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Abstract—As robotics, particularly in agriculture, become
more prevalent, understanding the role that different factors
play on the trust levels that users have in these robots becomes
crucial to facilitate their adoption and integration into the
industry. In this paper we present the results of a within-
subjects study that included between-subject factors exploring
how prior experience with robotics and different interaction
styles with a mobile manipulator robot may affect trust levels
in said robot before and after the completion of an agriculture-
related manipulation task. The results show that interacting
with the robot helps improve trust levels, particularly for those
without prior experience with robotics, who present a higher
trust improvement score, and that an interaction style involving
physical human-robot interaction (pHRI), more specifically
Learning by Demonstration, was favoured versus less direct
interaction styles. We found that incorporating Text-to-Speech
(TTS) can be a good design choice when trying to improve
trust, and that the improvement score for trust before and after
interaction with the robot was significantly higher for older age
groups, with these participants being more conservative with
their reported trust level before the interaction. Overall, these
results offer insights into different interaction styles and their
effect on trust levels for an agriculture-related manipulation
task, and open the door to future work exploring further
interaction styles and task variations.

Index Terms—human-robot interaction, trust, interaction
styles, agriculture

I. INTRODUCTION

In recent years, as the sophistication of robotics solutions
has increased, more and more sectors, especially agriculture,
have turned to robotics to help improve and solve today’s
global problems. The world is expanding at breakneck speed,
and current United Nations (UN) predictions suggest that
the human population could increase by 2.15 billion people
from today’s recorded levels, reaching 9.15 billion by the
year 2050 [1]. To feed such a large population, agricultural
production must rise dramatically [21], [6], and by utilising
these robotic solutions can effectively boost crop yields while
increasing efficiency and bolstering sustainability [13]. Agri-
culture has opened its doors to innovation as a result of the
surge in the artificial intelligence sector, growing population,
and the creation of more utilitarian robots. According to
Verified Market Research, the agricultural robots industry

This work was supported by the Engineering and Physical Sciences
Research Council and AgriFoRwArdS CDT [EP/S023917/1]

1Alex Elias is a PhD Student at the School of Com-
puter Science, University of Lincoln, United Kingdom
alex_elias05051@outlook.com

2Maria Jose Galvez Trigo is with the Department of
Computer Science and Informatics at Cardiff University, UK
galveztrigom@cardiff.ac.uk

is projected to reach $11.58 billion by 2025 [22], making
this one of the most investable industries in the coming
century. Although the agricultural sector is calling for these
robotics solutions, more research must be conducted before
these robots can be implemented within the industry. An
important consideration that must be addressed is whether
or not people can, or are willing to, trust these robots when
they are integrated within the industry.

One thing is to be able to develop robotics solutions for
agricultural problems, but if people are unwilling to put their
trust in these new robots, their integration into industry will
be halted. As the advantages, automation, history, and future
have been identified [14], they also state that the “trust in the
robotic equipment is not quite built completely”, highlighting
that there are concerns about implementing these robotic
solutions into industry. The agriculture sector is primarily
seen as an older individuals’ profession, as indicated by Guo,
G. et al. [11] in their study, in which they aimed to identify
the impact of an ageing agricultural labor population, with
these people who have been working in the same way, day
in and day out for the past several decades, a correlation
between the acceptance of these solutions into farms and the
farmer’s age could be seen as they are set in their ways.
This is supported by the study conducted by Das, V. J. et
al. [4] on the integration of technology within Irish farms.
Through their research, they identified that people with lower
levels of education and who were older were less likely to
integrate these new robotic solutions into their farms, even
though evidence proves better results. This emphasizes the
importance of trust within these robots and the need for more
research into the factors that influence the level of trust people
bestow on them.

In this paper, we present a study that provides insight into
the impact on trust of different styles of interaction with a
mobile manipulator robot whilst completing an agriculture-
related manipulation task using the robot TIAGo 1.Trust
is a complex multifaceted concept that can be affected by
a number of internal and external factors such as cultural
background, prior experience with technology/ robots. During
the study, we utilised a within-subjects design that included
two between-subjects factors. Because of the complexity of
trust and of measuring it, we decided to use, along with self-
reported trust, tools such as the Negative Attitude towards
Robots Scale (NARS) Questionnaire [20] and Godspeed
Questionnaire [2],as well as semi-structured interviews with

1https://pal-robotics.com/robots/tiago/
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a sample of the participants. This enabled us to delve into
subjective measures of trust. While NARS aims to measure a
range of negative feelings and responses towards robots, God-
speed Questionnaire assesses perceived anthropomorphism,
animation, likeability, intelligence, and safety of robots. The
standard version of the NARS questionnaire can be seen in
table I. The use of these methods contributes to a deeper
understanding of trust dynamics in HRI. Within this study,
aspect from both where utilised to gauge the participants
initial attitudes towards robots in general before further
exploration was conducted through questionnaires/interviews.

