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Abstract

This thesis focuses on 3D mesh quality, essential for immersive VR applications. It ex-

amines subjective methodologies for Quality of Experience (QoE) assessments and then

develops objective quality metrics incorporating QoE influencing factors. Existing stud-

ies consider 3D mesh quality on the desktop. The perceptual quality in a Virtual Reality

(VR) setting can be different, this inspired us to measure mesh quality in a VR setting,

which has been the subject of limited studies in this area. We consider how different

3D distortion types affect perceptual quality of 3D when viewed in a VR setup. In our

experiment findings, in the VR setting, perception appears more sensitive to particular

distortions than others, compared with the desktop. This can provide helpful guidance for

downstream applications. Furthermore, we evaluate state-of-the-art perceptually inspired

mesh difference metrics for predicting objective quality scores captured in VR and com-

pare them with the desktop. The experimental results show that subjective scores in the

VR setting are more consistent than those on desktop setting.

As we focus on a better understanding of perceptual mesh quality, we further consider

the problem of mesh saliency, which measures the perceptual importance of different

regions on a mesh. However, existing mesh saliency models are largely built with hard-

coded formulae or utilise indirect measures, which cannot capture true human perception.

In this thesis, to generate ground truth mesh saliency, we use subjective studies that collect

eye-tracking data from participants and develop a method for mapping the eye-tracking

data of individual views consistently onto a mesh. We further evaluate existing methods of

measuring saliency and propose a new machine learning-based method that better predicts
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subjective saliency values. The predicted saliency is also demonstrated to help with mesh

quality prediction as salient regions tend to be more important perceptually, leading to a

novel effective mesh quality measure.
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Chapter 1

Introduction

Multimedia technologies have become an important area that benefits significantly from

recent advances of computer vision. In recent times, most people have spent a large

part of their life interacting with multimedia technology, such as surfing the internet or

using streaming services. We often depend on multimedia systems when working on

various tasks, such as using security cameras to regulate our house or smartwatches to

track our sleeping. As more companies compete to deliver multimedia services to users,

to meet the expectations of consumers, multimedia systems must be created with the goal

of maximising user satisfaction with services. This measure of quality is known as Quality

of Experience (QoE). Quality of Experience is “the degree of delight or annoyance of the

user of an application or service” [114].

Multimedia systems and services are designed around the consumption of visual me-

dia (e.g., images, 3D meshes and videos). Some examples of such multimedia systems

include virtual and augmented reality, video surveillance, and mobile services. Visual

media consumption is important for various applications, systems, and services. Accord-

ing to the Cisco Visual Networking Index [90], the visual quality of more than 70% of

internet traffic worldwide is expected to increase. Also, according to statistics [141, 59],

we download around 3.9 trillion images daily [141] and upload at least 1.8 billion images

daily to various online platforms [59].

3D technology, such as 3D TVs and 3D gaming devices, provides a new opportunity

for improving user experience in 3D surroundings [2]. Owing to improved availability
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and quality, 3D models are becoming more popular as a new primary technology in the

digital age [47]. 3D mesh data are often used in digital entertainment, scientific visuali-

sation, and the preservation of cultural artefacts. The increasing visualisation capabilities

of viewing devices and widely available online content lead to increased computation and

storage demands. Network-based applications are particularly affected because they often

need to apply a certain level of compression for 3D models to increase the transmission

speed [78]. 3D meshes and other 3D representations are required for a wide range of

applications, such as medical applications [176] and software for surgery [61]. It is com-

mon for 3D mesh models to have a high number of vertices and faces to be displayed or

streamed in real time [177]. A model with more vertices and faces can often appear more

realistic or of higher quality because of the improved level of detail.

There is a well-documented trade-off between visual quality and processing time. For

some tasks such as simplification, in order to reduce the processing time. It needs to

reduce the complexity of the meshes [136]. The quality of the visual representation of the

data is impacted, which may result in distortions. As a result, the quality of the 3D mesh

must be assessed. Many computer vision applications take into account the importance of

visual quality. Indeed, the quality of the data may significantly impact the performance

of a computer vision program. As a result, we need data grading on how users evaluate

quality. Assessments of 3D meshes determine how much the original model has been

deformed. As 3D forms become more prevalent in many application domains, this issue

becomes more critical.

Metrics for assessing the 3D mesh visual quality (MVQ) have been carefully used

to assess the perceptual effects of distortion to forecast distorted 3D data visual quality

compared to the original data [60]. This has led to the development of several criteria for

estimating the negative effect of visual artefacts. For example, some metrics are based on

Laplacian coordinates, forms of curvature calculation, geometric features, and standard

geometric distances [78].

Subjective evaluation and objective measurements may be used to evaluate perceptual
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quality. Objective metrics consist of automated prediction techniques for visual qual-

ity degradation (i.e., the annoyance level of visual artefacts). Alternatively, during user

studies for subjective evaluation, a group of volunteers evaluate the visual quality of test

data during subjective investigations. As humans are the eventual judges for visual qual-

ity, these subjective studies are probably the most reliable method for generating ground-

truth datasets that may be used to analyse human psychological preferences and behaviour

(when grading multimedia information) and to assess and modify objective quality crite-

ria.

This thesis aims to focus on 3D mesh visual quality assessment (see Figure 1.1 for an

example with different types/levels of distortion). It also examines how the way the user

interacts with technology tools such as Virtual Reality (VR) and regular desktop settings

affect perceptual 3D mesh quality when the shapes are distorted with different distortion

types and levels. Although the focus is on 3D shapes, some works used in the image

quality assessment area that can help build metrics in the field of 3D meshes will also be

discussed.

a) Reference mesh b) Distorted mesh with smoothing c) Distorted mesh with noise addition

Figure 1.1: An example of a 3D reference mesh of an armadillo, along with different
types of distortion that affect visual quality.

The remainder of this chapter discusses the aims and motivations behind this research
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in Sections 1.1 and 1.2, and summarises the novel contributions in Section 1.3. In addi-

tion, Section 1.4 provides an outline of what is covered in each chapter. We conclude by

presenting a list of publications resulting from this thesis research in Section 1.5.

1.1 Aims

This thesis focuses on visual quality assessment of 3D meshes as a commonly used rep-

resentation for 3D shapes. To address the limited studies on 3D mesh quality assessment

in VR and how that compares with the normal display, the thesis in particular investi-

gates how different types and levels of distortions affect the perceptual quality of 3D

meshes comparing VR and desktop settings. To achieve this, we collected subjective user

scores on distorted shapes in the VR setting compared to desktop studies to measure the

quality between these settings. This provides insights regarding how human perceptual

quality differs with different settings. We also build a learning-based model to predict

scores using the data. We then compare and evaluate different objective quality assess-

ment methods, which are methods focused on measuring the dissimilarity between two

meshes (reference and distorted mesh) in normal display desktop and VR settings. We

further hypothesise that salient regions have more impact on visual perceptual quality. To

study this, we exploit 3D mesh saliency, using objective and objective measures, incor-

porating user fixations. This involves collecting eye-tracking data and fusing information

from different views to form consistent 3D saliency maps on meshes. The thesis then ex-

plores ways to predict 3D mesh saliency. The existing studies used hard-coded formulas

which are unreliable with human perceptions. In our experiment, there is an improvement

in existing models by incorporating machine learning to help combine geometric features

to better predict mesh saliency.
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1.2 Background and Motivation

In recent years, the use of 3D meshes has increased in the general public and industry,

owing to the emergence and improvements in 3D imaging (3D scanners, 360-degree cam-

eras, MRI, etc.), 3D modelling tools became available, including affordable virtual reality

and mixed reality (MR) head-mounted displays (HMD) (e.g., Oculus Rift, Meta/Oculus

Quest and HTC Vive ). These technologies are expanding the size and complexity of 3D

data. Indeed, a 3D scene may contain thousands or even millions of geometric primitives

and an array of appearance attributes to reproduce realistic material attributes.

Improvements and developments in the field of extended reality (XR), which includes

(VR) and augmented reality (AR), are generally considered future goals of computer sci-

ence. VR systems with six degrees of freedom (6DoF) provide a variety of possibilities

for immersive, realistic interaction. One significant obstacle that prevents the quality of

display and interaction in XR in large and complex 3D scenes is latency difficulties that

arise while streaming the 3D scene to the client device for networked applications.

The number of VR and AR applications requiring 3D data saved from online servers

exacerbates these issues. 3D content needs to be simplified and compressed to be com-

patible with HMDs, as well as mitigating latency issues caused by transmission. These

losses result in visual degradation that may reduce the perceived quality of a 3D scene

and, thus, negatively affect user QoE. Thus, to find the right compromise between visual

quality and data size/LoD (Level of Detail), it is essential to define measures to assess the

impact of these distortions accurately. It is necessary to use quality assessment method-

ologies for this purpose. Metrics and datasets available for public quality evaluation of

3D graphics are few, and mainly for models containing colour or texture attributes. Many

previous studies focus on image or video quality assessment. However, this is begin-

ning to change with the increasing popularity of new VR technologies, which provide an

immersive experience for users.
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Visual quality assessment (VQA) is a growing requirement for digital images, 3D

models, and video technologies in entertainment, communications, security, monitoring,

and medical imaging. The demand for 3D visual quality has pushed visual media quality

assessment to the forefront. Acquisition, processing, compression, transmission, display,

printing, and reproduction systems are some aspects that may impact or impair the qual-

ity of visual media. Also, other factors can also introduce visible artefacts, such as noise,

simplification and watermarking. The objective of the visual quality evaluation is to mea-

sure the quality of visual media such as still images, image sequences (video) and 3D

models using quality metrics. These measurement tools need to be appropriate to the

applications being evaluated.

Indeed, there are generally two typical types of methods used in VQA: subjective

and objective metrics [110]. Subjective VQAs have long been used to evaluate visual

quality. Whether or not a visual reference is present, human participants are asked to

assess the perceived visual quality of the shown media using a quality scale. Responses

from multiple human subjects for a specific stimulus are often summarised using the

subjective mean opinion scores (MOSs) [153]. MOSs can effectively measure how the

quality of visual stimuli is perceived. However, these are expensive and time-consuming

to obtain, and as such difficult to integrate into real-world systems to enable real-time

visual quality monitoring and control.

Owing to these issues, it has become necessary to develop reliable objective quality

metrics that can automatically assess the quality of visual media as seen by humans. Such

automatically predicted MOS scores can also help improve future work by giving design-

ers and testers objective metrics during the design and testing stages and reducing the

need for testing with costly human subjects. The objective assessment process, however,

must be well correlated with the subjective assessment process. Similar to subjective vi-

sual quality assessment, objective visual quality assessment can also be broken down into

three types: full-reference (FR), reduced-reference (RR), and no-reference (NR) or blind

[238]. This thesis focuses on the FR type as undistorted shapes are often available in many
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applications, and the subjective and objective quality assessment studies are explored in

Chapters 3, 4 and 5.

Life Cycle of Visual Media Processing

The visual media life cycle is essential for processing all multimedia data (images, 3D

shapes and videos). During the different stages of producing and utilising visual media,

various artefacts may be introduced. So we summarise each stage of the visual media life

cycle, including acquisition, processing, storage and transmission, and display, as shown

in Figure 1.2.

Figure 1.2: Visual media life cycle. In each step, quality degradation may occur, and
a quality estimator (Q in the figure) is used to decide on appropriate enhancement.

Acquisition: The acquisition or capture phase of the visual media production is prob-

lematic in various ways, such as if there is camera movement, or if an object moves

during visual capture. Indeed, blur is one kind of artefact that occurs through movement

[85]. Sensor technology limitations in the camera are further limitations during image

acquisition. Captured images may also contain noise, especially in low light settings, and

distortions due to imperfection of optical components in the camera. In the case of an

improper sampling rate, an A/D converter on a camera may produce aliasing artefacts

during capture.

Processing: The most common processing techniques are compression (encoding and

decoding), enhancement, and multiple image fusion to create a panoramic image or con-

struct a 3D shape, all of which may involve degradation of the captured data. For instance,

image compression using block-based codecs often results in block artefacts, whereas
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image compression using wavelet-based codecs typically results in ringing or aliasing

artefacts [125, 123, 135]. Meanwhile, automated image stitching to generate panoramic

images may contain parallax errors [24], and depth triangulation in the construction of 3D

shapes may contribute to geometry noise [95].

Storage and transmission: Artefacts created at this stage result from the transforma-

tion technique employed to modify visual media such as images and 3D shapes. Informa-

tion loss frequently happens when storing or transferring (e.g., streaming) visual media

due to network or device limitations. Packet loss and visual delay are examples of arte-

facts that occur at this step [23, 164].

