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Abstract. A framework to support optimised application placement
across the cloud-edge continuum is described, making use of the Optimized-
Greedy Nominator Heuristic (EO-GNH). The framework can be em-
ployed across a range of different Internet of Things (IoT) applications,
such as smart agriculture and healthcare. The framework uses asyn-
chronous MapReduce and parallel meta-heuristics to support the man-
agement of IoT applications, focusing on metrics such as execution per-
formance, resource utilization and system resilience. We evaluate EO-
GNH using service quality achieved through real-time resource manage-
ment, across multiple application domains. Performance analysis and
optimisation of EO-GNH has also been carried out to demonstrate how
it can be configured for use across different IoT usage contexts.

Keywords: Cancer Classification· Edge Computing· Industrial IoT· IoT
Management· Meta-heuristics· Precision Agriculture· System Resilience

1 Introduction

An increasing demand for Internet of Things (IoT) technologies across various
sectors, including agriculture, healthcare and industry, has heightened the ne-
cessity for effective data communication and processing. While cloud computing
provides significant benefits, challenges persist in ensuring low latency and data
privacy in IoT applications, particularly where bandwidth and power/energy
are restricted. Edge computing provides a potential solution, extending cloud
capabilities to embedded hardware systems such as single-board computers or
user-owned (computational) acceleration devices.

As the IoT ecosystem evolves, there is an increasing demand for platforms
that can handle complex applications, particularly those incorporating artificial
intelligence (AI) and machine learning (ML). The integration of AI/ML into IoT
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applications enhances their potential for optimizing processes utilising data ac-
quired at the edge of a data network. This paper explores the use of an AI-based
scheduling approach for managing intelligent IoT applications. An optimisation
algorithm is used to reduce execution time and improve resource utilisation, re-
ferred to as the Enhanced Greedy Nominator Heuristic (EO-GNH). Integrated
within the proposed IoT application management framework, EO-GNH aims to
provide non-dominant solutions across delay, cost and risk factors. This strategy
focuses on advancing one objective without compromising others.

Is EO-GNH adaptable to cross-domain characteristics and infrastructure con-
figurations of IoT applications? We investigate this question within an IoT ap-
plication landscape, forming the key contribution of this work. This paper is
organized as follows: Section 2 discusses related work, providing context for our
research. Section 3 describes our proposed Adaptive Platform for Edge-Cloud in-
frastructure. Section 4 explores the use of this framework within specific applica-
tions. Section 5 presents an evaluation of our proposed solution with concluding
comments in Section 6.

2 Greedy Nominator Heuristic and Extensions

The Greedy Nominator Heuristic (GNH) is an optimization algorithm that ad-
dresses infrastructure deployments involving IoT, fog, and cloud computing en-
vironments [2]. GNH consists of several key components: a similarity function,
max-heap, mappers, reducers, system controllers, and workers (described below).
The similarity function, derived from TOPSIS [10], utilizes a context-dependent
distance measure for comparing solutions derived from various optimization al-
gorithms.

In GNH, mappers are assigned to specific nodes (labeled as locations), that
process workflow functions and generate decision variables. When a placement
request is made, mappers nominate potential nodes for deployment. A reducer
then evaluates these nominations and selects the best nodes. This selection is
repeated until the entire workflow is deployed. A greedy approach is applied
in both the mapper and reducer stages, where the Euclidean distance similarity
function is used as a heuristic to compare solutions to the ideal one. GNH adjusts
to a variety of similarity functions, including cosine similarity [15] and fuzzy
measures [17], so long as they can quantify the similarity between the ideal and
explored solutions. To manage these solutions, a max-heap is employed. The
max-heap is advantageous and allows quicker, more streamlined retrieval and
removal of the solutions stored within it.

Max-heap is a binary tree structure which stores results from mappers and
the reducer, ensuring that the maximum value is always at the root. Mappers
calculate the similarity to an ideal solution for all locations using the norm-
2 (euclidean distance) measure. The reducers then consolidate these results to
select optimal deployment locations. Both mappers and reducers loop through
the search space and update the max-heap.
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The GNH system comprises a controller, which functions as the reducer, and
workers that act as mappers, monitoring network performance and available
computing resources at various locations, while the controller selects deploy-
ment locations from these options. This is implemented using Parsl [5], an asyn-
chronous parallel programming library in Python, which can support execution
on both high performance computing and edge resources.