TABLE I: NARS questionnaire as defined by Nomura et al.
[20]

Item no. Questionnaire item Subscale
1 I would feel uneasy if robots really had emotions. S2
2 Something bad might happen if robots developed

into living beings.
S2

3 I would feel relaxed talking with robots (Re-
versed item).

S3

4 I would feel uneasy if I was given a job where
I had to use robots.

S1

5 If robots had emotions, I would be able to make
friends with them (Reversed item).

S3

6 I feel comforted being with robots that have
emotions (Reversed item).

S3

7 The word “robot” means nothing to me. S1
8 I would feel nervous operating a robot in front

of other people.
S1

9 I would hate the idea that robots or artificial intel-
ligences were making judgements about things.

S1

10 I would feel very nervous just standing in front
of a robot.

S1

11 I feel that if I depend on robots too much,
something bad might happen.

S2

12 I would feel paranoid talking with a robot. S1
13 I am concerned that robots would be a bad

influence on children.
S2

14 I feel that in the future society will be dominated
by robots.

S2

Our study aims to answer the following research questions:
RQ1 How does having prior experience using robotic solu-

tions affect trust levels before and after interacting with
TIAGo?

RQ2 How do different types of interaction with TIAGo during
a manipulation task affect trust levels before and after
the task?

From these research questions, we worked with the fol-
lowing hypotheses:
H1 The level of trust the user has in the robot will increase

after interacting with it;
H2 Interactions involving a higher level of interaction will

yield higher levels of trust.

A. Note on terminology
In this paper, the term “HRI robot” is utilized to underscore

the significance of the overall interaction between robots and
humans, rather than focusing solely on the type of robot
involved (e.g., co-bot, social robot) or the nature of the
interaction (e.g., instruction-based, social interaction-based),
when we refer to HRI robots in this paper, we refer to any
type of robot a person/s may need to interact or engage
directly with during the task in hand.

II. RELATED WORK

A. The Challenges of HRI Robots Building Trust

Trust is a critical aspect of HRI that started receiving
increasing attention in research in recent years, despite a
reported lack of focus on this aspect until approximately 2008
[15]. Various methods, including subjective and behavioral
measures, have been employed to gauge trust levels in this
area. With robotics solutions increasingly prevalent across
industries, particularly in agriculture, trust in these systems
becomes paramount to enable their adoption and integration,
with adoption referring to the stage in which they are initially
selected for use, and integration referring to a sense of ac-
ceptance and transparency within the user environment once
they’ve been adopted [7]. Groom and Nass [10], emphasize
the importance of trust in team dynamics, crucial for effective
operation, with Hancock et al. [12] highlighting how trust in-
fluences humans’ reliance on robotics systems, particularly in
challenging environments. Yet, as De Visser et al. [5] caution,
insufficient trust may prompt user intervention when this is
not necessary, while Malle [17] warns against excessive trust
leading to unrealistic expectations, something that could lead
potential safety issues in safety-critical scenarios.

Desai et al. [19] suggest differences in trust develop-
ment between human-robot and traditional automated sys-
tem interactions.While trust in traditional automated systems
relies heavily on reliability and predictability over time,
trust between human-robots involves a complex interplay of
technical, social, and emotional factors. In HRI, factors such
as anthropomorphism, communication style, transparency,
and perceived intentions play crucial roles in shaping trust.
Additionally, the physical embodiment of robots introduces
unique dimensions to trust development, as humans may
attribute human-like qualities to robots based on appearance
and behavior. Understanding these differences is vital for
designing and deploying robots that can effectively earn and
maintain human trust in various contexts. Yagoda and Gillan
[30] argue that trust evaluation often overlooks key robot
attributes.

