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Digital outcome measures from
smartwatch data relate to non-motor
features of Parkinson’s disease

Check for updates

Ann-Kathrin Schalkamp 1,2,6, Neil A. Harrison3,4, Kathryn J. Peall3,5 & Cynthia Sandor1,2,6

Monitoring of Parkinson’s disease (PD) has seen substantial improvement over recent years as digital
sensors enable a passive andcontinuous collection of information in the homeenvironment. However,
the primary focus of this work has beenmotor symptoms, with little focus on the non-motor aspects of
thedisease. To address this,wecombined longitudinal clinical non-motor assessment data anddigital
multi-sensor data from the Verily Study Watch for 149 participants from the Parkinson’s Progression
Monitoring Initiative (PPMI) cohort with a diagnosis of PD. We show that digitally collected physical
activity and sleep measures significantly relate to clinical non-motor assessments of cognitive,
autonomic, and daily living impairment. However, the poor predictive performance we observed,
highlights the need for better targeted digital outcome measures to enable monitoring of non-motor
symptoms.

Thoughclassified as amotordisorder, Parkinson’s disease (PD) is associated
with multiple non-motor symptoms that frequently arise prior to clinical
diagnosis and progress throughout the disease course1,2. Non-motor
symptoms include psychiatric symptoms, autonomic and sleep dis-
turbance, pain, fatigue, and cognitive impairment, withmany recognised to
impact quality of life to a greater extent than motor symptoms1,3. Mon-
itoring of these symptoms through in-clinic visits that use self-report and
clinical rating scales poses limitations such as the time and cost of in-person
visits, subjectivity of self-report, inter-rater variability, and assessments
made in a clinical environment, rather than a ‘real life’ setting4.

Advances in digital heath technologies (DHTs), which are defined as
technologies remotely acquiring information on health5, have enabled the
transition of this monitoring to the at-home setting, overcoming several of
the limitations outlined above. DHTs have already been developed to track
motor signs and symptoms of PD with the digital scores developed pro-
viding a good representation of the existing gold standard clinical rating
scale, the Unified Parkinson’s Disease Rating Scale (UPDRS)6–10. By con-
trast, with the exception of sleep, non-motor symptoms have been largely
neglected in the context of DHTs4,11. Digital outcome measures for sleep
length, quality, and stage exist12, however, are rarely used for themonitoring
of PD. van Wamelen et al.4 identified 18 studies that use digital sensors to
measure non-motor aspects of PD. Most studies related clinical

examinations to sleep or activity measures extracted from accelerometers.
They concluded that these studies show the potential of wearables for the
assessment of non-motor symptoms but that their translation to clinical
practice is far behind that of systems monitoring motor symptoms. Studies
reporting on associations between digitally tracked motor symptoms and
non-motor aspects of the disease found a link between digitally tracked
bradykinesia and disturbed sleep13 and a relationship between digitally
tracked bradykinesia and constipation14.

Here, we used rich multi-modal data from the Parkinson’s disease
Progression Marker Initiative (PPMI) cohort to investigate how standard
digital outcomemeasures of physical activity, sleep, and vital signs obtained
from passively collected free-living smartwatch data relate to clinically
assessed non-motor signs and symptoms and evaluated their potential
utility in the context of clinical care.