Display: Artefacts that result from this stage occur because of the requirement to

transfer visual media such as an image or video to a particular device configuration. This

procedure consists of resampling, trans-coding, and tone-mapping [103, 75, 29]. Also,

artefacts can be caused by the display technology itself. For instance, delayed temporal

response of liquid crystal display (LCD) and the hold-type LCD rendering approach can

produce motion blur artefacts [157].
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Learning to Predict 3D Mesh Saliency (Chapter 4) 

Subjective Study of Predicting 3D Mesh Quality Score (Chapter 3) 

CQ1: Many artefacts can affect 3D meshes. We selected some typical types of artefacts 

related to common mesh processing pipelines, including noise and smoothing, and 

performed subjective quality assessment by collecting subjective opinions scores for 

distorted shapes, under the VR setting, and compared the results with the desktop setting. 

 

CQ1: Many artefacts can affect 3D meshes. We selected some typical types of artefacts 

related to common mesh processing pipelines, including noise and smoothing, and 

performed subjective quality assessment by collecting subjective opinions scores for 

distorted shapes, under the VR setting, and compared the results with the e 

  

desktop setting. 

 

Objective Quality Assessment Measures for Mesh Quality (Chapter 5) 

Contribution 1 

Q1: How do different 3D distortion artefacts (types and levels) affect the 

perceptual quality of 3D shapes in VR and desktop display settings? 

 

Q2: Is it possible to obtain consistent subjective mesh saliency measures using 

eye tracking on rendered 2D views of 3D meshes? Is it possible build an effective 

objective mesh saliency prediction method using machine learning? 

Q3: How effective are objective quality assessment methods for mesh quality 

in a VR setting and whether incorporating saliency helps with better 

prediction? 

 

Subjective Studies Meta/Oculus Quest 2 

Eye-tracker device 

 

CQ2: We collect eye-tracking data for 3D objects from different views and develop an 

optimisation-based approach to fusing heat-maps captured from individual views to 

form consistent saliency maps on meshes. There is an improvement over existing 

models by incorporating machine learning to help to combine geometric features to 

better predict mesh saliency. 

Objective Studies Subjective Studies 

studies 

 

Contribution 3 

 

 

 

 

CQ3: We compare different objective quality assessment methods for 3D mesh quality, 

which are methods focused on measuring the dissimilarity between two meshes by 

calculating geometric and perceptual distances between them. Since salient regions 

are more perceptually important, we propose a salience-weighted metric for better 

measuring perceptual distances. 

Figure 1.3: Scope and contribution of this thesis. Each box represents a different
element: (Q) presents the research questions, (CQ) presents the contributions and
green boxes correspond to the chapters in the thesis.
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1.3 Research Questions and Contributions

This thesis investigates the following research questions. As shown in Figure 1.3, there is

a list of research questions related to contributions and chapters.

As discussed before, the thesis addresses subjective and objective quality assessment

for 3D meshes, comparing the VR and desktop settings, and studies related problems of

mesh saliency, which can be an important aspect to understand perceived quality.

• Q1. How do different 3D distortion artefacts (types and levels) affect the perceptual

quality of 3D shapes in VR and desktop display settings?

• Q2. Is it possible to obtain consistent subjective mesh saliency measures using

eye tracking on rendered 2D views of 3D meshes? Is it possible build an effective

objective mesh saliency prediction method using machine learning?

• Q3. How effective are objective quality assessment methods for mesh quality in a

VR setting and whether incorporating saliency helps with better prediction?

To answer these questions, the following contributions are outlined:

• (CQ1) Many artefacts can affect 3D meshes. We selected some typical types of arte-

facts related to common mesh processing pipelines, including noise and smooth-

ing, and performed subjective quality assessment by collecting subjective opinions

scores for distorted shapes, under the VR setting, and compared the results with the

desktop setting (Chapter 3).

• (CQ2) We collect eye-tracking data for 3D objects from different views and develop

an optimisation-based approach to fusing heat-maps captured from individual views

to form consistent saliency maps on meshes. There is an improvement over existing

models by incorporating machine learning to help to combine geometric features to

better predict mesh saliency (Chapter 4).



11

• (CQ3) We compare different objective quality assessment methods for 3D mesh

quality, which are methods focused on measuring the dissimilarity between two

meshes by calculating geometric and perceptual distances between them. Since

salient regions are more perceptually important, we propose a salience-weighted

metric for better measuring perceptual distances (Chapter 5).

1.4 Thesis Structure

Chapter 2: Background and Related Work provides an introduction to the computer

vision literature on VQA with regards to image and 3D mesh metrics, and examines what

affects the perceived quality of multimedia. It also discusses how various artefacts affect

VQA in normal display and VR settings.

Chapter 3: Subjective Study of 3D Mesh Quality Scores in Virtual Reality de-

scribes how a subjective VQA experiment was conducted, which aims to understand the

impact of several factors that created 3D mesh distortions, including noise and lack of

details. The experiment shows how these types/levels of distortions have an effect on the

perceived quality of 3D meshes and enables improved user experience in VR settings.

Chapter 4: Learning to Predict 3D Mesh Saliency as saliency is related to the per-

ceptual quality of the 3D mesh, we present new quantitative methodologies for predict-

ing 3D mesh saliency, measuring the perceptual importance of different regions on a

mesh. This chapter reports on the collection of eye-tracking data for 3D objects from

different views and develops an optimisation-based approach to fusing heat-maps cap-

tured from individual views to form consistent saliency maps on meshes. We further

develop a learning-based approach that regresses local surface characteristics to predict

mesh saliency on a new shape.

Chapter 5: Objective Quality Assessment Measures for Mesh Quality presents a

comparison of different quality assessment methods for mesh quality. These methods
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measure how different two meshes are from each other by determining their geometric

and/or perceptually related distances. We then compare the results of these methods with

subjective scores for both VR and desktop settings. We further demonstrate incorporating

mesh saliency helps with better objective mesh quality assessment.

Chapter 6: Conclusion and Future Work summarises the outcomes of this thesis

and discusses directions for future research, in terms of including technological improve-

ment, human perspective, and 3D complexity, as well as an objective approach to study

perceived visual quality in 3D mesh assessment.

1.5 Publications Related to This Thesis

Listed below are the refereed publications resulting from my PhD dissertation research:

1) ALfarasani, Dalia A., Thomas Sweetman, Yu-Kun Lai, and Paul L. Rosin. “Learn-

ing to predict 3D Mesh saliency.” In 2022 26th International Conference on Pattern

Recognition (ICPR), pp. 4023-4029. IEEE, 2022.

2) Alfarasani, Dalia A., Lai, Yu-Kun and Rosin, Paul L. 2023. ”Subjective Study

of 3D Mesh Quality Scores in Virtual Reality.” In 2023 7th International Conference on

Virtual and Augmented Reality Simulations (ICVARS), pp. 7-13. ACM, 2023

1.6 Summary

In this chapter, the background and motivation for the present work were discussed. The

hypothesis and the main research questions were presented, and there was an overview

provided regarding the structure and research contributions. Before moving to the main

technical discussion of the thesis, the next chapter will provide a more detailed back-

ground and exposition of related work in visual quality assessment, including subjective



13

and objective image quality assessment and 3D mesh quality as well as mesh saliency,

which sets the thesis against the context of existing work in this area.
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Chapter 2

Background and Related Work

Overview

In this chapter, we illustrate the background and related work in computer vision on

visual quality assessment (VQA) and explore the artefacts that might affect media quality.

The 3D mesh quality assessment literature review is limited compared with VQA in 2D

imaging, and the methodological background is necessarily generalised to incorporate a

wider pool of literature. We present various methods used in 2D and 3D VQA. Moreover,

we present 3D mesh saliency to predict the importance of local regions of the shape. Also,

we look at display settings, such as VR, and how the quality of the visual stimuli affects

the viewer’s perceptions in VR setting. Finally, We looked at various applications that use

2D desktop and VR settings.

2.1 Introduction

In this review of computer vision literature, 3D mesh visual quality (MVQ) metrics are

classified into three categories based on the availability of reference objects [8]. Full-

reference (FR) is a category when the reference is entirely available. No-reference (NR)

is used when no information about the reference is available. Reduced-reference (RR)

is applied when only a portion of the reference is available, such as a subset of features

extracted from the reference. Having briefly presented the three types of MVQ metrics,

we focus now on the full-reference (FR) MVQ metrics, which are most related to the work
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in this thesis.

The most common existing methods work on full reference (FR) metrics, such as mesh

structural distortion measure (MSDM) [111], Multiscale Mesh Structural Distortion Mea-

sure (MSDM2) [108], Dihedral Angle Mesh Error (DAME) [212], Fast Mesh Perceptual

Distance (FPDM) [216], and Tensor-based Perceptual Distance Measure (TPDM) [209,

56]. These metrics are generally computed in two steps: first, by calculating the vertex-

based or edge-based quality values from the reference and the distorted mesh and; second,

by aggregating the local quality values into a single score based on spatial pooling to re-

flect the overall quality of the distorted mesh.

3D mesh quality research is more in the developing stage compared to image visual

quality. A number of studies on MVQ measures [111] have appeared to be motivated

by studies on IVQ metrics [223]. Li et al. [117] developed a spatial pooling technique

for IVQ measurements through machine learning techniques. They retrieved statistical

descriptors from the local quality map to describe the overall quality of the image and

showed that quality is sensitive to local quality map distribution. Such works show that

there is some similarity between MVQ and IVQ measurements, given that both are in-

tended to correspond with visual perception. Research in the VQA literature indicates

that image quality evaluation and mesh quality assessment have broadly comparable per-

ceptual considerations [111, 223].

Research on VQA in image quality evaluation has undertaken several types of re-

search on IVQ measures using machine learning techniques [112, 70, 150, 151, 86, 69,

231] while the majority of studies on mesh quality assessment have explored MVQ met-

rics [111, 108, 212, 216, 209, 56]. By doing so, such methods have explicitly created

specific visual perception models for mesh quality. Using machine learning approaches,

Lavoue et al. [109] have developed the multi-attribute computational model (MACM).

However, the MACM measure does not account for the perceptual properties of the hu-

man visual system, and its capacity to generalise across databases has not been assessed

in the computer vision literature [109]. We anticipate that machine learning approaches
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will play an increased role in MVQ measures in the short- and long-term, especially when

a sizeable subjective database for mesh quality evaluation becomes more accessible in the

future.

Mesh saliency detection [127] as a way to predict quality assessment has also gar-

nered interest in visual perception as a research topic connected to mesh quality. Most

existing methods of measuring salience use heat-maps that focus on highlighting salient

areas. Several computational saliency algorithms [115, 192, 120, 155, 204] have been

developed to discover the perceptually significant mesh parts where human visual atten-

tion is concentrated. Since the human visual system is the recipient of both mesh visual

quality and mesh saliency, there is potential to enhance the performance of MVQ met-

rics by including mesh saliency in the metric. Kim et al. [102] performed user research

with an eye-tracking experiment and assessed the association between the mesh saliency

map produced by the approach [115] and the fixation map collected from the eye-tracking

experiment. Chen et al. [37] constructed a benchmark using pseudo ground truth mesh

saliency maps based on focus points (Schelling points) and used a regression model to

predict the saliency map of 3D meshes with the benchmark. Tasse et al. [205] developed

criteria for evaluating the performance of computational 3D saliency approaches [192,

186, 205] using the benchmark [37]. There is currently a lack of quantitative research

on the accuracy and dependability of current mesh saliency detection techniques. In the

published work [115, 192, 120, 155, 204], the efficacy of the mesh saliency detection ap-

proach was mostly supported by application-guided assessment [115, 192] or subjective

visual analysis [120, 155, 204]. A number of studies show that mesh saliency can improve

the results of graphics applications, such as mesh simplification and viewpoint selection

[115, 192].

In the following figure, we present a diagram which summarises the quality assess-

ment techniques that can be used in 2D and 3D. As the 3D mesh literature review is

limited, we start with showing 2D IQA, which is closely related. There are three types

of methods used both in 2D and 3D, namely full reference, reduced-reference and no-
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reference. All of these methods have some metrics that can be used to predict the quality.

As we focus on full-reference cases, we present in Figure 2.1 chapter structure which

shows how we start with 2D IQA as this has extensive metrics that can be used in 3D

MQA, and extended to use in eye movement and virtual reality.