Stergiou, A. and Poppe, R. [28] suggest that while most
metrics of trust between people are based on moral principles
like honesty and loyalty, the majority of HRI trust metrics
rely on the user’s belief that the robot can complete a task
successfully. However, according to Coeckelbergh [3], there
are more variables to consider when determining whether
a robot is judged trustworthy in HRI than merely whether
the robot can execute a predetermined task effectively or
not. He created two main categories for these variables,
“contractarian-individualist” and “phenomenological-social”.
The former claims that an interaction between a human agent
and an artificial agent highlights the differences between the
two agents, while the latter suggests that it is more complex
and that the robots should be seen as multi-stable as they
are much more than machines, treating them more like one
would an animal or another human. Further delving into the
complexity of trust in HRI robots, Galvez Trigo et al. [9]
also highlight that other factors to consider are the trust in



manufacturers or institutions deploying or supplying the robot
to be used, as well as general knowledge about the robot’s
capabilities. This highlights how challenging it is to build
and measure trust towards HRI robots.

Steinfeld, A., et al. [27] report on the challenges in accu-
rately measuring trust, discussing difficulties in determining
trust levels in ecologically flawed environments. Flook, R.
et al. [8] found limitations in relying solely on post-hoc
questionnaires to understand trust dynamics, emphasizing
the need for continuous assessment. Whereas, although they
are indirect measures of trust, Flook, R. et al, [8] found
that behavior-based objective measurements could be less
susceptible to post-hoc ”reconstruction and rationalisation”.

Regarding trust measurement in HRI, Yagoda, R.E. and
Gillan, D.J. [30] argue that trust has primarily been evaluated
in the context of automation, and caution against its indis-
criminate application in HRI in general. While automation is
a key aspect of HRI, it underscores the necessity for a more
refined trust metric specific to HRI.

B. How HRI Robots Interact with the User

The degree of trust that may be placed on a robot critically
depends on how humans engage and communicate with it.
According to Hancock, P.A. et al. [12], trust is a relational
concept that requires the presence of at least three elements: a
human information transmitter, a robot information receiver,
and a communication channel connecting the two, being the
interaction.

The issue of whether communication styles and cul-
tural differences affect people’s willingness to accept robot-
generated recommendations is one that Rau, P.P., et al. [25]
raise. A small sample of Chinese and German students
were approached in this study to record their tolerance and
acceptance of a robot that communicates in both their native
tongue and English. They confirmed that when a robot spoke
in the participants’ native language, they seemed to favor an
implicit communication style and the decisions made by the
robot. Participants also thought the robot was more “likeable,
trustworthy, and credible” than when the robot spoke in
English. An assumption that can be drawn from this study’s
findings is that people are more likely to trust a robot if
they find it to be likeable. Vlachos, P.A., et al. [29] suggests
that likability is an emotional bond between two people that
can be described as affectionate, a feeling that is much more
greatly accepted. This suggests that, when designing a robot
that will interact with humans, likability —which is a critical
component in assessing trustworthiness— should be taken
into account.

Trust is at the heart of people’s desire to recognize and
utilize a non-human agent, hence its importance in the
adoption and integration of HRI robots. The terminology
”Theory of Mind” (ToM), which was first used by American
psychologists Premack, D. and Woodruff, G. [23], refers to
the capacity to comprehend the ideas and intentions of others
that are different from one’s own. Since people’s capacity
to trust another agent depends on our own interpretation of
that entity’s behavior, according to Rabinowitz et al. [24],

it is possible to draw a connection between trust and ToM
as interconnected and interdependent notions within HRI.
In order to determine whether there is any relationship,
participants in the study by Mou et al. [18] played a “Price
Game” with the same robot while varying their ToM to see
if there was any correlation between the two. Their findings
support the idea that humans are more likely to change their
opinions about a product’s price after hearing a robot with
a high ToM level recommend it. This suggests that robots
with higher levels of ToM are perceived as being more
trustworthy than those with lower levels. Little is known
about how different styles of interacting with a robot, with
some involving more close interaction than others, whilst
performing the same task, may affect the likeability or trust
in the robot being used.

III. METHODOLOGY

The study presented in this paper utilises a mixed-methods,
within-subjects design (Within factor 1: pre/post question-
naire; Within factor 2: three interaction types: fully pro-
grammed, controller, Learning by Demonstration), and two
between-subjects factors (Between factor 1: experience of
interaction with robots; Between factor 2: age group). The
participants were asked to complete an agriculture-related
manipulation task using the mobile manipulator robot TIAGo,
consisting of picking a piece of fruit and moving it to a
different location. Besides completing the task, participants
were asked to complete an initial questionnaire comprising
demographic data (i.e., gender, age group, prior experience
with robotics), the NARS questionnaire, and the Godspeed
questionnaire, both NARS and Godspeed administered before
and after interacting with the robot. Approval for this study
was obtained from the University of Lincoln Ethics Com-
mittee (Ref.: UoL2022 9540), and we adhered to the risk
management procedures established for working with TIAGo
in the robotics labs of the School of Computer Science of the
same university.