The GNH has been used in intelligent IoT applications across diverse en-
vironments. For instance, in smart city applications, GNH demonstrated its
capacity by autonomously deploying virtual functions across edge and cloud
environments. This resulted in optimized resource usage, superior execution per-
formance and significant cost reduction [3]. Further extending its use, GNH was
successfully implemented in federated learning within a rural environment (with
limited network connectivity). It was used to efficiently balance resource effi-
ciency and performance across diverse IoT applications [1]. However, it became
evident that GNH could not guarantee resource availability, underlining the need
for further refinement in the optimization algorithm.

The EO-GNH framework is an enhanced GNH variant – each module of this
framework is described in Almurshed et al. [2]. EO-GNH also integrates asyn-
chronous parallel computing and machine learning models for meta-heuristic
selection. Simulation-based evaluation has been used to develop EO-GNH, allow-
ing assessment of system performance under various IoT conditions and failure
scenarios [1], [2], [3].

Despite the merits of GNH [2], it has limited efficiency in supporting Pareto-
optimal solutions. EO-GNH was created to address this challenge, and uses asyn-
chronous MapReduce and parallel meta-heuristics to reduce execution time of
the optimisation algorithm, avoiding local optima and ensuring service avail-
ability. It modifies the jMetalPy framework [7] using Parsl [5] for more efficient
optimization, making it suitable for real-time IoT applications.

An important characteristic of EO-GNH is its ability to produce non-dominant
solutions from the Pareto front, a crucial aspect of multi-objective optimization.
It also simplifies the scalarization process [20] for a more dynamic and faster
optimization.

3 Adaptive Framework for Edge-Cloud

This section describes the system components of our optimisation framework
that makes use of EO-GNH, including properties of this algorithm. A description
of software libraries used to realise EO-GNH is provided, identifying its use across
a range of different application use cases.

3.1 System Components

The framework makes use of: Parsl, a Python library for parallel program-
ming [5]; the Integer Linear Programming (ILP) model for adaptive decision-
making [2]; and heuristic and meta-heuristic scheduling via jMetalPy [7]. Parsl
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forms EO-GNH, initiated by the Oracle.

provides efficient service function execution, while the ILP model aids in optimal
decision-making. As illustrated in Figure 1, the controller’s adaptive components
consist of a Resource Monitor and an Online Optimizer. The Resource Monitor
measures QoS and reports failures for use by the Online Optimizer. The decision-
making process of the Online Optimizer uses ILP modeling to optimize the place-
ment plan, employing heuristics such as GNH and EO-GNH. Furthermore, the
Online Optimizer utilizes the Parsl library to accelerate decision-making and
perform function deployments.

3.2 Enhanced-Optimized Greedy Nominator Heuristic (EO-GNH)

EO-GNH refines the GNH algorithm by incorporating Asynchronous MapRe-
duce and meta-heuristics to determine optimal locations for redundant deploy-
ments. Figure 2 shows the workflow used in the EO-GNH framework. Mappers
employ meta-heuristics to explore decision variables, while the Reducer, act-
ing as a control fog node, chooses the most suitable locations. In contrast to
GNH, EO-GNH utilizes meta-heuristics to generate a Pareto-front of solutions,
giving the Reducer more flexibility when selecting resources, based on the simi-
larity function. EO-GNH operates asynchronously, not requiring the Reducer to
wait for all Mappers to complete their meta-heuristic iterations before making
placement decisions. Each Mapper maintains a file of current optimal solutions
accessible to the Reducer, facilitating instant decision-making, regardless of the
solution’s quality. The optimization algorithm employs nature-inspired meta-
heuristics sourced from the jMetalPy library [7]. These meta-heuristics provide
multiple solutions during runtime, each being an approximation of the best dis-
covered Pareto-front.

The Oracle, a software module in EO-GNH, determines the compatibility
of meta-heuristics with the application or infrastructure setup. Using decision
tree models, it conducts preference-based sorting and assigns meta-heuristics to
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Mappers. Our approach dynamically selects one of jMetalPy’s meta-heuristic
algorithms for optimization. Depending on specific application requirements, it
chooses among the available Particle Swarm Optimization algorithms such as
OMOPSO or SMPSO, or Genetic Algorithms such as GDE3, HYPE, IBEA,
MOCell and NSGAII. This dynamic algorithm selection provides a unique per-
spective on optimisation not available in approaches.