Results
Digital weekly averages in the PPMI cohort
At the time of data retrieval (November 2022), the PPMI dataset
provided a mean of 485 days of at home monitoring for 14 digital
outcome measures describing physical activity (step count, walking
minutes), sleep (total time, Rapid Eye Movement (REM) time, Non-
REM (NREM) time, deep NREM time, light NREM time, wake after
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sleep onset (WASO), awakenings, sleep efficiency), and vital signs
(pulse rate, mean root mean squared successive differences (RMSSD)
(heart beat), median RMSSD, RMSSD variance) for 149 participants
with a diagnosis of PD. Clinical data including assessments of cog-
nitive performance, autonomic functioning, psychiatric symptoms,
impairment in daily living, and motor symptoms was collected
between 2010 and 202115. 85 subjects had clinic visits while the digital
data was collected with a mean of 1.58 ± 0.78 clinic visits per parti-
cipant during this period. We computed digital weekly averages as
the temporal mean over a 3.5-day window around the clinic visit,
excluding the visit itself (Fig. 1). Analyses using a 30-day window are
reported in the Supplementary Material (Supplementary Fig. 1). In
the selected 6 days, the missingness of the digital data was high,
ranging between 78.04% to 98.85%, where sleep features had the
highest missingness due to them only being recorded during sleep
hours thus biasing the missingness computation (Supplementary
Table 1). PD cases were recruited no more than 2 years after their
initial PD diagnosis such that 6.81 ± 2.11 years had passed since
diagnosis at their respective last available visit to the clinic, coin-
ciding with the digital data collection, leading to a cohort of indivi-
duals diagnosed with PD with an average age of 67.69 ± 7.54.

Digital weekly averages capture variability in motor and non-
motor clinical assessments
We investigated whether the weekly averages of each digital measure cor-
respond to the clinical measures obtained at the respective clinic visit of
that week.

Clinical assessments themselves showed several associationswithin and
between domains. Multiple groups of clinical non-motor symptoms
demonstrated relatednesswithin their domains including cognitive (17 of 28
pairs reached significance after FDR correction), psychiatric (3 of 6), auto-
nomic (1 of 6), anddaily functioning (1of 1) (Fig. 2, SupplementaryTable 2).
Several of the clinical non-motor signs and symptoms related to higher
motor impairment (UPDRS II): reduced cognitive performance (2 of 8),
increased RBDSQ (p-value = 9.6 × 10−3), reduced independence in daily
functioning (2 of 2), and higher UPDRS IV (p-value = 1.34 × 10−4). The
clinical non-motor assessments were further related to independence in
daily living and UPDRS IV. Psychiatric assessment demonstrated correla-
tion with increased difficulties in daily living (6 of 8) and with increased
UPDRS IV (GDS: p-value = 4.72 × 10−2, STAI trait: p-value = 1.93 × 10−2).
Higher levels of autonomic dysfunction were shown to be associated with
increased difficulty in daily living and SCOPA autonome
(p-value = 8.01 × 10−3) and RBDSQ (p-value = 1.54 × 10−4) were addition-
ally related to UPDRS IV. Few relationships to cognitive performance were
identified with only higher MoCA scores correlating with smaller drop in
systolic blood pressure (p-value = 3.78 × 10−2).

There was also evidence of interrelatedness within digital outcome
measures including sleep (10 of 28), vital signs (1 of 3), and physical activity

(1 of 1), although there was no evidence of a relationship between the
domains.

The weekly averages of the digital outcome measures (a 3.5-day win-
dow spanning the clinical visit date, Fig. 1) correlated with several of the
non-motor clinical measures (Fig. 2, Supplementary Table 2). Of the eight
cognitive measures, two were represented by the digital outcome measure
for step count (LNS: p-value = 6.35 × 10−4, and symbol digit:
p-value = 8.64 × 10−3) and four related to digital sleep measures; MoCA
(p-value = 7.64 × 10−3) and HVTL recall (p-value = 2.07 × 10−3) were
represented by total sleep time, LNS was negatively related to WASO
(p-value = 1.93 × 10−2) and HVLT retention was positively related to light
NREM sleep time (p-value = 4.37 × 10−2). Of the four autonomic func-
tioning measures, two were captured by digital outcomemeasures; SCOPA
autonome was represented by WASO (p-value = 1.14 × 10−2) and ESS by
both physical activitymeasures (p-value < 4.64 × 10−2). One of the two daily
living questionnaires was captured through the digitally measured step
count (Schwab England ADL: p-value = 8.01 × 10−3). High UPDRS IV
scores were associated with increasedWASO (p-value = 2.09 × 10−2). None
of the psychiatric measures were captured by any of the digital timeseries
components. A link between the digital and clinical motor measures was
also observed with UPDRS III OFF being negatively related to step count
(p-value = 3.54 × 10−2).