A. The task set-up, software and hardware used

The study involved asking the participants to use TIAGo
to move a piece of fruit from point A, on one table, to point
B, on a different table, using three different interaction styles.

The use of a hardware-agnostic controller, written as Robot
Operating System (ROS) Control plugins, was chosen due to
its effectiveness in providing participants with full control
over the robot and simplifying the development of high-level
applications by abstracting the complexity of the robot.

The “Moveit!”2 tutorial repositories were utilized to pro-
gram the task. Before the repository could be utilized on the
physical robot, we established the graphical user interface
(GUI) in simulation; this allowed for a better understanding
of the movement of the joints and how they were going to
move when completing the task of moving the fruit from
point A to point B, which was from one table to another.
Within the “Moveit!” repository, there are multiple different
methods that could have been used. The foundation of this

2http://wiki.ros.org/Robots/TIAGo/Tutorials/MoveIt/Pick place



study utilized the “Pick and Place demo” and “Planning in
Cartesian Space”. The “Pick and Place demo”, which can be
seen in figure 1 aided with the understanding of identifying,
grasping, and moving an object. However, this did use a QR
code to locate the object that it was trying to use. Hence,
planning in the Cartesian space was later explored to use the
specific coordinates of the object in simulation to be able to
identify it.

Fig. 1: Pick and Place Demo

We also used the Learning by Demonstration repository3

for an interaction style based on Learning by Demonstration.
Initially, the creation, population, and compilation of the
catkin workspace were required. Subsequently, the GUI was
executed. Concurrently, gravity compensation for the entire
arm repository was enabled in a separate terminal. Following
this, we designated which joint TIAGo would record during
the demonstration. For this study, only the arm joints and
grippers were necessary, as the head and torso remained
stationary. Following joint selection, we could commence
the recording process via two methods: Continuous, or
Waypoints recording. While similar, continuous recording
facilitates a smoother replication compared to Waypoints
recording, which mandates hitting specific points within the
demonstration, resulting in a more rigid interaction. Finally,
options for stopping, saving, and adjusting playback speed
were available. The demonstration could be played back
at half the speed, the original speed, or twice the speed.
This study utilized continuous recording with playback at
the original speed, a deliberate choice aimed at fostering a
more human-like interaction devoid of robotic movements at
variable speeds.

During the study, we also used the joystick controller that
came with TIAGo. Initially, the controller was configured to
facilitate the movement of TIAGo’s torso. Therefore, prior
to participants’ engagement, adjustments were made to the
controller’s functionalities. Specifically, the controller’s func-
tions were modified to enable the manipulation of TIAGo’s
arm via joysticks, thereby providing the necessary degrees
of freedom for arm movement and end effector control for
object manipulation. This adjustment mitigated user risk by
restricting robot movement while still allowing users to ma-
nipulate the arm, facilitating object grasping and movement
to its designated location.

3https://github.com/pal-robotics/learning gui

B. Design

This study investigated the pre- and post-interaction levels
of trust individuals exhibit toward HRI robots, together with
the potential influence of three different interaction styles.
The study had 3 stages: pre-interaction questionnaires (de-
mographics, NARS and Godspeed), task completion using
the three different interaction styles, and post-interaction
questionnaires (NARS and Godspeed). The three interaction
styles can be seen in figure 2 and were as follows.

1) Fully programmed - Low interaction level: The re-
searcher programmed the robot to complete the task fol-
lowing the participant’s instructions whilst the participant
observed, with this involving minimal interaction with the
robot.

Having TIAGo complete the task with a low level of inter-
action (without any physical assistance from the participants)
allowed us to later compare with higher levels of interaction,
and it reflects an interaction style that often happens in
environments shared between humans and robots whilst these
are completing a task.

2) Learning by Demonstration - Medium interaction level:
During this interaction style, the participant instructed the
robot’s arm movements through kinesthetic teaching for it
to complete the task, using the Learning by Demonstration
repository described in the previous section.