Solution encoding in EO-GNH involves the transformation of meta-heuristic
data into a processable form. The solution, initially represented as an array of
integers in the jMetalPy framework, is converted into a data model compatible
for the Reducer, ensuring the efficiency of the EO-GNH workflow.

EO-GNH relies on an asynchronous MapReduce mechanism initiated by the
Oracle. Each Mapper runs a meta-heuristic chosen by the Oracle, based on
attributes learned during the training phase. The Reducer’s heuristic is selected
manually as greedy.

4 Applications

We developed three IoT applications to inspect the EO-GNH across them. The
workflow description highlights RPi 4B execution times and shows real-world
functionality.

4.1 Federated Learning (FL) Application

Fig. 3. Robot performs a random walk, af-
fecting the connection to a field-side unit.
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Fig. 4. Workflows for federated learning
online training

Precision farming employs data-centric technologies and holds immense po-
tential to improve farming productivity and outcomes [6]. Among its varied
applications, automated weed control is a commonly discussed use case. By pre-
cisely identifying and handling weeds, this application can enhance farm yield,
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reduce labour expenses and decrease pesticide use, thereby promoting efficient
and sustainable farming practices. With the intent of supporting farm autonomy,
this application leverages federated learning as a secure alternative to conven-
tional machine learning approaches [19]. Federated learning enables model cre-
ation with locally sourced data, eliminating the need for centralised data storage,
ensuring each farm is able to manage its own data, whilst still sharing good prac-
tice with nearby farms. Rural areas, due to their limited network infrastructure,
present unique challenges for implementing precision farming. Conventional ma-
chine learning algorithms might face difficulties under these conditions, poten-
tially affecting network reliability and service availability. Hence, this scenario
necessitates a solution that can operate effectively within this constrained net-
work environment, ensuring consistent and effective precision farming practices.
In this context, the scenario involves deploying Federated Learning-enabled mo-
bile robots to mitigate these challenges. Serving as edge devices, these robots en-
hance field coverage and data collection, contributing to a global model without
sharing raw data [1] The path of a robot are guided by a truncated random walk
method to ensure efficient field coverage and task accuracy [14]. Significantly, the
robot’s distance from computing resources symbolises network latency in mobile
edge devices, which can affect the quality of data communication (as shown in
Figure 3).

Workflow Figure 4 shows the federated learning workflow used in precision
farming. The descriptions for each function utilized in this workflows are pro-
vided below: (1) Image pre-processing: This task makes color mode alterations,
image resizing, data formatting and pixel value scaling to prepare images for ma-
chine learning models. The processed images and their associated labels are then
stored. (2) Model tuning: the model weights are adjusted on a new dataset to
improve the performance of an existing neural network. The updated weights are
saved separately for future use. (3) Model aggregation: parameters (weights) of
several trained models are combined (e.g. averaged) to create one aggregated
model. (4) Validation: the trained machine learning model’s performance is
tested on new data, using loss and accuracy metrics – these metrics are also
returned along with the model. (5) Accuracy comparison: accuracy/ loss func-
tion across different models are compared to determine the most effective model
– returning the best performing model. The average execution on RPi's for the
following 5 functions are: 0.33s, 178.16s, 22.33s, 37.16s, and 0.10s respectively.

4.2 Recurrent Neural Network (RNN) Inference Application

Food production, marked by intricate processes and strict food safety regu-
lations, calls for innovative solutions to maintain high standards [4]. Notably,
climate-controlled storage units play a crucial role in preserving food batches.
IoT-based temperature monitoring systems (Figure 5) offer real-time tracking of
temperature, ensuring optimal storage conditions, and regulatory adherence. A
food processing facility employing a smart energy cluster for improved energy
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efficiency is used as another case study. The facility integrates a Recurrent Neu-
ral Network (RNN) specifically designed for energy conservation. By forecasting
room temperature and energy consumption, adjusting temperature setpoints au-
tomatically, the RNN facilitates precise energy and temperature forecasts. The
RNN implementation is divided into several service functions, depicted in Fig-
ure 6. This workflow management approach optimizes resource utilization. The
RNN architecture comprises a pre-processing layer for data preparation, a hid-
den layer for prediction and output layers to yield predicted energy use and
temperature values.