Digital averagescould not predict non-motor assessments onan
individual level
Having shownassociations betweendigital and clinicalmeasures, we sought
to determine whether digital outcome measures could predict clinical
scores. We compared linear regression models based on the 14 weekly
digital averages to baseline models using only age at diagnosis, time since
diagnosis, and sex as features.

Digital weekly averages could not predict the scores of standardised
non-motor symptomquestionnaires or rating scales usedduring the clinical
assessments, on an individual level (Fig. 3, Supplementary Table 3). Most
models achieved an R2 below 0, indicating that no variation in the clinical
data could be explained through the digital outcomemeasures. Of note, the
clinical motor measures were also not explained through the digital weekly
averages. UPDRS II (R2 = 0.05 ± 0.02, p-value = 1.83 × 10−3) and ESS
(R2 = 0 ± 0.04, p-value = 1.9 × 10−3) were the only measures that showed a
significant improvement in performance compared to baseline models.
UPDRS II being a self-report of motor impairments, digital measures being
capable of capturing this indicates the general capabilities of digitalmeasures
to indicate motor symptom severity.

Change in clinical non-motor scores over time relate to digital
outcome measures
We investigated the sensitivity of the digital and clinical measures to detect
change over time. We further assessed the relationship between changes in
digital measures to that of the clinical measures with two approaches. First,

Fig. 1 | Deriving digital weekly averages. The
schematic plot displays the data collection timeline
using the example of hourly step count on simulated
data. The continuously collected digital data was
aligned with the visits to the clinic. An average over
6 days for each of the 14 digital outcome measures
around the clinic visit was calculated using a 3.5-day
window either side of the clinic visit, excluding the
day of the clinic visit itself.
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we computed the difference between visits for the clinical scores and the
associated weekly averages. Second, we extracted progression estimates
from the whole observation time via linear mixed models for clinical scores
and an automatic timeseries feature extraction method, tsfresh, for the
digital timeseries.

We computed the difference of the clinical scores as well as the digital
weekly averages between subsequent clinical visits during digital data col-
lection (N = 35). Cohen’s d indicating the sensitivity to change detected
showed the highest value for digitally measured total REM sleep time (0.63)
(Supplementary Table 4). The second highest Cohen’s d value was observed
for a cognitivemeasure (HVLT recall: 0.44).Onaverage, the digital outcome
measures were significantly better at detecting change than clinical ones
(t =−2.79, p-value = 8.53 × 10−3, dof = 35, 95% CI = [−0.2–−0.03]). The
clinic visits were on average 0.63 ± 0.22 years apart after an average of
5.55 ± 2.31 years post-diagnosis, potentially limiting the amount of change
occurring.

The rate of change between visits revealed no association amongst the
clinical measures indicating poor reliability in this data subset

(Supplementary Fig. 2, Supplementary Table 5). By contrast, the rate of
change of the digital outcome measures was observed to be related within
domains, however, this was anticipated as they derive from one another. No
significant associations between the rate of change of the clinical and digital
measures were identified.

Our second approach for assessing progression over time considered
the whole observation time, meaning 5.91 ± 2.77 years for the clinical
measures and 1.25 ± 0.54 years for the digital ones. This showed significant
associations for motor and non-motor assessments, including impairments
in daily living (p-value = 2.52 × 10−3), autonomic functioning
(p-value = 8.23 × 10−3), and medication (p-value = 4.17 × 10−3) (Fig. 4,
Supplementary Table 6). Motor progression was also related to digital
timeseries components.