• Signal fidelity
• Structural similarity
• Features Associated with 

Structure and Edges
• Extraction and integration of 

learning-based features

Non-Saliency-Guided IQA

Full-Reference 
IQA Methods

• Subjective Visual Attention Map Based Weighting
• Objectives Visual Attention Map Based Weighting

Saliency as Quality FeatureSaliency Weighting

Saliency-Guided IQA

Virtual Reality 
Applications

Virtual Reality

• Eye-tracking
• Fixation
• Saccades
• Gaze
• Scanpaths

Eye Movement Metrics

Eye Movement
2D IQA

Background and Related Work 

No-Reference 
IQA Methods

Reduced-Reference 
IQA Methods

3D MQA

Mesh Quality 
Databases

Subjective 
Methodologies

Mesh Saliency

• Single Stimulus
• Double Single Stimulus

Figure 2.1: A diagram summarising background and related work in quality assess-
ment.
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2.2 2D Image Quality Assessment

Since 3D mesh quality assessment is quite limited, most methods were adapted from 2D

image quality assessment (IQA). More than a hundred FR measures for 2D images may

be found in [160]. Most blind quality measurements use degradation-based approaches,

focusing on the most common degradation types (blocking, ringing, blur) [222, 182]. Ac-

cordingly, RR metrics provide important alternative methods since only a portion of the

original image features are expected to be available. The same methods described in [41,

251, 181] are used to evaluate the visual quality of stereoscopic images. Several spatial

pooling algorithms emphasising low-quality image areas have been developed for IVQ

metrics [221]. Wang et al. [220] suggested various spatial pooling techniques for the

IVQ measures and showed that, among these spatial pooling strategies, the local infor-

mation content weighted pooling approach delivers the most effective performance for

this metric. Wang et al. [221] subsequently provided a sophisticated statistical technique

to assess the local information content utilised to weight the quality map. Moorthy et

al. [146] introduced the percentile weighting approach for spatial pooling, which assigns

more significant weights to low-quality image areas.

Several articles in image quality evaluation have previously studied the introduction

of visual attention or computational image saliency into IVQ measures [145, 124, 62,

122, 244]. These are based on the assumption that distortions occurring in more salient

regions of an image have a more significant impact on image quality, either the visual

fixation map or the image saliency map has been incorporated into the IVQ metric to

improve the performance of the metric. The experimental results have confirmed this

assumption. Fewer studies have investigated the link between mesh saliency and meshed

visual quality, not to mention the incorporation of the mesh saliency map into MVQ

measures, compared to those on image quality evaluation. In [246], the image saliency

map was incorporated into IVQ measurements based on statistical analysis. Based on the

results of their study, they concluded that computational saliency models improve IVQ
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metrics when incorporating image saliency maps. Computational saliency metric and

IVQ metrics must be combined to determine the exact amount of performance gain [246].

In this section, we will present objective IQA metrics that have been used in computer

vision research. These measures were developed for use in general-purpose IQA, and it

is presumed that they can handle a wide variety of distortions. IQA measurements can

be classified as either full reference (FR), reduced reference (RR) and no-reference (NR),

depending on whether or not a distortion-free reference image is readily available [219,

221, 146, 232].

2.2.1 Full-Reference Image Quality Assessment Methods

In FR IQA, the original reference image is used to predict the quality of the distorted

image. Most FR IQA measures follow a similar framework for the most straightforward

IQA tasks, namely feature extraction from both images (reference and distorted) followed

by distance calculation. Usually, feature extraction can be collected from the spatial do-

main. We review IQA metrics in the following sections using the underlying features as

a lead since feature extraction is key to FR IQA measures. We cover two forms of IQA

measurement in this subsection: methods based on uniformly evaluating IQA over the

whole images, and saliency-guided IQA where more emphasis is put on salient regions.

2.2.1.1 Non-Saliency IQA Methods

• Signal fidelity: Traditional signal fidelity measurements such as mean square error

(MSE) and peak signal-to-noise ratio (PSNR), are often disputed since they do not

consider image signal properties or the human visual system (HVS).

• Structural similarity: The structural similarity index measure (SSIM) was first

hypothesised by Wang et al. [223]. Since the HVS is sensitive to image structure,

some methods extract image structures and calculate structural similarity as quality.
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The brightness, structure and contrast characteristics are taken from the image. Fol-

lowing this, the SSIM index is computed using the reference image and the image

that has been distorted. More details are discussed in Chapter 4.

• Features associated with structure and edges: Structure and edge information

provide useful clues for measuring image similarities. Zhan et al. [243] analysed

image quality by combining the distribution of several types of structural distortion

with the degree of structural differences. To estimate the image quality of a dis-

torted image compared to a reference image, the position of structural information

is calculated, and the category distortion index is determined by the mutual corre-

lation between the gradients of the two images. Zhang et al. [247] suggested using

an approach known as the non-shift edge-based ratio (NSER). To get an accurate

assessment of the level of quality, the authors used the variance in the total num-

ber of edge points in a non-shift edge map. Capodiferro et al. [30] developed an

approach to combine a structure loss measure with a definite indication of impair-

ment types. This would result in a more accurate assessment of structural loss. Two

different measures were used by di Claudio et al. [52] to quantify the influence of

detail losses and misleading details on perception. Ding et al. [53] used anisotropy

and local directionality to assess major structural information change. Images were

judged based on superpixel luminance similarity, chrominance superpixel similar-

ity, and pixel gradient comparisons [203].

• Extraction and integration of learning-based features: Some IQA methods are

based on the extraction and integration of learning-based features. They use IQA

measures based on machine learning approaches for discovering and integrating el-

ements linked to image quality. Using machine learning in feature integration has

the benefit of allowing the model to learn potentially complicated relationships be-

tween images and quality measures by exploiting the knowledge from the training

data, resulting in better performance. Singular value decomposition (SVD) based

features were used by Narwaria et al. [150], and support vector regression (SVR)

was used as a feature fusion technique [185]. The distance between the singular val-
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ues of the reference image blocks and the distorted image blocks. The final quality

is obtained by calculating a global rating for each block. Liu et al. [126] present a

new parallel boosting measure built on the strength of previous FR measures. For

this purpose, the authors used the SVR to combine the quality features extracted by

the most advanced state-of-the-art FR measurements.

A nonnegative matrix factorisation (NMF) parts-based model was used by Wang et

al. [215] to estimate image distortions. The extreme learning machine (ELM) out-

put is the final quality score. Support vector classification and k-nearest-neighbour

regression were used by Peng et al. [162] to develop a two-stage framework. The

authors suggest a probabilistic strategy for distortion-specific features by integrat-

ing the SSIM, VSNR (Visual Signal-to-Noise Ratio) [32], and VIF (Vision Informa-

tion Fusion) [182] measurements using the k-nearest-neighbour regression method.

Another well-known learning-related technique for determining which features to

employ is sparse representations. According to Yuan et al. [241], the quality map

was created by comparing the sparse representations of reference and distorted

patches to each other. Using the kernel ridge regression (KRR) [213], the local

quality was incorporated into the overall quality score. Ahar et al. [9] developed a

sparse coding method. In their approach, an initial Fourier basis ranked the sparse

coefficient amplitudes and then tested their correspondence to the reference images.

Deep learning has shown success on various visual problems. Also, some methods

have used deep learning to predict the quality [158, 252]. A deep neural network

(DNN) and deep similarity (DeepSim) were proposed by Gao et al. [68]. The DNN

in [68] computed the final quality by combining the local similarities of DNN fea-

tures between two images. Initially, a local linear model (LLM) was used to detect

the degradation between the reference and distorted images. Then they proposed a

distortion-specific compensation technique to deal with the offset induced by dif-

ferent image distortions. In Wang et al. [215], the score offset was calculated using

a convolutional neural network (CNN). An end-to-end approach to feature learning

and regression using a neural network was developed by Bosse et al. [22] in their
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study of FR and NR IQA. This approach may be used for FR or NR MQA with few

modifications and it learns the local quality and weights simultaneously.

2.2.1.2 Saliency-Guided IQA

Image quality and visual attention are two areas of study that are closely linked. This

is partly because, for viewers, image quality is significantly connected with artefacts in

the salient regions. Human attention to visual information may be shown as a weighted

map to emphasise salient regions and encourage image quality assessment measures. The

technique of selecting and focusing on a specific aspect of stimuli is referred to as human

visual attention and refers intrinsically to a behavioural and cognitive process. Two cat-

egories may be used to define saliency-guided IQA methods: subjective visual attention

map-based weighting and objective saliency map-based weighting.

• Subjective visual attention map based weighting: In recent years, an eye-tracking

data-guided pooling technique has been used to enhance the performance of IQA

measurements. Larson et al. [214] performed eye-tracking tests and studied changes

in visual attention in terms of various types, levels, and viewing techniques with re-

gard to image distortion. Liu et al. [124] used eye-tracking data as the weighting

information in IQA measures. They examined the efficacy of visual attention data

obtained during free-viewing and quality-rating activities and found that the free-

viewing task promoted IQA measures more effectively. Liu et al. [124] also ex-

plored the effects of image content on the promotion effect of visual attention data

on IQA measures. They indicated that visuals with minor inter-observer attention

differences benefited greatly from saliency pooling.

Min et al. [142] compiled eye-tracking data for seven well-known IQA datasets

and used the human fixation data for the quality map pooling step. Wang et al.

[217] provided two unique pooling algorithms to include the saliency map in IQA

measures, and they showed that distortion types significantly impacted IQA metric
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performance gain. A suitable pooling mechanism must be chosen for the particular

IQA measure. Rai et al. [168] performed an eye-tracking experiment using an HMD

and developed a saliency-guided pooling technique to produce IQA measurements

for VR. Zhang et al. [247] improved IQA measurement using eye-tracking data

from distorted images. They indicated that eye-tracking data of both the reference

and distorted images might improve the performance of IQA measurements.

• Objective visual attention map based weighting: Owing to the expense and lim-

ited availability of eye-tracking sensors, the objective saliency model is also used

for large-scale IQA applications. Ma et al. [132] presented a pooling technique for

applying saliency data to MSSSIM and vision information fusion (VIF). They split

the image into overlapping blocks and computed the local mean value of each block

as a weighted coefficient. Zhang et al. [249] weighed 12 IQA indicators using 20

saliency models. The statistical findings demonstrated that saliency-guided weight-

ing improved IQA metrics and that the performance improvement was strongly

dependent on distortion types and saliency models. Wen et al. [225] developed an

FR IQA measure with saliency weighting, and a Fourier transform-based objective

saliency model was employed for weighting.

Zhang et al. [248] suggest an effective method of measuring saliency dispersion

for identifying stimuli, using an adaptive strategy for incorporating saliency into

IQA indicators. Mittal et al. [143] introduced an objective salient area recognition

technique for JPEG-distorted images by combining low-level characteristics such

as contrast, brightness, and quality index. This saliency model promotes the imple-

mentation of high-quality map pooling algorithms. Harel et al. [81] computed the

saliency map using the graph-based visual saliency (GBVS) [82], and included the

Itti et al.’s models [92] to weight the quality measure and improve performance.

By including saliency-based pooling, Nasrinpour et al. [152] enhanced the tone-

mapped image quality index (TMQI) [234]. The enhanced technique separated the

image into small patches and determined the weighting factor of each patch using

the attention by information maximisation (AIM) [25] saliency model. Similar to
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[152], Kundu et al. [104] enhanced the traditional TMQI [234] by saliency-based

pooling based on the model of Itti et al. [94]

2.2.1.3 Using Saliency as Quality Feature

It is possible to employ visual saliency as a quality feature, as an alternative to a weighted

map. Various elements, such as image compression, various image transformations,

degradation, sound, high-level face information, and mental health, may also affect visual

attention and image saliency [124, 248, 142]. As an NR IQA feature, saliency informa-

tion is employed [88]. The saliency-guided natural scene statistics (NSS) feature is shown

to be an effective descriptor in assessing image quality. By considering saliency change,

Zhang et al. [244] devised an FR IQA measure called visual saliency-induced VSI. The

small diamond search pattern (SDSP) [247] saliency model produces the saliency map

employed as a weighting map in the final pooling process.

2.2.2 Reduced-Reference Image Quality Assessment Methods

Reduced-Reference Image Quality Assessment is a type of method used to evaluate the

quality of an image based on a limited amount of reference information. The goal of

reduced-reference image quality assessment is to estimate the perceptual quality of an

image without having access to the original, pristine reference image. In this context,

Wu et al. [230] proposed visual information fidelity, which refers to the preservation of

important visual features, such as edges, textures, and structures, in the distorted image

compared to the reference. The method employs a reduced-reference approach, mean-

ing that it uses a subset of features from the reference image to evaluate the quality of

the distorted image. This reduces the computational complexity and the reliance on full

reference images. The chosen features are typically extracted using computer vision tech-

niques and can include statistical measures, local image descriptors, or higher-level visual

attributes.
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The quality assessment process involves comparing the selected features between the

reference and distorted images. Quality can be measured by a variety of metrics, including

mean squared error and structural similarity [171]. These metrics quantify the differences

between the reference and distorted images providing an estimate of the perceived im-

age quality. It provides a valuable tool for evaluating image quality since it preserves

essential visual information without a full reference image. As a compromise between

full-reference and no-reference approaches, it can be applied to a variety of image pro-

cessing applications to assess quality accurately.

2.2.3 No-Reference (Blind-Reference) Image Quality Assessment Meth-

ods

Blind Image Quality Assessment (BIQA) is a field of study focused on developing algo-

rithms and techniques to assess the quality of images without relying on reference images

or human subjective judgments. The goal of BIQA is to automatically evaluate the vi-

sual quality of images based on their inherent characteristics and perceptual attributes.