Whilst this style require more interaction between the
participant and the robot, as they were not controlling the
physical robot in real time, this interaction style was chosen
as the medium interaction level style for our study as it allows
participants to interact with TIAGo swiftly and easily by pre-
recording movements and having the robot repeat them for
the task.

3) Controller - High interaction level: For this interaction
style, the participant had to use the joystick controller that
came with TIAGo to control the movements of the robot in
real time. This provided a higher level of interaction between
the robot and the participant, and was chosen as the high
interaction level style for our study.

Fig. 2: Different interaction styles used during the study

It may be noted that we decided not to use voice commands
through speech recognition to perform the task. This was
because the conditions in which a real-life interaction with
TIAGo would happen during a task of this nature, would not
easily allow for this type of interaction due to environmental
factors such as noise levels, the presence of other people, and
the distance between the robot and its operator. Nonetheless,



and although the main focus of the study was on the different
interaction styles and their effect on trust, we decided to
incorporate the use of the text-to-speech (TTS) feature of
TIAGo with one third of the participants to explore whether
those that interacted with TIAGo with TTS on reported a
higher level of trust post-interaction than those that didn’t.
We used this while the selected participants were interacting
with the robot as to attempt a more natural interaction by
greeting the participants and using conformation statements
such as ”I understand” and ”thank you”.

C. Participants

We recruited a total of 30 participants from different age
groups, all aged over 18 (9 female, 21 male). For the purposes
of the study, two groups were established, each comprising
15 participants. One group was comprised of individuals
possessing expertise in robotics, mainly encompassing pro-
fessionals such as colleagues, students or university lecturers.
Conversely, the second group was comprised of members of
the general public with no prior experience or knowledge
in robotics. Aside from geographical proximity to be able
to participate in the study in person and being over 18, no
additional external eligibility criteria was imposed during
the participant recruitment phase. Each participant got to
experience all three styles of interaction throughout the study.

D. Procedure

After obtaining ethical approval, a call for participation
was made public. Those interested in participating in the
study contacted the research team and were invited to come
to the Isaac Newton Building on the Brayford campus of the
University of Lincoln, where they met the researcher running
the study and were escorted to the designated laboratory
where the study was conducted under controlled conditions.
Upon arrival, participants were invited to ask questions
and informed written consent was obtained. Participants
commenced their participation in the study by completing
the designed preliminary questionnaire which included the
NARS & Godspeed questionnaires while also capturing de-
mographics (age, gender, prior experience with robots). Then,
they proceeded to perform the task with the robot in the
experimental room, under the guidance of the researcher.

During the experiment, each participant interacted with
TIAGo under the three interaction styles described. To mit-
igate any ordinal bias, the sequence of interactions was
systematically varied for each participant. Nevertheless, the
fundamental structure of the experiment remained consistent:
participants were introduced, informed of the type of interac-
tion they would undergo, engaged in said interaction, sequen-
tially experienced the remaining two interaction styles, and
subsequently completed the post-interaction questionnaires
(NARS and Godspeed).

The assigned task remained the same throughout each
interaction where the goal was to have the robot identify the
object (plastic apple), grasp it and then move it to a secondary
location on the table. The level of control varied from one
condition to the next.

Additionally, TTS features were used on one third of the
participants as the importance of verbal communication has
been highlighted throughout other studies in HRI [25]. Those
participants that interacted with the robot with TTS enabled
were additionally monitored to observe their reactions when
TIAGo started to speak with them.

Once the participants had completed their questionnaires
and interactions they were invited to participate in a short
semi-structured interview to clarify and contextualise their
responses.

IV. RESULTS

In this section, we present the quantitative results of
our study. Data was analysed using IBM SPSS Statistics,
and the responses obtained during the short semi-structured
interview at the end of the study were used to corroborate
and contextualise results.

A. Trust Level Before & After Interaction

A paired sample t-test was conducted to assess whether
there was a statistically significant difference in the level of
trust participants had in TIAGo to complete the task before
interacting with it compared to after interacting with it, which
results can be seen in figure 3. With t(29) = -11.771 and
p ¡ 0.0005, indicating a statistically significant difference,
results suggest that there was a statistically significant in-
crease in trust levels following the interaction, from (5.13
± 1.943) to (7.70 ± 1.705), p ¡ 0.0005; an improvement of
(2.567 ± 1.194). This indicates that interacting with TIAGo
significantly increased the participants’ trust score within
this sample group. While the paired t-test indicates whether
differences between group means are ”real” (i.e., different
in the population), it does not quantify the “size” of that
difference.