Discussion
Here, we provide the first demonstration of how digital outcome measures
collected in free-living conditions may relate to non-motor clinical assess-
ments in a PD cohort. More specifically, we show that digital measures

Fig. 2 | Correlation of digital weekly averages and clinical assessments. The
heatmap displays the Pearson’s r coefficient for each digital weekly average and
clinical assessment in the Parkinson’s disease group. If multiple visits overlapped
with the digital data per person, the last visit to the clinic was chosen. Individual tests
are grouped into modalities as indicated by the colours on the left and top. Asterisks
indicate significant correlation p < 0.05 after FDR correction. ESS Epworth Sleepi-
ness Scale, RBDSQ REM behavioural sleep disorder screening questionnaire, BP

blood pressure, SCOPA Scale for Outcomes in Parkinson’s disease for Autonomic
Symptoms, MOCA Montreal Cognitive Assessment, HVLT Hopkins Verbal
Learning Test, STAI state-trait anxiety index, GDSGeriatricDepression Scale, QUIP
Impulsive-Compulsive Disorders in PD, ADL activities of daily living, UPDRS
Universal Parkinson’s Disease Rating Scale, LEDD Levodopa equivalent daily
dosage, RMSSD root mean squared successive differences.
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capturing weekly averages of physical activity are concordant with clinical
assessments of multiple non-motor symptoms including cognitive, auto-
nomic, and daily functioning as well as motor signs and symptoms. How-
ever, digital measures demonstrated limited power in predicting clinical
scores on an individual level. The rate of progression of clinical measures
showed associations with digital timeseries features when assessed over the
whole disease course.

While PD is primarily viewed as a motor disorder with symptomatic
treatment focussing on relieve of such motor aspects, non-motor aspects of
the disease can precede the onset of motor symptoms by several years and
throughout the disease course can dominate the clinical presentation2.
Although DHTs have proven successful in the passive and continuous

monitoring of the motor symptoms of PD, few studies have sought to
examine whether digital measures may also aid in monitoring and long-
itudinal understanding of the non-motor symptoms despite the recognition
that this latter symptom group has the greater impact on quality of life in
PD3,16. Monitoring non-motor symptoms and assessing their progression is
an important areaof researchwhichhas thus far beenneglected.We address
this by investigating the potential of smartwatch data to inform non-motor
symptoms. However, predictive performance on an individual level
remains poor.

Non-motor symptoms are in themselves difficult to objectively mea-
sure with clinical scales17 thus evaluating the digital outcome measures
against these scoresmight not be optimal. The digital toolsmay capture real-
life impairments, not reflected in the clinical rating scales. The sensors used
in this study and the derived clinical outcome measures were largely
focussed on movement-based data, thus limited in capturing some of the
non-motor aspects. More tailored sensors and derived outcome measures
such as frequency of bathroom usage to potentially determine changes in
urinary habits18 or frequency of text messages and phone calls to inform
depressive symptoms19 may better reflect the non-motor symptoms. Such
technologies still need to be explored in PD research. However, we have
demonstrated here that standard measures from smartwatches are asso-
ciated with cognitive, daily living, and autonomic impairment as assessed
with clinical scales.

Previous studies have indicated the potential of DHTs in monitoring
non-motor symptoms in PD with van Wamelen et al.14 reporting an asso-
ciation between digital bradykinesia scores and constipation. We found
relations between step count and cognition in PD that were previously
reported in other disorder like Schizophrenia20 or subacute stroke21. Our
results further replicated the findings of digitally tracked poor sleep being
related to worse cognitive performance in PD22 and self-reported sleep
disturbances being associated with more PD treatment/motor
complications23,24, which we identified with digitally measured increased
WASO being related to increased UPDRS IV.

Our digital weekly averages were unable to predict clinical non-motor
measures on an individual level. Although previous research has shown that
motor symptoms of PD (as captured with UPDRS) can be predicted from
digital outcome measures7,10, digital sensor data collected in free-living
conditions showed only few associations with the clinical motor severity
scales25,26. Our digital weekly averages of standard smartwatch measures
could predict UPDRS II better than a baseline model but showed only low
explained variance. It is likely that the standard digital measures considered
here lack the specificity needed to accurately represent the clinical measures
as they only describe high-level features of physical activity, sleep behaviour,
and vital signs.More specificdigital outcomemeasures collectedpassively in
real-life settings, such as those identified for tremor or dyskinesia7, are
currently lacking for the non-motor aspects of PD.