Li [118] proposed a BIQA method that analyses various image features such as sharp-

ness, contrast, colour accuracy, noise, and distortion to determine the perceived quality.

These algorithms aim to replicate human perception by modelling the visual system and

understanding how different factors affect image quality. By considering both low-level

features (e.g., pixel-level information) and high-level features (e.g., semantic content),

BIQA algorithms can provide comprehensive evaluations. To achieve this, some BIQA

approaches [143, 182] employ various techniques such as traditional machine learning,

statistical modelling, and deep learning. They learn from large datasets of images that

are annotated with quality scores to establish relationships between image features and

subjective quality judgments. The trained models can then predict the perceived quality

of new images.

BIQA has numerous applications, including image compression, image enhancement,
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image restoration, and image retrieval. By automatically assessing image quality, these

algorithms can assist in optimising image processing pipelines, enhancing user experience

in multimedia applications, and aiding in image-based decision-making tasks. BIQA is a

field dedicated to developing algorithms that can automatically evaluate the visual quality

of images without relying on human judgments or reference images.

2.3 3D Mesh Visual Quality Assessment

Several perceptually motivated metrics have been developed for 3D meshes inspired by

image quality metrics. Abouelaziz et al. [3] produce 2D projections of 3D models from

various viewpoints, and then use patches from the generated images to input into a Con-

volutional Neural Network (CNN) model to generate feature vectors for the reference

and test meshes. The quality score is calculated using the Kullback-Leibler (KL) diver-

gence between feature vectors. Karni and Gotsman [98] were the first to try to incorporate

some perceptual insights to improve the accuracy of geometric distortion measurements.

They proposed combining the Root Mean Square (RMS) distance between corresponding

vertices with the RMS distance of their Laplacian coordinates (which reflect the degree

of smoothness of the surface) to improve the accuracy of geometric distortion measure-

ments. Chetouani et al. [40] suggested employing a Support Vector Regression (SVR)

model to combine various commonly used full-reference quality measures to increase the

correlation between prediction and human observations.

Perceptual metrics based on global roughness variation are proposed by Corsini et al.

[43] to quantify the quality of a watermarked mesh. They defined roughness as the vari-

ance of the difference between a 3D model and its smoothed counterpart and the variance

of the dihedral angles between neighbouring faces assessed at multiple resolutions. Karni

and Gotsman [99] use the Geometric Laplacian (GL) to assess compression techniques,

which depends on each vertex’s smoothness. For the evaluation of 3D models, Pan et

al. [157] offer a metric based on the geometric and texture resolutions. Their research
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shows that for textured surfaces, image texture is generally more important than model

geometry in perceptual contribution. Lavoué et al. [111] developed MSDM, inspired by

human perception to evaluate the quality of watermarking algorithms. Bian et al. [20]

created a geometry-based perceptual metric that employs strain energy, which measures

the energy that causes mesh deformation between the reference mesh and the distortion

version. This measure has been used to assess watermarking, compression, and filtering

operations. The global roughness difference calculated by Corsini et al. [44] and Wang

et al. [216] is straightforward because they compute multiple global roughness values

for each model. Some other works involve bottom-up quality measurements, incorporat-

ing perceptually motivated techniques, such as visual masking [209, 212, 216]. A recent

study [45] examined these works and compared their performance against the correlation

with mean opinion ratings obtained from subjective rating experiments. MSDM2 [108],

FMPD [216], and DAME [212] were highly predictive visual quality metrics identified in

this investigation.

According to the existing study, Lavoue et al.’s MSDM2 [109], Wang et al.’s FMPD

[216], and Vasa and Rus’s DAME [212] are strong predictors of visual quality. Aside

from these works on global visual fidelity assessment (suitable for supra-threshold distor-

tions), several recent relevant works have been introduced: for example, in 2016, Nader

et al. [149] introduced a bottom-up visibility threshold predictor for 3D meshes (assum-

ing a flat-shaded rendering). Also, Guo et al. [76] investigated the local visibility of

geometric artefacts and demonstrated that curvature might be a good predictor of local

distortions. Finally, Lavoue et al. [112] presented comprehensive research that looked at

the usage of image metrics computed on rendered images for measuring the visual quality

of 3D models (without texture). It demonstrates that some of them (in particular, Multi-

Scale SSIM (MSSSIM)) may provide great performance. Yildiz et al. [238] conduct a

crowdsourcing project to get data on mesh quality from human observers. They define the

distance between two meshes as the weighted Euclidean distance of their feature vectors,

constructed using the histogram statistics of several mesh descriptors such as curvature

and roughness. Feng et al. [64] suggest a spatial pooling method. They construct the
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distortion distribution from a reference and a test mesh and extract statistical character-

istics (standard deviation, mean, max, min, and three quartiles) as features. To compute

the local distortion distribution, Torkhani et al. [209] utilise their proposed tensor-based

perceptual distance measure (TPDM). They used machine learning to train an SVR (Sup-

port Vector Regression) model to determine the link between the distortion distribution

and quality scores by pairing feature vectors with Mean Opinion Scores (MOS) for the

related meshes.

Similarly, various NR measures have been created for MVQ evaluation. Abouelaziz

et al. [6] suggested a blind technique based on mean curvature features and the general

regression neural network (GRNN) for feature learning and quality prediction. Nouri et

al. [154] employed visual saliency and support vector regression (SVR). The authors de-

veloped an NR technique known as the 3D blind mesh quality assessment index (BMQI).

The works [8, 4] also used SVR to build their models. In [5], hand-crafted perceptual

characteristics (dihedral angles and mesh shape) taken from the 3D mesh and displayed

as 2D patches of a predetermined size are used to feed into a CNN. The CNN is fed with

rendered images from 3D objects in [7], and the view is altered by rotating the 3D mesh

by 60 degrees along the X and Y axes. In [4], a patch-selection technique based on mesh

saliency was established to provide greater weight to interesting areas.

The literature studies for mesh quality assessment like Lavoué et al.’s MSDM2 [109],

Wang et al.’s FMPD [216], and Váša and Rus’s DAME [212] are strong predictors of vi-

sual quality. Váša and Rus [212] studied dihedral angle discrepancy, whereas Lavoué et

al. [107] suggested metrics based on local variances in curvature statistics. Local changes

of attribute values at the vertex or edge level are included in these metrics, which are

subsequently aggregated into a global score. On the other hand, Corsini et al. [45] calcu-

lated global roughness values per model before working out global roughness differences

as measures. Torkhani et al. [209] incorporated perceptually motivated methods such as

visual masking, which are similar to bottom-up image quality measurements.

There are existing research works that utilised 3D models to estimate quality of 3D
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distorted meshes like [42, 44, 107, 111, 163, 189, 212, 28, 228, 183, 174, 207] which

conducted subjective assessments using 3D static or dynamic models, but none of them

used a virtual reality setting. The authors conducted a subjective assessment survey to

determine how downsampling or introducing coordinate noise to a 3D point cloud impacts

perceived quality [13, 95]. They also presented a subjective analysis of 3D point cloud

denoising algorithms using the Double Stimulus-Impairment-Scale (DSIS) approach and

the correlation with objective measures which show a high correlation.

The most recent work by Bulbul et al. [27] presented an excellent review and com-

parison of different environments, approaches and materials. For example, Nehme et al.

[153] used a virtual reality experiment to see how the explicit reference affects the quality

evaluation of coloured 3D models. They conducted a psycho-visual study to compare the

performance of two methods: ACR-HR (with hidden references) and DSIS (with explicit

references). They used two sets of observers, and two tests were given to each group in a

different order. The experiment utilised the HTC Vive Pro virtual reality headset in fixed

position mode in an immersive virtual world. Their focus is to analyse the subjective qual-

ity assessment methods for coloured meshes. In contrast, our work measures subjective

quality assessment for meshes with geometry only and compares the results with desktop

settings.

The 3D metrics used for simplification [100, 89] are local error measures from ver-

tex to vertex to generate a single distance value between two meshes. Existing global

3D metrics, on the other hand, are designed to measure specific artefacts produced by

watermarking [71, 14], or compression [99] algorithms; these artefacts are mostly uni-

form noise, so these metrics are not appropriate for evaluating smoothing, simplification,

or other non-uniform processing against a mesh. Such metrics can play a crucial role

in computer graphics by replacing typical geometric distances for measuring and driving

3D mesh processing systems and algorithms. However, for 3D objects, objective quality

assessment research is still in its early stages; only a few metrics have been proposed, and

they come with many limitations (for example, objects to compare must have the same
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connectivity or sampling density).

When it comes to assessing mesh visual quality, there are several limitations associ-

ated with the metrics used for evaluation. Here are some common limitations of mesh

visual quality assessment metrics:

Subjectivity: Assessing visual quality is inherently subjective, as it relies on human

perception and preferences. Different individuals may have varying opinions on what

constitutes good or bad visual quality. Metrics that attempt to quantify visual quality may

not fully capture the subjective aspects of human perception.

Lack of Ground Truth: Unlike other domains such as image or video processing,

there is often no universally accepted ground truth for mesh visual quality. While there are

objective measures to assess geometric fidelity (e.g., distance-based metrics), evaluating

overall visual quality is challenging due to the lack of a definitive reference standard.

Simplified Criteria:Many existing metrics for mesh visual quality assessment focus

on specific aspects such as geometric distortion, surface smoothness, or curvature preser-

vation. While these criteria are essential, they may not encompass the full range of factors

relevant to overall visual quality, including shading, lighting, texture mapping, or material

appearance.

Computational Complexity: Some advanced metrics that aim to capture perceptual

quality require computationally expensive operations such as ray-tracing or global illumi-

nation simulations. Applying these metrics to large-scale or real-time applications may

be impractical due to their computational demands.

Lack of Consensus:The research community lacks a metric for a single comprehen-

sive metric for mesh visual quality assessment. Various metrics exist, each with its own

strengths, weaknesses, and underlying assumptions. This lack of consensus makes it chal-

lenging to compare and interpret results across different studies.

Addressing these limitations is an ongoing research effort. Researchers continue to ex-
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plore new metrics, combine multiple criteria, and develop subjective evaluation method-

ologies to better assess the visual quality of meshes. However, it remains a complex and

challenging problem due to the subjective nature of visual perception and the multidimen-

sional aspects of mesh representation. As the focus here is 3D mesh quality assessment, I

will cover this in greater detail in Chapters 3, 4 and 5.

2.4 Subjective 3D Mesh Quality Databases

The work proposed by Watson et al. [224] is the first study to assess 3D static mesh quality

measured visual fidelity by simplifying meshes. A previous study Corsini et al. [44] ex-

amined watermarking 3D meshes to accustom existing experimental protocols to subjec-

tive evaluation of 3D mesh quality. Recently, several publicly available databases of static

meshes with associated mean opinion scores (MOS) have been released. The LIRIS/EPFL

General-Purpose-Database we explain more in Section 3.2 as it is used as a basis for our

study.

The LIRIS Masking Database [107] was created to study the spatial visual masking

effect. This database includes 22 impaired models derived from 4 reference meshes.

Models were carefully selected to offer a broad range of roughness, and the noise was

added in either rough or smooth regions.

The IEETA Simplification Database [187] includes 30 simplified models (obtained by

using different vertex reduction algorithms) derived from 5 reference meshes.

The UWB Compression Database [212] contains 63 impaired, geometrically com-

pressed meshes derived from 5 reference models.

The above databases have been used to evaluate and compare the most recent objective

perceptual quality metrics for 3D static meshes [45], such as MSDM2 [108], DAME

[212], FMPD [216] and TPDM [209].
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2.5 Subjective Methodologies

This section reviews subjective methods for evaluating perceptual visual quality. The next

subsections detail the different subjective quality assessment methodologies that can be

used in different media types (including 3D meshes).

2.5.1 Single Stimulus Methodologies

The single stimulus (SS) approach entails showing the experiment participants a series of

images, one at a time, and asking them to score their visual quality, as shown in Figure 2.2.

The rating scale varies across experiments, and a training period is normally conducted

before the trial begins. Because of its simplicity and the minimal number of stages, this

subjective technique is a popular choice. The single stimulus approach, for example, has

been employed in many studies, including those done by Sheikh et al. [183] and Cheng

et al. [39]. The following are some of the most often-used approaches for (SS) subjective

quality assessment:

Absolute Category Rating (ACR): ACR [87, 172, 227] is a single subjective quality

experiment in which test stimuli are shown one at a time and subjects are asked to score

the visual quality of the images on a discrete scale rating from 1 to 5: 1. Bad, 2. Poor,

3. Fair, 4. Good, and 5. Excellent. The advantages of such a method are its simplicity in

design and the computation of subjective ratings. Still, it generally necessitates a lengthy

training session to familiarise the participants with the grading scale. Furthermore, it

has been discovered that subjective judgment is occasionally impacted by participants’

thoughts about the stimulus’s contents. The ACR-HR approach described below is used

to reduce the effect of image content on subjective evaluations.