Workflow Figure 6 depicts the workflow of the neural network for energy-saving
applications. The functions used in the workflow include: (1) Scaling features:
involving normalization of the input data, such as current readings of the cham-
ber’s settings, power, capacity and the current season. The data is transformed
into a standard scale compatible with the RNN, to support subsequent model-
based predictions. (2) Neurons X1 to X5: These are the middle-layer neurons in
the RNN, which apply weights to inputs and process them through a Hyperbolic
Tangent (tanh) activation function. The output of the Scaling Features function
is adjusted for combining the weight value passed through the activation out-
put. (3) Energy ahead and temperature ahead: these functions predict energy
and temperature respectively. They consist of an output layer, unscaling layer
and a bounding layer. The output layer calculates the sum of the outputs from
the Xj layers, adjusted by the output layer weights. The result is then scaled
back to original units (kWh for energy and degrees Celsius for temperature) in
the unscaled layer. The average execution time on RPi's for these 3 functions
are: 1.29s, 0.44s, and 0.07s, 0.06s respectively.

4.3 Cancer Diagnosis

Prostate Cancer (PCa) is the second most prevalent cancer among men world-
wide, with 1.4 million new cases detected in 2020 [18]. Precise disease classifi-
cation, assisted by AI, is critical for optimal treatment and risk reduction [13].
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Cancer research has made remarkable progress over the last century, leading
to innovative diagnostic and treatment methods, especially for PCa [9]. This
progress has led to a large amount of cancer-related data. Nonetheless, precise
cancer detection still remains a difficult challenge. Currently, machine learning
techniques are being utilized, demonstrating profound effectiveness in decipher-
ing complex patterns and predicting cancer types [11]. The current ProstateX
dataset, a derivative of the Cancer Imaging Archive (TCIA) dataset, includes
retrospective prostate MR studies [12]. It addresses limitations within the TCIA
dataset by providing lesion masks and information, facilitating research in med-
ical image analysis and computer-aided diagnosis for prostate cancer [8].

Fig. 7. Intelligent decision support system
for prostate cancer diagnosis
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Fig. 8. Workflow for prostate cancer clas-
sification using Machine Learning

Workflow Figure 8 shows the training workflow for machine learning in prostate
cancer classification. The workflow comprises the following functions: (1) Pre-
processing Data: involves fetching data from a specified location and performing
initial cleaning and formatting. (2) Creating a VGG16 Model: involves the appli-
cation of transfer learning via the use of VGGNet, a broadly recognized 16-layer
architecture. The model is pre-trained on ImageNet’s database, an extensive
repository containing more than 10M natural images across 1000 object cate-
gories [16]. (3) Extracting Features from Magnetic Resonance Imaging (MRI)
modalities with VGG16: involves passing the loaded data through the VGG16
model, to extract the features, the first 2 blocks of the VGG model are used. We
extract the features from each MRI modality alone, and then fuse the features.
(4) Creating, Training, and Testing Machine Learning Models: This task sets
up, trains, and evaluates Random Forest, Logistic Regression, Support Vector
Machine, and K-Nearest Neighbors models from the Scikit-learn library on the
RPi. The models are trained using extracted features and labels, and their perfor-
mance is evaluated with unseen data. The average execution on RPi's for these 4
functions are: 0.47s, 1.53s, 10.23s, and 2.99s, 28.09s, 39.98s, 7.65s respectively.
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5 Evaluation

5.1 Experimental Setup

Evaluation was carried out through simulation, as outlined in Section 2, by dy-
namically modifying simulation parameters across the three scenarios: precision
agriculture, the intelligence cooling system, and machine learning for Prostate
Cancer classification. For these simulations, we utilized RPi benchmark data
from section 4. An important feature of this evaluation was the assessment of the
EO-GNH under various mapper configurations, from EO-GNH-1 to EO-GNH-4
(representing 1 to 4 mappers respectively). The experiment also incorporated
results from a basic greedy approach without replicas, as well as the original
GNH approach. Each scenario involved using a unique set of parameters. The
number of Raspberry Pis (RPis) implemented was a key parameter, with most
scenarios employing 1000 RPis, except the agriculture scenario which utilized
100 RPi resources. Simulation was chosen for its affordability, scalability, and
failure control.