Limitations of this study relate primarily to data availability. Due to the
Verily StudyWatch only being introduced to the PPMI study 10 years after
it began, overlapping clinical assessment anddigitalweekly average datawas
only available in 85 participants. Furthermore, at the time of digital mon-
itoring these patients had already had a diagnosis of PD for about six years
and had received dopaminergic therapy. The sample size was even smaller
for the rate of change analysis where at least two visits per person had to
overlap with the digital data collection leading to only 35 subjects being
considered in this analysis. The computation of the digital weekly averages
did not correct for missing data and could thus be biased by patient’s
wearing patterns. Finally, our analysis was limited by only considering
standard digital measures as provided by Verily, the code for which is
proprietary, and therefore limiting the reproducibility of this work.

In conclusion, we have demonstrated associations between standard
smartwatch digital measures and multiple non-motor aspects of PD
including i) digitally measured sleep with cognition and motor complica-
tions due to medication, and ii) digitally measured physical activity with
cognition, daytime sleepiness, and independence in daily living. Despite
these associations, the clinical measures could not be predicted from digital

Fig. 3 | Digital outcome measures fail to predict clinical scores. The predictive
performance (x-axis) of the 14 digital weekly averages (step count, walking minutes,
NREM sleep time, deep NREM sleep time, light NREM sleep time, REM sleep time,
sleep efficiency, number of awakenings, wake after sleep onset, total sleep time,mean
pulse rate, mean RMSSD, median RMSSD, RMSSD variance) is shown for each
clinical measure (y-axis) as the mean R2 across the five outer cross-validation test
sets with their 95% Confidence Interval. The grey bars show the respective baseline
model performance also with 95%CI. An asterisk indicates significant improvement
over baseline at 0.05 significance (two-sided t-test with N = 5). The colour indicates
the domain of the clinical measure. ESS Epworth Sleepiness Scale, RBDSQ REM
behavioural sleep disorder screening questionnaire, BP blood pressure, SCOPA
Scale for Outcomes in Parkinson’s disease for Autonomic Symptoms, MOCA
Montreal Cognitive Assessment, HVLT Hopkins Verbal Learning Test, STAI state-
trait anxiety index, GDS Geriatric Depression Scale, QUIP Impulsive-Compulsive
Disorders in PD, ADL activities of daily living, UPDRS Universal Parkinson’s
Disease Rating Scale, LEDD Levodopa equivalent daily dosage, RMSSD root mean
squared successive differences.

Fig. 4 | Correlation of digital and clinical progression. Associations between
clinical progression and digital timeseries features are shown. The heatmap displays
the Pearson’s r coefficient for the first 10 digital progression principal components
from the features extracted with tsfresh and the clinical principal components for
progression (the slope from the linear mixed models). Asterisk indicates significant
correlation after 0.05 Bonferroni-correction.
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data on an individual level, highlighting the need formore specialised digital
outcome measures for the non-motor aspects of PD.

Methods
All analyses were performed in python v3.9 using sklearn27 1.2.1 for model
training and evaluation, scipy 1.10.0 and pingouin28 0.5.3 for statistical
testing, and matplotlib 3.6.3 and seaborn 0.12.2 for creating figures. Data
loading andmanipulationhas been facilitated throughan adaptedversionof
pypmi (https://github.com/rmarkello/pypmi). All code will be made avail-
able upon publication at https://github.com/aschalkamp/PPMI_
nonmotor_digital.

Study cohort
The Parkinson’s disease progressionmarker initiative (PPMI) has collected
data from those with recently diagnosed (denovo) PD, people at risk, and
unaffected controls since 2010. Participating PPMI sites all received
approval from an ethical standards committee before study initiation and
written informed consent was obtained for all individuals participating in
the study. The study was registered at clinicaltrials.gov (NCT01141023).
This analysis used data openly available from PPMI. They put a focus on
longitudinal data collection of brain imaging, blood, urine, cerebrospinal
fluid (CSF), and clinical assessment data. Since 2018 a subset of participants
has been supplied with a Verily Study Watch, which is equipped with a
multitude of sensors including accelerometer, gyroscope, electro-
encephalography (ECG), and photoplethysmography (PPG). We used the
analytic dataset cohort assignment, which provides the most up-to-date
assignment of subjects into PD, healthy control, ScansWithout evidence of
dopaminergic deficit (SWEDD), and prodromal class.