Absolute Category Rating with Hidden Reference (ACR-HR): ACR-HR, as introduced

above, is a variation of the ACR where the original image is “hidden” among the distorted

stimuli without informing the subjects of such occurrences. This experimental design
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eliminates variation attributable to the participants’ opinions on the content and the com-

putation of the Differential Mean Opinion Scores (DMOS) rather than the mean opinion

score (MOS), resulting in an exact assessment of the stimuli’s quality. This approach is

frequently employed in state-of-the-art methods due to its trade-off between simplicity

and accuracy. This technique, for example, was used in the Laboratory for Image and

Video Engineering (LIVE) 6 large-scale and publicly accessible subjective quality evalu-

ation research and in Cheng et al. [39] to evaluate the perceived quality of learning-based

image compression algorithms.

Single Stimulus Continuous Quality Evaluation (SSCQE): SSCQE is a single stimulus

subjective quality experiment similar to the ACR but uses a continuous rather than discrete

rating scale. An electronic recording device attached to the computer should be used, as

indicated in BT.500-14 [26]. The continuous quality scale is similar to the continuous

grading scale of objective quality indicators, allowing for a more accurate comparison

using such a quality evaluation technique.

Figure 2.2: Example of the single stimuli method [153]
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2.5.2 Double Stimulus Methodologies

The double stimulus (DS) technique is a sort of subjective quality experiment in which

respondents are shown two stimuli opposite to each other and asked to rate the differ-

ence in quality between the two images as shown in Figure 2.3 [212, 224, 173, 13, 188,

201]. The grading scale varies from experiment to experiment and will be discussed in the

next paragraph. In general, double-stimulus techniques take longer than single-stimulus

methodologies, but they are more accurate for particular sorts of artefacts, such as varia-

tions in the colours of the stimuli. As a result, the approach has lately been employed in a

number of subjective quality investigations. Ascenso et al. [17] and Testolina et al. [207]

use DS trying to evaluate the quality of learning-based image coding solutions. The fol-

lowing are some of the most often-used approaches for DS subjective quality assessment:

Degradation Category Rating (DCR): It involves displaying to participants two stim-

uli side by side and asking them to score the extent of impairment of one versus the other,

which serves as a reference, using a discrete grading scale. The scale 1 worse quality and

5 best quality) 1. Very annoying 2. Annoying 3. Slightly annoying 4. Perceptible but not

annoying 5. Imperceptible. The main disadvantage of this strategy is that it yields fewer

ratings in the same amount of time as the ACR since the subjects are asked to view two

stimuli rather than one, making it a slower alternative. However, because the scoring is

based on the impairment between images rather than the overall quality, it benefits from

not being impacted by the participant’s evaluation of the content. Furthermore, compared

to ACR, DSIS makes it easier to identify colour degradation between two images. The

grading subject is always given with the same reference stimulus in the same place. DSIS

is frequently utilised in the realm of subjective image quality evaluation, as demonstrated

by Ascenso et al. [17].

Double-Stimulus Continuous Quality-Scale (DSCQS): is a subjective quality evalua-

tion approach comparable to DSIS in which participants are asked to score the overall

quality of both given stimuli on a continuous quality rating scale. The reference stimu-
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lus is exhibited at a random position that is unknown to the participant in this manner.

This approach is the slowest of those mentioned above since the subjects are required to

assess the quality of two stimuli at each phase. This approach is efficient for analysing

learning-based compression algorithms [16].

Double Stimulus Comparison Scale (DSCS): In DSCS subjective quality experiments,

participants are asked to rate the visual quality of the first stimulus at each stage using

the second as a reference. The grades on the discrete grading scale are as follows: -3.

Much worse -2. Worse -1. Slightly worse 0. The same 1. Slightly better 2. Better 3.

Much better. For example, individuals score all images of the same content including the

reference and test stimuli in a randomised sequence. As a result, this is the experiment

that requires the most effort and hence the most extended duration. While this approach

is the most accurate in comparing the quality of different compression algorithms, it has

the disadvantage that the bitrates of the compared stimuli should be as close as possible to

ensure a fair comparison. Other scaling possibilities in this strategy might include three

(Better, Same, Worse) or perhaps simply two (Better, Worse). Lastly, this technique has

proposed partial comparisons of stimuli to shorten the testing time.

This subjective study is the most used method for a range of multimedia types. In

3D point cloud models with varying noise distortion levels and geometry resolution in an

AR environment, a subsequent study [12] proposed using the DSIS technique and Mean-

Opinion-Scores. The study finds that the geometric complexity of the model influences

the assessment score and that objective and subjective measures have little connection.

Figure 2.3: Example of the double stimulus method [153]
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2.6 Limitations of Perceptual Metrics

The computer graphics community has often exploited knowledge about the Human Vi-

sual System (HVS) for several purposes. It is possible to reduce the computational time

in a sophisticated rendering system by accurately rendering only the visually essential

parts of a 3D scene. Another example is the algorithms that attempt to simplify the ge-

ometry while preserving the overall appearance of the 3D model using perceptual criteria.

These works are reviewed in the following paragraphs as they are categorised as image-

based and model-based (or geometry-based). The image-based metrics render 3D shapes

to individual views and are therefore view-dependent, whereas geometry-based percep-

tual metrics work directly on the 3D models, so are view-independent. Because of this

advantage, our study uses geometry-based perceptual metrics as the basis.

2.6.1 Perceptual Metrics Based on Images

Black-box approaches are not concerned with how visual systems work but with defin-

ing a function capable of predicting how a human observer will perceive specific visual

artefacts, given the visual stimulus as input. An example is the work of Marziliano et al.

[135], which aims to detect and quantify JPEG artefacts such as ringing and blur. The

advantage of this approach is that it can be used when it is difficult to determine a way

to integrate different visual stimuli. The use of mechanistic and black-box perceptual

metrics in computer graphics is applied in many applications, such as perceptually-driven

rendering and evaluating specific processes like compression or watermarking and mesh

simplification.

To evaluate the perceptual impact of mesh simplification from a perceptually-based

perspective, Lindstrom and Turk [121] proposed using a simplified version of the Sarnoff

model to render the shape simplified from various viewpoints. Williams et al. [228] de-

veloped a view-dependent simplification algorithm using a simple Contrast Sensitivity
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Function (CSF) model that considers texture and lighting effects. Qu and Meyer [166]

suggested that the visual masking effect of 2D texture maps leads to the simplification

and remeshing of textured models. Using image-based perceptual metrics, Ferwerda et al.

[66] established a masking model, extending Daly’s Visible Difference Predictor (VDP)

operator [48], that illustrates how surface texture may hide specific visual errors, particu-

larly regarding polygonal tessellation. Perceptual assessment has recently been elevated

to a higher level of investigation involving visual systems; for example, Ramanarayanan

et al. [169] investigated how changes in the lighting environment impact the perception

of geometry, material, and illumination in a scene.

2.6.2 Perceptual Metrics Based on 3D Geometry

Computer graphics applications have a significant challenge when using image-based

metrics: the perceived deterioration of still images may not be suitable to measure the

perceived degradation of a 3D model as mentioned by Rogowitz and Rushmeier [173]

who did subjective experiments that supported this conclusion. According to their find-

ings, when evaluating the quality of a simplified 3D model, the observer’s subjective

opinions differ depending on whether animation or a collection of static frames from the

same animation is utilised. It is challenging to include changes in perceived differences in

the perceptual metric when the object moves. The work of Yee et al. [236] was an early

effort to combine image movement, visual attention, and saliency. To speed up global

illumination rendering, Myszkowski et al. [148] suggested an enhancement to the VDP

for the quality assessment of computer-generated animations.

Perceptual metrics based on 3D geometry are used in different applications. Mesh

simplification algorithms are one technique for reducing the number of vertices in a model

while reducing the impact on visual quality. According to Kim et al. [100], human vision

is sensitive to curvature changes, which suggests a Discrete Differential Error Measure

(DDEM). The perceptual assessment process of Williams et al. [228] is similarly based

on models’ geometry due to the view dependence of the simplification technique. Some
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geometric distance-based methods are widely used, although such simple geometric mea-

surements like HD, PSNR and RMS error are purely geometry based, and often do not

correlate well with subjective perception by the human visual system. More details of

these methods on 5.2.

For example, all deformed models in Figure 2.4 have equal RMS, compared with

the original model, but their visual characteristics range from excellent (top row) to poor

(bottom row). As a result, some objective quality metrics have been developed, the goal

of which is to generate a score that predicts the subjective visual quality (or visual impact

of the distortion) of a distorted 3D model in comparison to a reference; these objective

scores should be statistically consistent with those of human observers.

Figure 2.4: Distorted versions of the Horse model, all associated with the equal
maximum Root Mean Square Error. (a) Original model. Results after (b) water-
marking (MSDM2=0.14), (c) Laplacian smoothing (MSDM2=0.40), (d) watermark-
ing (MSDM2=0.51), (e) simplification (MSDM2=0.62) and (f) Gaussian noise addi-
tion (MSDM2=0.84) [108].
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2.7 Eye Movement

As we focus on mesh quality assessment, and we use an eye tracker to collect data for

perceptual saliency, we summarise the most recent work on using an eye tracker in MQA.

A user study experiment was conducted by Mantiuk et al. [134] with the use of an eye

tracker, which tracked the human eye fixations on 3D meshes. They computed the cor-

relation between human eye fixations and saliency maps in MQA which shows a good

correlation between human eye perception and saliency. Wang et al. [215] conducted an

eye-tracking experiment on 3D-printed objects and produced a 3D mesh dataset with fix-

ation maps. They gathered gaze data from human observers using a monocular pupil eye

tracker and extracted fixations from the pupil positions. This was the first study of visual

attention on three-dimensional objects. Lavoue et al. [110] conducted an eye-tracking in-

vestigation on the rendered 3D shapes and developed fixation density maps for 3D meshes

by mapping human eye fixations onto the 3D shapes. On the basis of acquired human eye

fixations, they investigated the effect of shape, camera position, material, and luminance

on visual attention.

There are many tools to predict 3D mesh quality. These techniques are useful for

this study because they can be modified and adjusted to offer an understanding of human-

computer interaction in different tasks (e.g., medical, business and VR contexts, etc.). The

goal of this section is to examine a few key techniques regarding eye-tracking for IQA.

Eye-tracking is becoming more frequently used in computer vision, human-computer in-

teraction, and related fields. For individuals interested in employing eye-tracking to lever-

age eye movement data as an input mechanism to drive system interaction, this section

provides a background on the fundamentals of eye-movement-tracking technology. We

will examine some of the problems that need to be overcome to utilise the approach to

analyse eye movement metrics in complex interactive systems and the future potential for

eye movement tracking research.

Eye movement data can show mental attention in terms of the context of a visual dis-
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play. Measuring various characteristics of eye movements, such as fixations (when eyes

are still “encode” information), can also indicate periods when mental processing is tak-

ing place. In practice, for psychology and human-computer interaction (HCI) researchers

to get useful information from eye-movement recordings, they have to define “areas of in-

terest” over certain parts of a display or interface they are testing and then look at the eye

movements that happen in those “areas of interest”. So, specific interface elements can

be evaluated objectively for their visibility, usefulness and placement, and the results can

be used to improve the design of the interface [73]. For example, in a task where people

are asked to locate an object, if they look at it for longer than expected before choosing it,

this may not signify any important mental processing and may suggest the task needs to

be redesigned.

Psychological research on eye tracking often provides indications and assessments

about how people solve image problems, and how they think and imagine [19, 97, 240,

242]. Since eye movements indicate patterns of perceptual and cognitive processing, eye-

movement analysis has great potential as a tool for usability research in human-computer

interaction (HCI) and related fields, such as human factors and cognitive ergonomics. In

HCI, the use of eye-movement analysis is in its early stages. Indeed, there is much work

to be done in using eye movements to examine the attributes of websites that correlate

with usability [46, 1].

In applied human factors research, eye trackers have been used to study and improve

doctor performance in medical procedures [80], to evaluate cockpit controls to prevent

errors by pilots [83], and to measure and improve situational awareness in air-traffic-

control training [83, 113, 139]. Eye-tracking technology is also becoming increasingly

popular in business research, to find out, for example, what types of advertisements get

the most attention [129] and if internet users observe banner ads on websites [11]. In the

following sections, we discuss various eye-tracking metrics and how to understand them

in greater depth.



41

2.7.1 Eye Movement Metrics

In this section, we discuss how eye-tracking research uses fixations and saccades as its

main measurements. These basic measurements provide a foundation for several derived

metrics, including “gaze” and “scanpath” measurements.

Eye-tracking is the technique that eye movements are analysed to infer where an indi-

vidual is directing at any particular time, and also to determine how the participant’s eyes

are moving from one point to another with reference to a visual image [165]. According

to [167], the history of eye-tracking dates back to the 19th century, when initial techniques

of tracking eye fixation and gaze emerged.