Fig. 3: Mean Trust Level Before & After Interaction Box
Plot

B. Improvement Score Between Groups

We found that participants with no experience in robotics
had a statistically significantly higher mean trust level (3.00
± 1.134) after interacting with TIAGo compared to the



participants with experience in robotics (2.13 ± 1.125). This
could be due to the initial trust levels being different between
the groups; the 15 participants with prior experience averaged
a starting trust score of 6.6, whereas the group with no
experience averaged a starting trust score of 3.6. A line
graph was created (seen in figure 4), illustrating the rate at
which the trust levels of each group not only increased but
initially differed. The experienced group showed greater trust
in TIAGo to complete the task, despite lacking interaction.
Error bars on the graph indicate the Standard Deviation for
both the non-experienced (1.121 & 1.549) and experienced
group (1.234 & 1.014) before and after. The data suggests that
non-experienced participants, while initially skeptical due to
lack of robotics experience, grew more comfortable trusting
TIAGo after interaction.

Fig. 4: Line Graph Showing the Mean Trust Level of both
Experienced and Non Experience in Robotics Groups Before
& After Interaction

C. Which Interaction Was Trusted Most by Participants

Having identified that interacting with TIAGo had an
overall effect on trust levels, each interaction the participants
had with the robot was explored in depth to be able to identify
if there was a particular interaction style that participants
found more trustworthy than others. A Chi-Square test was
used to determine which of the three interactions each
participant stated they trusted the most. From this test, it was
identified that Learning by Demonstration was reported to
be the interaction almost every participant stated to trust the
most out of the interactions (24 out of the 30 participants).
These statistics suggest a clear variation in trust between
the three different interactions. As a result, a chi-square test
of association was conducted, which revealed a statistically
significant association between the types of interaction and
trust.

X2(2) = 29.600, p < .000 (1)

D. Effect of TTS Features

While there were only three different types of interactions
that every participant experienced throughout the experiment,
one-third of both sample groups experienced interactions with
the Text-to-Speech (TTS) function active on the TIAGo robot.
This was to monitor whether verbal communication between
the robot and the participant would affect how much the
participant would perceive trusting TIAGo. We found that
the participants who experienced the TTS function during
interactions had a statistically significantly higher improve-
ment score (3.00 ± 1.700) when it came to trusting TIAGo at
the end of the experiment compared to the participants that
did not experience the TTS function (2.35 ± 0.813), t(28)
= -1.440, p ¡ 0.0005, regardless of whether they had prior
experience with robotics or not. The majority of participants
responded to TIAGo with basic greetings such as “Hello”,
even though they were not under the impression that the robot
could understand what they were saying. However, there was
one case in the group that had no experience in robotics
where the participant not only greeted TIAGo back but also
said “Hi TIAGo, my name is ...”. They unconsciously became
more comfortable around TIAGo by moving closer to the
robot and scored one of the highest improvement scores.

E. Age Factor

The effect of demographic factors was tested to see if there
were any correlations between the ages of the participants and
which interaction they trusted more. A Cross-Tabulation Chi-
Square test was used to determine this due to the data being
categorized by more than one variable. Participants were
split into four different categories: 18-24 (10 participants),
25-34 (7 participants), 35-44 (9 participants), and 45-54 (4
participants) totalling 30 participants. Although there was no
statistical significance between the age groups and the type
of interaction they trusted most,

X2(2) = 2.002, p < .367 (2)

an additional One-Way ANOVA was used to determine
whether the age of the participant had an effect on their
overall improvement score of trust. A statistically significant
difference between groups was observed as determined by
the one-way ANOVA (F(3,26) = 3.882, p = .020). A post
hoc test revealed that the improvement score was significantly
lower in younger participants aged 18-24 (2.5) compared to
older participants aged 45-54 (5.25), with a statistically sig-
nificant difference of (p = 0.025). There was no statistically
significant difference between the 25-34 and 35-44 groups.
The graph in figure 5 visually represents the trend of the
improvement score through the different age groups. This is
indicative that the improvement score increases the older the
participant sample is.