Digital data. From the raw Verily Study Watch data several derived
measures are provided by Verily and were accessed by us through the
LONI website of PPMI in November 2022. These include data on sleep,
physical activity, and vital signs. Data was available between 2018 and
2020. Each derived digital measures had a different availability with the
sleep measures being the scarcest due to them only being available for
hours spent asleep. The hourly step count data covered an average of 1.25
years (std = 0.54) with a mean recorded time of 0.91 years (std = 0.52).
The time between the measurements ranged from one hour to 6.76 days
with a mean of 137.56 min (std = 530.76). The sleep data covered an
average of 1.19 years (std = 0.57) with a mean covered time of 8.4 days
(std = 6.68). Here, the time betweenmeasurements was larger on average
with 6.35 days (std = 19.83).

Clinical data
Data was downloaded from LONI PPMI in March 2021. The following
clinical assessments were retrieved: motor assessments including UPDRS
scores (part II, III), cognitive assessments like Montreal Cognitive Assess-
ment (MoCA), semanticfluency, Benton judgement of line orientation, and
WMS-III Letter-Number SequencingTest (LNS),HopkinsVerbal Learning
Test (HVLT), and symbol digit, psychiatric questionnaires including State-
trait-anxiety inventory (STAI), geriatric depression score (GDS), and
Impulsive-Compulsive Disorders in PD (QUIP), as well as autonomic
assessments like Scale for Outcomes in Parkinson’s disease for Autonomic
Symptoms (SCOPA), Epworth Sleepiness Score (ESS), REM sleep beha-
viour disorder screening questionnaire (RBDSQ), and blood pressure drop,
and assessments of daily functioning with the modified Schwab England
Activities of Daily Living (Schwab England ADL) and the UPDRS I.
Information on medication was included as Levodopa equivalent daily
dosage (LEDD) and UPDRS IV.

These data were collected, cleaned, and merged based on the subject
identifier and visit date. For UPDRS III, we distinguished between ON and
OFF assessments with OFF being those where the subject was not on
medication either due to not taking medication or because the medication
was deliberately not taken for this assessment, andONbeing all assessments
conducted when the subject took the normal medication.

Temporal alignment
To align the smartwatchdatawith the clinic visit data, the date of digital data
collection had to be inferred andwas thenmergedwith the date of the clinic
visit. The local date for the derived digital measures was calculated based on
the provided age in seconds, the weekday, and the local time. The age in
seconds was transformed to a date using the date of birth. The weekday of
this estimated date was compared to the provided weekday. If they did not
match, the estimated date was shifted to the closest date which has the
correct weekday. Using this estimated date, the digital data was merged to
the clinical data. Due to the smartwatch study only being included later in
the study, the overlap with the clinical examinations is limited. 85 partici-
pants with PDhad an overlap of digital data and a clinic visit with amean of
1.58 ± 0.78 clinical visits per person during digital data collection.

Correlation of clinical measures and digital weekly averages
To relate digital and clinical measures to one another, we computed digital
weekly averages from the digital timeseries data (Fig. 1). For this, the clinical
visit date was used as the mid-week point around which a 3.5-days sized
windowof thedigital datawasaveraged, removing the visit day itself due to it
being a non-representative day including a visit to the clinic. Thus, a mean
over 6 days of all available data was calculated.We restricted this analysis to
only include each participant once to avoid overrepresentation of specific
subjects by choosing the last available clinical visit with an overlapping
digital recording available.We computed Pearson’s correlation between the
digital averages and the clinical visit information with 0.05 FDR correction.
Due to varying availability of clinical assessments, the number of subjects in
each correlation differs (Supplementary Table 2).