Significant improvements to the eye-tracking techniques were made in the 1970s, with

corresponding advances in eye-tracking technology, and relations with a psychological

theory that related eye-tracking data to cognitive processes [167]. Such pioneering work

required enormous effort to measure eye movement (using a movie camera and cockpit-

mounted mirrors) and assess eye movement data. The researchers made some important

conclusions that remain useful today despite the challenges. For instance, the researchers

suggest that fixation frequency can be used to assess a display’s importance. In contrast,

fixation duration can be applied to understanding the difficulty of extracting and interpret-

ing information. The pattern of fixation transitions between displays can provide valuable

information about the efficiency of the structure of specific display elements.

The technical problems and issues that are known to hold back research and eye-

tracking techniques are increasingly being overcome. For instance, modern eye-tracking

systems are relatively easy to use [167]. Commercially available eye trackers appropriate

for usability research are based mainly on eye video images. In particular, [74] noted that

most commercial eye trackers used today focus on measuring point-of-regard through a

method known as “corneal-reflection/pupil-centre”, as shown in Figure 2.5. These eye-

tracking systems rely on a standard desktop computer with an infrared camera mounted

next to or beneath a display monitor, using image processing software that seeks to locate
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and identify eye features necessary for tracking [165]. Despite advances in eye-tracking

techniques, there are still some limitations since modern eye-tracking systems have still

proved unreliable in 10-20% of participants [74, 167].

Figure 2.5: Corneal reflection and bright pupil as seen in the infrared camera image.

Despite some limitations, eye-tracking techniques remain useful in HCI research and

researchers have argued for the primacy of such techniques in HCI research, promoting

the “based on the eye-mind” hypothesis. This is the hypothesis that eye movement mea-

surements can offer a dynamic trace that shows the focus of attention of an individual

with respect to an observed visual display [165]. In practice, the use of eye-tracking data

to make sense of human attention requires that the HCI researcher defines and establishes

“areas of interest” from other areas of an interface or display and evaluates the movement

of the eye with reference to such sites [165, 73]. Goldberg et al. [73] argue that through

the techniques and methodologies of eye tracking, the researcher objectively analyses the

meaningfulness, placement, and visibility of particular interface elements, which can then

be used to enhance the interface design. Also, researchers have highlighted several key

metrics important in eye-tracking research, in connection with fixation, saccades, scan-

path, and gaze measurement [165].

Fixation refers to the moments when the eyes are relatively stationary in between

movement, presumable when encoding or “taking in” information [133]. Normally, fix-

ations last for an average period of 218 milliseconds, as noted in Poole et al. [165]. For

instance, in tasks that involve encoding, such as browsing a website, a higher fixation

frequency on a specific point is interpreted as an indication that the user has a greater

interest in that target [165]. It can also imply that the target is quite complex such that



43

the user finds it difficult to encode the information [167]. However, by contrast, Jacob et

al. [167] argue that such interpretations may warrant the opposite conclusion in a search

task. For instance, clusters of fixations or a higher proportion of single fixations may

indicate greater uncertainty in identifying a specific target point. Researchers also argue

that fixation duration is associated with the processing time used to encode an image be-

ing fixated [133]. Importantly, it is widely believed that external representations linked

to long fixations do not offer as meaningful information as those linked to short fixations

[73].

Saccades, the quick eye movements between fixations, are also involved in key eye-

tracking metrics. Although in [165] it is argued that since encoding does not occur during

saccades and therefore these cannot offer information about the saliency or complexity of

an image, a number of aspects of this metric are quite informative. For instance, regres-

sive saccades, also known as back-tracking eye movements, have been identified as an

important measure of processing encoding difficulty [170].

Gaze is described as a fixation-derived metric [165]. It is also known as the fixation

cycle and dwell fixation cluster [83, 139]. According to Hauland et al. [83], gaze is often

the total number of fixation durations found in a particular area defined by the researcher.

It is widely applied in contrasting attention distributed between areas [139]. It has also

been found useful in determining anticipation in context awareness, especially in situa-

tions where longer gazes appear on the target (image or shape) before a possible event

[83, 139, 165].

Scanpaths refer to the overall saccade fixation and saccade sequence. In [73] it is

argued that when using scanpaths in a search task, a straight line is the best scanpath with

a relatively short fixation duration at the target. This metric often relies on quantitative

analysis and uses many derived measures, including transition matrix, saccade fixation

ratio, scanpath direction, scanpath regularity, spatial density and scanpath length [1, 73].
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2.8 3D Mesh Saliency

The concept of saliency in computer vision has been well-documented and investigated

by researchers. According to [94], saliency refers to the subjective perceptual quality that

makes particular objects or images distinctive from others, making it possible for the eye

to concentrate on those objects or images. Significant progress in understanding 2D image

saliency has been made through several attempts to establish low-level features in images,

including orientation, colour, and intensity, while employing these features in various

spatial scales and considering the surrounding area. Itti et al. explain that it is possible

to predict a viewer’s eye focus by relying on low-level features [94]. However, semantic

information would also grab the viewer’s attention, such as when an image contains a

text or person not necessarily highlighted by the low-level features. Significantly, some

methods have been developed to detect saliency in a 3D model; however, evaluating the

effectiveness of existing methods has often proved difficult. Although mesh saliency

was exploited to guide mesh simplification, which showed its effectiveness for preserving

interesting areas [94], early work often produced inconsistent results with human tracking

data, which are largely subjective. This has prompted the development of new methods

for measuring saliency, and new methods have emerged to improve earlier methods.

The first method to measure mesh saliency is that developed by Lee et al. [115], which

is based on the idea that areas of an object that have different geometric characteristics as

compared to adjacent areas would be salient because the eye tends to focus on phenomena

or objects that are outstanding or are out of context in relation to the whole shape. For

instance, a large spike appearing in the middle of a flat surface would attract significant

attention from the viewer, while an equally flat section in an area full of large spikes

would also attract attention. Lee et al. [115] explain that a Gaussian weighted average of

the curvatures of vertices appearing in a radius could be used. The difference of Gaussians

would then be aggregated together using a nonlinear normalisation to come up with the

complete computed saliency.
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Another method used to measure saliency is known as a multi-scale computational

model, which is broadly similar to the method developed by Lee et al. [115]. However,

it relies on spectral processing to detect saliency instead of the Gaussian weighted av-

erage used in Lee et al. [115]. Song et al. also developed a multi-scale computational

model [192], which uses a set of meshes simplified to various degrees for multiscale anal-

ysis. It calculates the scale saliency map related to each scale by computing the spectral

mesh saliency for every scale. Song et al. note that the scale saliency maps can be used

to produce a final map [192]. It is possible to develop a more accurate model by learning

a new method that combines several methods. Judd et al. [96] evaluated existing models

based on eye-tracking data. A review of their methods showed that existing models were

inconsistent with the human eye tracking data, which suggested they could add primitive

methods to account for the inconsistencies.

2.9 Virtual Reality

As previously mentioned, in this thesis, we consider the perceptual quality of 3D meshes

also in the VR setting, which can have a different impact on the subjective perception of

quality, compared with the ordinary desktop setting. This will provide background for the

subjective and objective quality studies in Chapters 3 and 5.

In recent years, VR and its applications have advanced rapidly with the advent of

popular consumer Head Mounted Displays (HMDs), such as Meta/Oculus Rift/Quest,

HTC Vive, and PlayStation VR. In 2022, VR application, gaming and video revenues have

grown to more than five times the value of 2017 [211]. Owing to recent developments in

headset technology, such as Meta Quest Pro, with faster and more reliable 5G wireless

networks, it is anticipated that headset installations will also grow significantly in the

coming years. There is a wide range of applications for VR in the consumer world,

such as gaming, viewing 360-degree videos, and immersive education. Platforms such

as YouTube, Facebook, and Netflix now facilitate viewing 360-degree images and videos
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and provide various online tools, encouraging greater consumer engagement in VR.

VR imaging often uses a 360-degree camera equipped with multiple lenses that cap-

ture all 360 degrees of a scene. For instance, the Samsung Gear 360 VR Camera is a

portable VR device for consumers with 180◦ dual lenses and a maximum image resolution

of 5472 × 2736. The new Insta360 Titan is a professional 360-degree camera with eight

200-degree fisheye lenses capable of capturing 11K 2D and 3D (stereo) images. Since

several lenses concurrently record images, they must be “stitched together” to create a

complete spherical image. Typically, the spherical image is recorded in an equirectangu-

lar projection format for 2D 360◦ content, and in an over-under equirectangular format for

3D (stereo) 360◦ content. In addition to 360◦ videos, 3D shapes are also widely used for

VR to model 3D objects and scenes. Once modelled, they can be rendered from arbitrary

viewpoints to generate images for VR viewing.

VR is arguably a more immersive setting than normal 2D viewing. It contrasts with

situations where individuals observe images and videos on flat-panel desktops and mobile

devices. In VR, an image on the left may be positioned over the image on the right. Since

the image may fill the whole viewing area, viewers are free to see it from any angle.

Typically, just a small portion of the image is visible when the subject gazes an image

from an oblique. Consequently, the information a user perceives depends on the spatial

distribution of image content, the object being focused on, and the spatial distribution

of visual attention. Accordingly, unrestricted viewing of high-resolution, immersive VR

requires a substantial data volume, which causes difficulties in storing, transferring, and

processing the visuals, which all affect viewing quality.

In view of the factors examined, it is crucial to study and predict the perceptual quality

of VR images. Both subjective and objective quality methods are useful to comprehend

and evaluate the visual quality of immersive VR environments. Subjective VR image

quality assessment (VR-IQA) is a method in which human volunteers evaluate the quality

of VR images. Based on gathered opinion ratings, it is possible to develop and evaluate

prediction models. Most distortion types such as image compression artefacts, Gaussian
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noise, and Gaussian blur, fail to capture the unique distortions of panoramic VR (2D and

3D) images. To further develop this area, recently, Chen et al. [35] have compiled a more

comprehensive database containing regular image distortions and VR-specific stitching

distortions. Also, they incorporate eye-tracking data collected during the subjective re-

search.

When it comes to the quality of virtual reality (VR), there are several limitations that

can impact the overall experience. The Field of View (FoV) in VR headsets is typically

narrower compared to natural human vision. Limited FoV can create a sense of tunnel

vision and restrict the immersive experience, affecting the perceived quality. High la-

tency and motion blur can lead to a mismatch between head movements and the visual

response in VR. This can cause discomfort, and disorientation, and reduce the perceived

quality by introducing motion artefacts [196]. Due to bandwidth limitations and storage

constraints, VR content may be compressed, resulting in artefacts such as blurring, or

colour distortions. These compression artefacts can degrade the visual quality and impact

the overall immersion. Also, VR headset lenses can introduce various types of distor-

tion, such as chromatic aberration or geometric distortion. These optical issues can affect

the clarity and visual fidelity of the VR experience. Some VR applications require sub-

stantial computational power to render complex and realistic environments in real-time.

The limitations of current hardware can restrict the graphics quality, texture details, and

overall visual quality in VR. The quality of VR content, including textures, lighting, and

models, can significantly impact the overall visual experience [138]. Poorly optimised or

low-quality content can lead to reduced realism and immersion. These limitations require

continuous advancements in VR hardware, software, and content development. Improve-

ments in display technology, resolution, FoV, and reduction of latency and artefacts are

areas of active research and development to enhance the quality of virtual reality experi-

ences. We will describe further issues regarding the subjective analysis of VR, towards

examining the results of distortions in the VR setting in Chapter 3.
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2.9.1 Virtual Reality Applications

We now review common virtual reality applications, most of which are based on omnidi-

rectional images. One of the VR developments has been to include users in VR spaces. In

particular, there have been efforts to generate individualised 3D models of human beings

to improve image processing in a virtual environment [50]. One of the VR applications

uses saliency maps for omnidirectional images. It demonstrated that saliency maps for

omnidirectional images (ODIs) can be observed through HMDs without an eye-tracking

device. In [50] viewport centre trajectories (VCTs) were collected, and a way to make

saliency maps from the data collected was suggested. Images are also used to compare

the saliency maps. Then, because ODIs tend to be biased toward the equator, the author

suggests a post-processing method called fused saliency maps (FSM) to make current

saliency models fit the needs of ODIs.

Another application, discussed in [31], compares VR viewing and viewing on a 2D

desktop. The evaluation gives an in-depth critique of how visuals are fundamental for

immersive, real-time rendered VR. The analysis of the results of both studies shows that

slowing down navigation reduces the effect of depth cues on visual salience and increases

the effect based only on 2D image features. Even though scores vary depending on con-

tent, it is clear that saliency prediction methods based on boundary connectivity and sur-

roundedness are effective in most settings.