Fig. 5: Mean Improvement Score vs Age Groups

V. CONCLUSIONS

The aims of this study were to explore how having prior
experience with robots can affect trust levels before and after
interacting with TIAGo (RQ1), and how different interaction
styles can also affect these trust levels (RQ2). Further to this,
we started the study with two hypotheses:
H1 The level of trust the user has in the robot will increase

after interacting with it;
H2 Interactions involving a higher level of interaction will

yield higher levels of trust.
Regarding RQ1, an interesting finding that emerged from

our study is the difference between the two sample groups
in trust levels before and after interacting with TIAGo. The
group with previous experience in robotics trusted the robot
significantly more before and after any interaction, with an
average trust score of 6.67 before and 8.80 after. In compar-
ison, the group without prior experience was more hesitant
in trusting TIAGo before interacting, with an average trust
score of 3.60, but showed a larger improvement score than the
other group, with an average trust score after interaction of
6.60. This suggests that, despite initial hesitation, for people
with no prior experience in robotics, being able to interact
with the robot helped them significantly improve their trust
level, and that, regardless of a person’s previous experience
in robotics, interacting with the robot during a specific task
does affect trust in said robot for that task, leading to an
increase in this, which in turn leads us to accept H1. This
notion has been highlighted by Kalinowska, A., et al, [16]
where the importance of physical human robot interaction
(pHRI) is the next frontier.

Regarding RQ2, our study suggests that people’s trust
levels toward the robot’s behavior do indeed change after
interacting with it, as the recorded level of trust had a
statistically significant increase. The various types of inter-
actions also contributed to the assigned level of trust, with
Learning by Demonstration determined to be the most trusted
interaction, as indicated by 24 out of the 30 participants.
This leads us to reject H2, as our interaction style with a
higher level of interaction was using the controller. However,
it is not surprising that this interaction style were preferred
over the fully programmed style, as it agrees with existing

literature indicating that opting for Learning by Demonstra-
tion over alternative robot learning methodologies becomes
particularly compelling in scenarios where ideal behavior
cannot be readily scripted, as typically done in traditional
robot programming, nor clearly defined as an optimization
problem, but rather can be effectively demonstrated [26]. It
was also interesting to observe that the improvement score
on trust levels was significantly higher for those participants
the robot communicated with using TTS, which suggests that
this may be a desirable feature to include in the design of
HRI robots where trust between robotic agent and person is
of high importance.

Other major findings non-related directly to our research
questions show a statistically significant difference in trust
improvement scores between different age groups, with the
most significant disparity observed between the younger
group (18-24) with an average improvement score of 2.5
and the older group (45-54) with an average improvement
score of 5.25. This suggests that, although trust levels seem
to calibrate to a similar level after the interaction, older
participants had initially a lower level of trust, as opposed
to younger ones. However, when testing other demographic
factors such as gender, there were no statistically significant
differences between male and female participants.

A. Limitations and Future Work

Whilst our study has helped us yield more clarity over how
different interaction styles with a mobile manipulator robot
can affect trust, as well as to obtain a better understanding
of the factors than can help us obtain a higher improvement
score when it comes to trusting a robot before and after an
interaction, there are certain factors that limit the scope of
our work.

It should be noted that, depending on the task in hand,
other interaction styles different to the ones we explored
could be an option and, whilst our findings suggest that a
more direct interaction with the robot will lead to a higher
trust level during an object manipulation task, we cannot
conclude that this will be the case for every interaction style
involving close interaction, especially as this can present
variations depending on the nature of the task. This, however,
presents an opportunity for future work, where other interac-
tion styles could be considered for different tasks, using the
conclusions of our work as a starting point.

Something else to consider for future work is exploring
how trust can be sustained and maintained, given that a robot
might not always perform a task as expected, and whether
different interaction styles may or may not have an effect on
maintaining/regaining trust in such situations.

Our study was conducted in a controlled lab setting to
be able to create a better understanding of how the factors
explored affected trust, however, future work may include
following similar approaches but with the interaction taking
place in a real-life situation. This would allow to consider
how other external, situational and environmental factors
affect trust levels.



To be able to generalise the findings of the study the
inclusion of more than 30 participants would be required
with a more even distribution of participants within all age
categories.

As with most studies exploring trust in robotic systems,
it’s important to acknowledge the ongoing challenge of
effectively monitoring and measuring, and that there is yet
to be a validated optimal way to measure participants’ trust
levels to allow for a better understanding of how interacting
and the styles of interaction may affect the level of trust
participants have in a robot whilst completing a task.
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