The Mean Time to Repair (MTTR) measures the average repair duration:
20-100 seconds for the Agriculture and the Cooling System scenarios; 5-15 sec-
onds for the Prostate Cancer Classification scenario. The Mean Time to Failure
(MTTF) measures the average duration between failures: 250-500 seconds in the
Agricultural and Cooling System scenarios, and 50-100 seconds in the Prostate
Cancer Classification scenario. By adjusting these parameters for each scenario
within the simulated environment, the experiments offered detailed insights into
the system’s performance and resilience under differing conditions. This enables
comparison across multiple scenarios, such as greedy approach without replicas
and the original GNH approach.

5.2 Results

The evaluation of the EO-GNH framework on the above three scenarios con-
siders the following metrics: (1) Success rate: this represents the likelihood of
completing a task within the deadline. Together with risk (the probability of
not meeting the deadline), it forms a proactive mechanism to minimize service
disruptions. (2) Makespan: this refers to the total execution time of a workflow
across distributed resources. The scheduler’s primary objective is to optimize
this, aiming for the shortest makespan possible. (3) Utilized location (Cost):
this is defined by the number of resources used in a workflow. The goal is to
balance resource use, minimize network congestion, and manage the risk-cost
trade-off of redundant deployments.

As shown in Figure 9 (RNN forecasting, 100 RPis) and Figure 10 (RNN
forecasting, 1000 RPis), the EO-GNH configurations employ MapReduce with a
varying number of mappers, consistently outperforming other algorithms across
all measured metrics: success rate, makespan, and utilized locations. Specifically,
EO-GNH-3 and EO-GNH-4 yield the best results for 100 RPi and 1000 RPi
configurations, respectively.
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Fig. 9. RNN Forecasting with 100 RPis
(average values)

Fig. 10. RNN Forecasting with 1000 RPis
(average values)

Fig. 11. ML Pipeline with 100 RPis (av-
erage values)

Fig. 12. ML Pipeline with 1000 RPis (av-
erage values)

The ML pipeline results for prostate cancer classification is shown in Fig-
ures 11 (100 RPis) and 12 (1000 RPis). Results show that EO-GNH configura-
tions demonstrate superior efficiency across all metrics, with EO-GNH-4 being
the top performer in both configurations. The longer makespan when transi-
tioning from 100 to 1000 RPi setup indicates that the current task is more
computationally intensive than RNN forecasting. In spite of this, EO-GNH con-
figurations maintains a 100 percent success rate, indicating robust performance
across a variety of distributed computing scenarios.

Fig. 13. Federated Learning - Model Tun-
ing (average values)

Fig. 14. Federated Learning - Global
Model Aggregation (average values)

Examining the results of the tuning model for robotic agriculture using a
federated learning approach (Figure 13) reveals a notable difference from pre-
vious patterns. While EO-GNH configurations continue to perform well, the
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makespan disparities between them become more pronounced. This result may
indicate that the number of mappers utilized in the MapReduce implementa-
tion is more crucial in this particular context. The GNH algorithm also exhibits
significant performance enhancement in this configuration, although it does not
surpass results of EO-GNH configurations.

The global model aggregation results (Figure 14) confirm previous findings,
with all EO-GNH configurations achieving a 100 percent success rate. The varia-
tion in makespan and utilized locations between EO-GNH configurations suggest
that adjusting the number of mappers can affect execution speed and resource
utilization.

6 Conclusion

We describe the Enhanced Optimized-Greedy Nominator Heuristic (EO-GNH),
outlining how it can be used across various IoT applications. Using asynchronous
MapReduce and parallel metaheuristics, EO-GNH can be used to support dy-
namic resource allocation, by adjusting the number of mappers in the MapRe-
duce component of this algorithm.

EO-GNH’s adaptability and inherent hierarchical meta-heuristics approach,
which is by definition problem-independent, allows it to overcome slow con-
vergence by exploring multiple Pareto front approximations. This opens up its
potential use beyond IoT task placements, including feature selection and hyper-
parameter optimization in machine learning, thereby improving accuracy, reduc-
ing overfitting and training time, and simplifying large-scale search problems. In
deep learning, EO-GNH could be used to search for the optimal architecture,
potentially enhancing Neural Architecture Search methods. All these areas are
potential venues to be explored in the future. Additional investigation of poten-
tial EO-GNH research areas holds promise for future projects.

In conclusion, we note that EO-GNH effectively manages AI-driven IoT ap-
plications and its hierarchical meta-heuristics approach promises a wealth of
possibilities for future research. By applying this algorithm to different domains,
we may continue to uncover new strategies for optimization in a variety of con-
texts.
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