Another application of 3D imagining is for human body model generation, which

involves using 3D body scanners to produce a virtual 3D model of an original person

[15]. This technique has been considered effective in capturing data with high precision

and resolution, although it is associated with some challenges. For instance, the process

can be time-consuming, especially when post-processing the raw data. Also, it is usually

difficult to reconstruct the human body and to ascertain its position in controlling the

movement of images and objects in a virtual environment [91]. The limitation of such

techniques is normally evident for instance in computer game contexts, where a gamer is
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asked to respond in real-time to stimuli in a virtual space [91]. The movement of gestures

and body parts is recognised as generally immersive for a gamer and, with the right tools,

can lead to a satisfactory immersive experience. Nevertheless, improvements made in this

area are evident in the increased application of 3D cameras to virtual environments.

One special technique in this domain is the gesture recognition interface (GRI), which

is a type of perceptual computing user interface that allows computers to capture and in-

terpret human gestures as commands. This technique has emerged in recent years as a

particularly important development in the gaming industry [91]. The 3D cameras have

been applied in virtual reality environments in two distinct ways with respect to the GRI.

One of the applications involves using fingers and the hand to prompt specific commands,

such as moving images on the screen, including driving and shooting. The second ap-

plication of 3D cameras involves complete body immersion into the virtual environment

[91].

Based on the technology of 3D cameras for GRI, one study [91] has developed a

technique for detecting saliency in a virtual environment using 3D cameras. The tech-

nique uses both the actual data generated by the camera and the physical constraints of

the VR environment to ensure the user is completely immersed in the virtual environ-

ment. Drawing from the work of Yao et al. [235] regarding how to use anthropomorphic

measurements to detect 3D images in a virtual environment, [91] explains that the tech-

nique uses an image processing algorithm that can detect the main parts of the body of

a user. Such image processing, using anthropomorphic measurements of different body

parts, involves a connection between human body parts and the corresponding VR points.

Although experimental studies are required to explore the effectiveness of this technique,

it is considered appropriate for enhancing the immersive experiences of users in a VR

environment.

Some studies using VR can be conducted on gaze and head orientation [180]. For

example, collected experimental data relating to the gaze and head orientation of individ-

uals. The study allowed observers to examine omnidirectional stereo panoramas in VR
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environments, both in seated and standing positions. They also obtained data from users

looking at the same images in a desktop scenario, experiencing monoscopic panoramas

through mouse-based interaction.

The researchers made essential conclusions that inspire this work. Firstly, they con-

cluded that gaze data and saliency in a virtual environment with traditional displays, in-

dicating that existing saliency predictors apply to VR after making a few simple modifi-

cations. This assertion is consistent with the views of Monroy et al. [144], which noted

that saliency prediction techniques initially used to detect traditional 2D images are not

directly applicable to omnidirectional images (ODIs) because of the heavy distortions that

exist in VR due to projection, and observed biases as a significant feature. De Abreu et

al. [50] also showed that most saliency techniques for conventional 2D images could only

enhance the performance when detecting saliency for omnidirectional images if modified

by eliminating the centre bias common in most cases.

Secondly, Sitzmann et al. [180] note that gaze and head interaction are connected to

VR viewing conditions. They demonstrate that head orientation measured using inertial

sensors may be adequate in predicting saliency with significant accuracy without using

expensive eye tracking.

Thirdly, the researchers showed that time-dependent viewing behaviour could be ac-

curately measured shortly after the user is exposed to a new image. However, owing to

great inter-user variance, such data cannot be captured for more extended periods.

Fourthly, they also note that the fewer salient regions in a VR image, the faster user

attention is focused on a particular region and the more attention is concentrated.

Lastly, the researchers note that there were two view modes among the users – re-

orientation and attention, which are distinguishable through gaze or head movement in

real-time and thus provide important insights into interactive applications [180]. Signifi-

cantly, Startsev et al. [198] demonstrate that regular image saliency models can be applied

in VR environments. They show that traditional image saliency predictors could perform
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saliency prediction for panoramic 360° scenes. However, panoramic 360° scenes are typ-

ically represented using equirectangular images, leading to some problems that create

image distortion [198]. Monroy et al. [144] show that omnidirectional saliency predic-

tion may be achieved by separating an omnidirectional image into patches before adding

a saliency refinement architecture that considers spherical coordinates to a convolutional

neural network (CNN). Although this is a new study requiring further validation, the con-

clusions could have a wide range of influences on VR tasks as it extends the traditional

image detection approaches identified in [93].

2.10 Summary

In this chapter, we explored the fundamental background of visual quality evaluation. To

understand the associated problems comprehensively, we looked at the current research

on visual quality evaluation in 2D images, 3D meshes, and omnidirectional images in a

VR setting. We also explain several commonly used 2D image and 3D model saliency

prediction techniques. These approaches are related to the work for VR setting in Chap-

ters 3 and 5, as well as 3D mesh saliency reported in Chapter 4. Methods for predicting

media quality were also examined, such as eye movement, fixation and gaze. We em-

phasised the importance of examining the current literature that employs the collective

prediction method. We can now proceed to the next chapter and explore the subjective

study of 3D mesh quality scores in virtual reality.
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Chapter 3

Subjective Study of 3D Mesh Quality

Scores in Virtual Reality

Overview

As previously mentioned, although 3D mesh quality has been extensively researched,

there is limited work that measures the 3D mesh quality in a VR setting. This is an impor-

tant topic for downstream applications such as the Metaverse because massive amounts

of data are necessary to support AR and VR experiences. The chapter is organised as fol-

lows. After introducing the problem in Section 3.1, we show the details of the subjective

experiment in Section 3.2. Sections 3.3 and 3.4 give the details of our findings. Finally,

Section 3.5 contains the conclusion and future work.

3.1 Introduction

Recent advances in 3D mesh modelling, representation, and rendering have progressed

to the point that they are now extensively employed in many applications, such as net-

worked 3D gaming, 3D virtual reality, augmented reality and immersive worlds, and 3D

visualisation. With VR, users can experience high-quality, photo-realistic images and

immersive virtual environments in real-time using the latest advancements in computer

graphics hardware and software [65]. Increasing the visual quality of a mesh by using

a large number of vertices and faces provides a more detailed representation. However,
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Figure 3.1: Examples of 3D meshes belonging to the LIRIS/EPFL General-Purpose
database. The top row shows the 4 reference meshes. The second row presents 4
distorted 3D meshes: e) 3D mesh Armadillo affected with noise on rough regions,
(f) 3D mesh Venus affected uniformly with noise, (g) 3D mesh Dinosaur uniformly
smoothed, (h) 3D mesh Rocker-Arm affected with noise on smooth regions.

the added complexity leads to increased requirements for data storage, processing power

(CPU and GPU), and network bandwidth, especially for real-time applications and when

data needs to be transmitted over the network. As a result, a trade-off between graphical

model visual quality and processing time frequently arises, necessitating determining the

quality of 3D graphic resources.

Several geometric modifications may be applied to 3D mesh models like compres-

sion, simplification, and watermarking. These processing procedures may influence the

appearance and visual quality of the 3D models (see Figure 3.1) and, as a result, the qual-

ity of the user experience (QoE). Thus, subjective quality evaluation tests are essential for

evaluating visual quality as perceived by human observers. Subjective methods involve a

group of human participants being asked to rate the quality of a collection of 3D meshes

that have been subjected to different types and levels of distortion. The output of the sub-

jective method is a set of mean opinion scores (MOS), which enables predictive models

to be developed and evaluated, taking subjective scores as ground truth. Some subjective
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methods can be used in 2D image and 3D graphical areas, for example, single stimu-

lus, double stimulus, subjective assessment methodology for video quality, and pairwise

comparison [39, 183, 17, 207].

Nevertheless, choosing the appropriate subjective technique is not easy since we must

verify that such methods produce accurate and reliable findings. In our case, we used

a pairwise comparison of 3D meshes, where participants were asked to rate a collection

of different levels of 3D mesh distortion in terms of visual quality, compared with the

reference undistorted shape presented to the user along with the distorted shape. Pairwise

comparisons are simpler and more intuitive for users, ensuring that users can concentrate

on judging the quality of the distorted shape compared to the given reference shape.

We propose to measure how different distortions (noise, smoothing, etc.) of 3D shapes

affect the perceptual quality of 3D objects in a virtual reality environment by collecting

subjective scores for distorted shapes. We compare the MOS between virtual reality (VR)

and traditional desktop display settings. Moreover, we analyse different 3D mesh dis-

tortion types with different 3D shapes to determine which distortion type/shape shows

significant results. To compare VR and normal desktop settings more easily, we used

an existing database evaluated on the traditional desktop display. As VR is becoming a

popular way of consuming and visualising 3D content with high resolutions, we build an

application to carry out VR experiments using a Meta/Oculus Quest 2 headset.

Previous subjective tests in the field of computer graphics were conducted to evaluate

the visual quality of static and animated 3D models [44, 76, 112]. As shown in most

papers, there is no agreement on the appropriate approach to assessing the quality of

3D models [153]. As we focus on the human visual system (HVS) strongly linked with

perceptual quality measures, we concentrate on perceived 3D mesh perceptual quality

measures using a VR headset, not purely geometric measurements that ignore human

perception. Bulbul et al. [27], Lavoué and Mantiuk [112] and Muzahid et al. [147],

are mostly working in the perceptual area and provide reviews of more broad 3D visual

quality evaluation techniques.
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3.2 Subjective Experiment

In our experiment, we use a public database to evaluate the 3D mesh quality level of distor-

tion using a virtual reality headset (HMD). Figure 3.2 presents the LRIS/EPEL general-

purpose database, which contains four reference models (Armadillo, Venus, Dyno and

Rocker Arm) and 84 distorted meshes (21 distorted meshes for each reference mesh)

[111]. This dataset used two different types of degradation, noise and Taubin smooth-

ing [206], to simulate typical degradation of mesh quality due to e.g., compression and

watermarking [111]. These distortions have different levels of strength and four types of

locations on meshes: uniformly on the whole mesh, smooth areas, rough areas, and in-

termediate areas, where different areas are identified based on local curvature variations.

Note that Taubin smoothing is not applied to smooth areas as the effect is hard to notice.

For noise addition, subjective quality scores are provided for each distorted mesh in

the form of MOS, ranging from 0 (worst quality) to 10 (best quality). Lavoué et al. [111]

created noise by altering the coordinates of the mesh’s vertices with a randomly calculated

offset between 0 and the specified maximum deviation. Smoothing was accomplished by

applying Taubin [206] smoothing filter to the mesh’s vertices.

These distortions were applied at three distinct intensities (visually selected): high,

medium, and low (these levels correlate to the number of smoothing iterations and the

maximum deviation value for noise addition). Finally, these distortions were applied in

different locations on the meshes: evenly (across the whole object), only to smooth areas,

rough areas, and intermediate areas. Each model generated 21 degraded versions: three

noise strengths in four types of locations and three Taubin smoothing strengths in three

types of locations (i.e., excluding smooth areas).
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Figure 3.2: Examples of 3D meshes belonging to the LIRIS/EPFL General-Purpose
database. The top row shows the four reference meshes (from left to right: Ar-
madillo, Venus, Dyno and Rocker-Arm) and the rest shows that we have 21 models
with different types/levels of distortion for each shape (only selected ones are shown),
so the total number of shapes is 88.

In this work, we compare VR and desktop settings. In the desktop setting experi-

ment, Lavoué et al. [111] used a 1280 × 720 resolution monitor, and each model was

displayed in a 600 × 600-pixel window. All models have a resolution of between 50,000

and 100,000 triangles, as illustrated in Table 3.1, so the details of the model can be viewed

well. They used rotation, interaction and zoom operations to allow the participant to inter-

act with the model (e.g. mouse clicks) in their experiment. Also, the paper [111] showed

participants the models (both reference and distorted versions) in a desktop display set-

ting. The participants were allowed to browse through shapes so that they could memorise

the worst/best quality shapes.

Our study uses a VR setting that does not allow participants to see all the models si-

multaneously. However, we show participants a trailer with a different dataset to make
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sure the participant has an idea of how the experiment will be. These models were ob-

tained from different sources which used different scanners. For example, the Armadillo

model is a manifold/simplified version of the original model that was created from scan-

ning data by the Stanford Computer Graphics Laboratory. The Dinosaur model is courtesy

of Cyberware Inc. The Venus and Rocker Arm models are courtesy of the AIM@SHAPE

project. Our subjective study was conducted using a pairwise comparison (PC) method in

a virtual reality setting.

Table 3.1: The geometric information of the reference meshes in the LIRIS/EPFL
general-purpose database

Mesh Number of Vertices Number of Faces Number of Edges
Armadillo 40002 80000 120000
Venus 49666 99328 148992
Dinosaur 42146 84288 126432
Rocker-Arm 40177 80354 120531

3.2.1 Evaluation Methodology

In our experiment, we followed the same methodology used in the desktop setting as

Lavoué et al. [111]. We used a pairwise comparison approach to evaluate the quality

of distorted meshes with respect to the reference (undistorted) 3D mesh. More precisely,

throughout the experiment, each participant was provided with a distorted version to com-

pare against the reference version. Then, each participant was asked to measure the qual-

ity of the distorted version compared with the reference using a slider bar (0 worst quality,

10 best quality). Pairwise comparison is simpler to perform and requires less mental effort

from participants.

