” in AAAI, 2016, pp.
2487–2493.

[27] H. Xu, Y. Gao, F. Yu, and T. Darrell, “End-to-end learning of driving
models from large-scale video datasets,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2017, pp. 2174–
2182.

[28] F. Codevilla, M. Müller, A. López, V. Koltun, and A. Dosovitskiy,
“End-to-end driving via conditional imitation learning,” in 2018 IEEE

International Conference on Robotics and Automation (ICRA). IEEE,
2018, pp. 4693–4700.

[29] M. Pfeiffer, S. Shukla, M. Turchetta, C. Cadena, A. Krause, R. Siegwart,
and J. Nieto, “Reinforced imitation: Sample efficient deep reinforcement
learning for mapless navigation by leveraging prior demonstrations,”
IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 4423–4430,
2018.

[30] A. Sadat, S. Casas, M. Ren, X. Wu, P. Dhawan, and R. Urtasun,
“Perceive, predict, and plan: Safe motion planning through interpretable
semantic representations,” in European Conference on Computer Vision.
Springer, 2020, pp. 414–430.

[31] M. Bansal, A. Krizhevsky, and A. Ogale, “Chauffeurnet: Learning to
drive by imitating the best and synthesizing the worst,” arXiv preprint

arXiv:1812.03079, 2018.

[32] P. Cai, H. Wang, H. Huang, Y. Liu, and M. Liu, “Vision-based au-
tonomous car racing using deep imitative reinforcement learning,” IEEE

Robotics and Automation Letters, vol. 6, no. 4, pp. 7262–7269, 2021.

[33] C. Wang, Y. Niu, M. Liu, T. Shi, J. Li, and L. You, “Geomagnetic
navigation for auv based on deep reinforcement learning algorithm,”

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 18

in 2019 IEEE International Conference on Robotics and Biomimetics

(ROBIO), 2019, pp. 2571–2575.
[34] X. Guo, Z. Ren, Z. Wu, J. Lai, D. Zeng, and S. Xie, “A deep

reinforcement learning based approach for agvs path planning,” in 2020

Chinese Automation Congress (CAC), 2020, pp. 6833–6838.
[35] F. Zeng, C. Wang, and S. S. Ge, “A survey on visual navigation for

artificial agents with deep reinforcement learning,” IEEE Access, vol. 8,
pp. 135 426–135 442, 2020.

[36] I. Carlucho, M. De Paula, S. Wang, B. V. Menna, Y. R. Petillot, and
G. G. Acosta, “Auv position tracking control using end-to-end deep
reinforcement learning,” in OCEANS 2018 MTS/IEEE Charleston, 2018,
pp. 1–8.

[37] X. Cao, C. Sun, and M. Yan, “Target search control of auv in underwater
environment with deep reinforcement learning,” IEEE Access, vol. 7, pp.
96 549–96 559, 2019.

[38] B. Kabas, “Autonomous uav navigation via deep reinforcement learn-
ing using ppo,” in 2022 30th Signal Processing and Communications

Applications Conference (SIU), 2022, pp. 1–4.
[39] M. Everett, Y. F. Chen, and J. P. How, “Collision avoidance in pedestrian-

rich environments with deep reinforcement learning,” IEEE Access,
vol. 9, pp. 10 357–10 377, 2021.

[40] R. B. Grando, J. C. de Jesus, V. A. Kich, A. H. Kolling, P. M.
Pinheiro, R. S. Guerra, and P. L. Drews, “Mapless navigation of
a hybrid aerial underwater vehicle with deep reinforcement learning
through environmental generalization,” in 2022 Latin American Robotics

Symposium (LARS), 2022 Brazilian Symposium on Robotics (SBR), and

2022 Workshop on Robotics in Education (WRE). IEEE, 2022, pp. 1–6.
[41] R. Chandra, V. Zinage, E. Bakolas, J. Biswas, and P. Stone, “Decentral-

ized multi-robot social navigation in constrained environments via game-
theoretic control barrier functions,” arXiv preprint arXiv:2308.10966,
2023.

[42] L. Marzari, E. Marchesini, and A. Farinelli, “Online safety property col-
lection and refinement for safe deep reinforcement learning in mapless
navigation,” in 2023 IEEE International Conference on Robotics and

Automation (ICRA), 2023, pp. 7133–7139.
[43] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy

gradient methods for reinforcement learning with function approxima-
tion,” in Advances in neural information processing systems, 2000, pp.
1057–1063.

[44] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” arXiv preprint arXiv:1511.05952, 2015.

[45] Y. Hou and Y. Zhang, “Improving ddpg via prioritized experience
replay,” no. May, 2019.

[46] H. Zhuang, Y. Wang, Q. Liu, and Z. Lin, “Fully decoupled neural
network learning using delayed gradients,” IEEE Transactions on Neural

Networks and Learning Systems, vol. 33, no. 10, pp. 6013–6020, 2022.
[47] M. Jaderberg, W. M. Czarnecki, S. Osindero, O. Vinyals, A. Graves,

D. Silver, and K. Kavukcuoglu, “Decoupled neural interfaces using
synthetic gradients,” in Proceedings of the 34th International Conference

on Machine Learning, ser. Proceedings of Machine Learning Research,
D. Precup and Y. W. Teh, Eds., vol. 70. PMLR, 06–11 Aug 2017, pp.
1627–1635.

[48] T. Seyde, P. Werner, W. Schwarting, I. Gilitschenski, M. Riedmiller,
D. Rus, and M. Wulfmeier, “Solving continuous control via q-learning,”
arXiv preprint arXiv:2210.12566, 2022.

[49] Y. As, I. N. Usmanova, S. Curi, and A. Krause, “Constrained policy
optimization via bayesian world models,” ArXiv, vol. abs/2201.09802,
2022.

[50] C. F. Hayes, R. Rădulescu, E. Bargiacchi, J. Källström, M. Macfarlane,
M. Reymond, T. Verstraeten, L. M. Zintgraf, R. Dazeley, F. Heintz
et al., “A practical guide to multi-objective reinforcement learning and
planning,” arXiv preprint arXiv:2103.09568, 2021.

[51] A. Stooke, K. Lee, P. Abbeel, and M. Laskin, “Decoupling representation
learning from reinforcement learning,” in Proceedings of the 38th

International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, M. Meila and T. Zhang, Eds., vol. 139.
PMLR, 18–24 Jul 2021, pp. 9870–9879.

[52] R. Raileanu and R. Fergus, “Decoupling value and policy for generaliza-
tion in reinforcement learning,” in Proceedings of the 38th International

Conference on Machine Learning, ser. Proceedings of Machine Learning
Research, M. Meila and T. Zhang, Eds., vol. 139. PMLR, 18–24 Jul
2021, pp. 8787–8798.

[53] F. Lin, C. Wei, R. Grech, and Z. Ji, “VO-safe reinforcement learning for
drone navigation,” in 2024 IEEE International Conference on Robotics

and Automation (ICRA), 2024.

	Introduction
	Related Works
	Multi-Feature Policy Gradients
	Preliminaries
	Gradient Calculation for Multiple Uncombinable Rewards
	Adaptive Policy Weight Calculation
	Modified Prioritized Experience Replay

	Mapless Navigation and Collision Avoidance
	Parameterization
	Reward
	Reward function for distance-shortening
	Reward function for Collision Avoidance

	Main Procedure of The Algorithm

	Experiments
	Preparation
	Multi-robots Navigation in Simulated Scenes
	Benchmark and Case Study
	Experiments on Real Robots

	Conclusion
	References