Prediction of clinical scores from digital weekly averages
To predict the clinical measures from the digital weekly averages, we built
regression models using all digital weekly averages as predictors and diag-
nosis age, time since diagnosis, and male sex as covariates. To estimate the
baseline performance, a model using only the covariates was built. All these
models used an elastic net penalty with R2 score loss and were fitted with a
nestedfive-fold cross-validation. In the inner split, gridsearchwas applied to
identify the best hyperparameters for the penalty, namely the L1 to L2 ratio
and the alpha (strength of penalty) parameter. Performance was reported
with mean and standard deviation of the R2 score across the five outer
test folds.

Rate of change analysis
To assess the sensitivity of the measures to detect change over time, we
computed Cohen’s d in a paired test between the first two visits coinciding
with digital data collection (N = 35). We further added Hedges g for com-
parison due to small sample sizes. We tested for differences between digital
and clinicalmeasures todetect changewith a two-sided t-test on theCohen’s
d coefficients.

We further assessed the relationship between the measured change
over time with two approaches, the first one limited to digital weekly
averages and clinic visits during digital data collection, the second one
considering the whole available data.

First, we computed the difference between consecutive visits scaled by
the timebetween visits. 35 subjects hadmore than twooverlaps of the digital
data and a clinic visit. The mean over this change over time was correlated
between clinical and digital data with 0.05 FDR correction.

Second, we evaluated the progression over the whole observation
period. The clinical measures were transformed, if needed, such that higher
scores represented more impairment. Random intercepts and slopes were
fitted to allow for variation of the individuals around the population mean.
The slopewas interpreted as the speed of progression.We restricted the data
for eachmodality individually to subjectswith at least two visits to retain the
most data possible. Overall, this data was available for 665 PD cases with a
diagnosis age of 60.24 ± 10.10 years. They were followed for an average of
5.91 ± 2.77 years with 11.33 ± 4.66 visits which were on average
208 ± 130 days apart. We computed principal components via Principal
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Component Analysis (PCA) for the clinical intercepts and slopes separately
for defined modalities: motor (UPDRS III OFF, UPDRS II), daily (Schwab
England ADL, UPDRS I), cognitive (MoCA, Benton, LNS, HVTL recall,
retention, and recognition, symbol digit, semantic fluency), psychological
(STAI trait, STAI state, GDS, QUIP), autonomic (ESS, RBDSQ, SCOPA
autonome, systolic blood pressure drop). The samemethodwas used for the
medication domain (UPDRS III ON, UPDRS III OFF, UPDRS IV, LEDD)
but the time since first medication was modelled instead of time since
diagnosis. The principal components were then identified based onUPDRS
III ON-OFF, UPDRS IV, and LEDD. On average, the first principal com-
ponent explained 0.76 ± 0.25 of the variance.

For the digital timeseries data, we used tsfresh. Tsfresh was applied for
each individual for each digital feature to extract their timeseries features.
This included 783 derived features like themaximum,minimum, skewness,
kurtosis, and trend for each timeseries. The method does not consider the
time intervals between data, leading to potential biases where data was only
sporadically available. We ran PCA on all digital timeseries features from
tsfresh. The first 10 principal components explained 27% of the total
variance.

We aimed to study the correlation of the progression estimates of the
different data modalities. The principal components of the clinical features
were correlated with the principal components of the digital features via
Pearson’s correlation (N = 135).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
This analysis used data openly available from PPMI. Data used in the
preparation of this article were obtained in March 2021 with digital data
downloaded in November 2022 from the Parkinson’s Progression Markers
Initiative (PPMI) database (www.ppmi-info.org/access-data-specimens/
download-data), RRID:SCR_006431. For up-to-date information on the
study, visit www.ppmi-info.org.

Code availability
All associated code to reproduce the analyses performed here will be made
publicly available upon publication at https://github.com/aschalkamp/
PPMI_nonmotor_digital.
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