This experiment shows a new approach to using a VR setting to compare how different

platforms (VR versus a traditional desktop display) affect perceived mesh quality, which

has not been done before. We will provide a new comparison approach between VR and

desktop settings to simulate real environments and identify similarities and dissimilarities

between human perception in these settings.
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3.2.2 Stimuli Generation

In the many previous subjective research experiments incorporating 3D material, the 3D

models were displayed to the viewers using a variety of approaches, including still images,

free interactivity, and animations. Still images are insufficient to assess the visual quality

of 3D models, as demonstrated by Rogowitz et al [173]. As a result, the object must move

for the observer to notice the dynamic impacts of shading on the shape. It is also critical

for the observer to perceive the entire object rather than focusing on a particular point of

view. Participants could notice small areas not visible in 2D views due to the model’s free

rotation. To generate the mean opinion score (MOS), we used the same stimuli generated

by [173].

3.2.3 Display

In our experiment, the display technology consists of a Meta/Oculus Quest 2 HMD with

Qualcomm Snapdragon XR2 Platform, a single Fast-Switch LCD 1832 × 1920 pixels per

eye with refresh rate 72Hz and tracking inside and outside 6 DOF (degrees of freedom).

The experiment was built as an application in Unity3D and rendered with a resolution

of 1832 × 1920, as shown in Figure 3.3. The experiment is based on the pairwise com-

parison method; the participants rate the quality between two models where one is the

(undistorted) reference, and the other is a distorted version. Participants were allowed to

explore the 3D mesh object by using touch controllers. In the experiment, the participant’s

head’s position and rotation are used in the Unity3D application to provide a first-person

perspective to explore the object [197].

Since depth perception could also play a significant role in the selection, we presented

the objects equidistantly at 20cm distance from the participants’ eyes, and they could

freely move closer and further from the objects to explore them. In Figure 3.4 shows how

the experiment looks like in the VR environment using first person.
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Figure 3.3: Example of the Home page showing our experimental environment of
the subjective test.

3.2.4 Participants and Training

Participants in our experiment participated voluntarily without being awarded monetary

or other rewards. A consent form was given to the participants before the experiment

began. They were also informed that they could leave the experiment at any time and that

they were not required to complete it. The names and VR data of the participants were

kept anonymous. The VR device we used to collect their MOS data was used during their

participation. Before we started the experiment, we began with a trial session, as recom-

mended by the ITU-R BT.500 [179], such that participants become acquainted with the

virtual environment and task, to ensure they fully comprehend the experiment’s task. This

stimulus outcome was not recorded. The main reason for this trailer is to enable partic-

ipants who are not familiar with VR devices to learn how to rotate, scale and transform

3D objects.
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Figure 3.4: Example of the main page where the user can interact with the models
in the experiment environment. The left side contains the reference model, and the
distorted model is on the right side (B).

The slider bar provides subjective quality rankings for distorted mesh in the form of

MOS, rating from 0 (worst quality) to 10 (highest quality) as illustrated in Figure 3.4. At

the end of the stage, we introduced the experiment application in which the participant was

shown two objects, one undistorted (Reference) compared with the distorted shape and

asked to judge their quality based on the undistorted mesh quality. This step was intended

to allow the observer to become acquainted with the experiment, to focus adequately, and

to ensure that observers fully comprehend the experiment’s task. Figure 3.4 shows the

experiment environment.

The experiment was conducted at Cardiff University and involved students aged be-

tween 20 and 40, with twenty females and thirty males. All participants reported normal

or corrected-to-normal vision.
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3.2.5 Procedure

The experiment used a Meta/Oculus Quest 2 headset and asked participants to rate the

quality of the 3D distorted models. The experiment showed all (84) 3D scanned meshes

from the LIRIS General-purpose database and distorted versions. In the experiment, we

did not specify the duration of time to complete it as some of the participants were not

familiar with the VR setting so we did as the participants enjoyed and finished it with

no concern for the duration. However, we mentioned in the trailer that the experiment

should be no more than 30 minutes to avoid sickness symptoms. The participants took an

average of 22-27 minutes to view the models. The experiment was carried out through

a computer application that presents the 3D objects on the VR headset in random order,

with paired 3D objects appearing side by side. At each comparison, participants compare

the reference model with the distorted model by using a VR touch controller to scroll the

slider bar score as illustrated in Figure 3.4. This way allows us to collect the MOS scores

and analyse correlations of individual distortion types by using Pearson and Spearman

coefficient correlation.

3.2.6 Duration

The overall length of the experiment affects the efficiency of the experimental method,

especially in virtual reality where most of the subjects have not used the VR headset

before and tend to exhibit symptoms of cybersickness both during and after the virtual

environment experience [106]. To avoid these issues, we chose to display the reference

and the test stimulus simultaneously side by side in the same scene. In this way, the

number of presentations is halved. To avoid fatigue, boredom and cybersickness, we allow

the participant to move around the lab or sit in a chair to reduce any motion sickness. Each

subject’s session took place on a single day in order to prevent any learning effect between

stimuli. The stimuli were displayed in a random order (i.e reference models, distortion

types and distortion levels) to each participant. Each stimulus was presented once; the
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participant was not able to replay the scene.

3.2.7 Experiment Design

The design choices used in an experiment are of great importance because they can bias

the results significantly, especially for computer-generated stimuli, where almost every

element can be controlled. Effective parameters were controlled in several quality as-

sessment studies so we chose these elements (lighting, background, stimuli order and

duration). We describe the elements below.

Lighting is the most significant element in controlling the environment. The position

of the 3D object and the type of light sources are critical factors that have a significant

impact on the viewing conditions. According to Rogowitz et al. [173], models lit from

the front provide different subjective scores than those lit from above. Light is fixed and

shines from a left-above direction. As we used the Unity game engine there are different

types of lighting such as directional lighting, spotlight, point light and area light. In our

experiment, we chose a spotlight which is useful for creating focused lighting effects and

highlighting specific objects to give a clearer perception of 3D shapes, according to the

human visual system [175].

Background colour can influence perceived quality by altering the visibility of the

model’s borders. While some user studies [224, 175] utilise a uniform black environment,

Corsini et al. [44] use a nonuniform background that transitions from blue to white to

avoid overestimation of contours. However, in our case, as our models have no colour we

used dark green to distinguish between the scene background and the table colour. Also,

it let the participiant see the shadow of the model on the table to know how far/close the

object is to the table, as shown in Figure 3.4.

Stimuli order considers whether the stimuli (reference and distorted meshes) should

be displayed to the user simultaneously as the same protocol in the desktop setting (e.g.,

side by side) or in sequence in comparison-based tests (e.g., first the reference, then the
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tested models). When displayed in order, users are allowed to return to the reference

model, as in Rogowitz and Rushmeier’s experiment [173] to provide a more comprehen-

sive comparison. Furthermore, the stimuli’s arrangement and placement should be chosen

so that external factors such as observer movement and ambient light have the least im-

pact. Taking these into account, we showed stimuli side-by-side in our experiments to

make comparison easier, especially as meshes can be interactively rotated to allow the

complete shapes to be seen.

Duration of which the tested models are shown to the subjects may also affect the

evaluation results. The average duration time is around 20 to 25 minutes per participant.

We chose a duration such that users were given enough time to examine the shapes, while

avoiding taking an excessive amount of time during the user evaluation which may lead

to the degradation of user response data due to fatigue.

3.2.8 Ethical Approval

The Human Ethics Committee of the Cardiff University SREC reference: COMSC/ Ethics/

2021/ 089 has authorised this study. COVID-19 regulations (University guidelines, Welsh

and UK government policies) require us to examine how to conduct research securely us-

ing a head-mounted display, especially regarding participant safety. Additionally, hand

sanitiser, anti-bacterial wipes, hand sanitiser, and disposable masks were provided along

with the COVID-19 screening form. As a result of these extra procedures, the user study

took longer to complete, but they were a reasonable solution.
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3.3 Data Analysis

The following sections analyse and discuss the results of the experiment described above.

3.3.1 Screening Participants and Computing Mean Opinion Scores

(MOS)

We follow the ITU-R BT.500-13 recommendation [179], where we show a trailer with

a different dataset to the participants to make sure they understand how the experiment

works. Once we finished the experiment, we could collect the MOS, but before perform-

ing any data analysis, we tested the participants’ performance to ensure the collected data

was meaningful.

To compute the Interquartile Range (IQR) [179] of our data, we first need to identify

outliers. We identify the first quartile (Q1), the median, and the third quartile (Q3). So

we calculate IQR = Q3 – Q1. Calculate upper value = Q3 + 1.5× IQR. Finally, calculate

lower value = Q1 – 1.5× IQR as shown in Figure 3.5. One outlying participant was found

in both settings and was rejected from the dataset.

Figure 3.5: Illustration for Interquartile Range (IQR)
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To analyse user ratings, a common method is to compute the mean opinion score

(MOS) for each stimulus.

MOSe =
1

10×N

N∑
i=1

sie, (3.1)

where sie refers to the score assigned by participant i to the stimulus e, and N denotes the

number of (valid) subjects. We further divided the scores by 10 to normalize them in the

range of [0, 1].

We follow most of the existing work [10, 35] and set the scores such that 0 means

the worst quality, and 10 is the best quality. So we expect the MOS to decrease as the

distortion level increases. In Armadillo, we notice a strong consistency between the VR

setting and traditional desktop display setting, as the participants in both settings showed

almost the same behaviour for each type of distortion. However, for the rest of the models,

we may see some disparities in the rating scores of the two settings. In fact, in some cases,

desktop participants’ scores are not consistent with the stimuli, i.e., the quality does not

always drop when the level of distortion increases (e.g. for the Venus model), but VR

viewers give scores more consistent with the distortion levels.

Furthermore, we found that VR observers were able to detect distortions that desktop

observers missed. These initial findings suggest some discrepancies in the human percep-

tion w.r.t. different display techniques. In the next section, we will examine whether these

differences are statistically significant and seek to explain their origins.
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3.3.2 Observer Agreement Analysis and Correlation Analysis

We calculated the standard deviation σ values of the MOS scores from both the VR and

desktop settings. In the VR setting σV R = 0.0220 whereas in the desktop setting σD =

0.0278. Since the standard deviation in the VR setting σV R is lower than that of the

desktop setting σD, it shows that the user ratings are more consistent for the VR setting.

In order to further analyse the similarity and dissimilarity between subjective mesh

quality, we look at the correlations between subject evaluations. To begin with, we ex-

amine the correlation between the VR setting and traditional desktop display setting for

distortions of each 3D object of the dataset.

We also check the correlation for each type of distortion. In this chapter, Pearson and

Spearman statistics are commonly used in statistical analysis to assess relationships be-

tween variables. The following two measures are used to measure the correlation between

virtual reality and desktop display settings. The Pearson linear correlation coefficient

(PLCC or rp) measures the prediction accuracy of MOS, while the Spearman rank-order

correlation coefficient (SROCC or rs) measures the prediction monotonicity [221]. Both

values of PLCC and SROCC range from -1 to 1, where 1 indicates a total positive corre-

lation, -1 indicates a total negative correlation, and 0 indicates no correlation.

Suppose in our case we have two (VR & desktop) settings x = {x1, x2, . . . , xn} and

y = {y1, y2, . . . , yn}, both containing n stimuli. The Pearson linear correlation coefficient

rp between settings x and y is calculated as follows.

rp =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(3.2)

where

x̄ =
1

n

n∑
i=1

xi and ȳ =
1

n

n∑
i=1

yi (3.3)

MOS scores x and y are sorted in the same order, in either ascending or descending order.
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Let Xi be the rank of xi in x, while Yi be the rank of yi in y. We generate two new

sequences X = {X1, X2, . . . , Xn} and Y = {Y1, Y2, . . . , Yn}. Let di = Xi − Yi, the

Spearman rank-order correlation coefficient rs between settings x and y is calculated as

follows.

rs = 1− 6
∑n

i=1 d
2
i

n(n2 − 1)
. (3.4)

3.4 Results

In this section, we divide our results into two parts, distortion by shapes (Armadillo,

Venus, Rocker Arm and Dyno) as illustrated in Figure 3.8 and distortion by types/locations

as illustrated in Figure 3.10 (Noise Uniform, Noise Rough, Noise Intermediate, Noise

Smooth, Taubin Uniform , Taubin Rough and Taubin Intermediate).

3.4.1 Distortion by Shape

We now analyse MOS scores between VR and desktop settings on the basis of individual

test shapes. Since the two modes of display have their own characteristics, as illustrated

in Figure 3.8, the perceived quality is more consistent on some shapes than others. The

x-axis corresponds to different distortion types, locations and strengths, and the y-axis

shows the (normalised) MOS scores.

We can see that Armadillo has the highest correlations in both Pearson linear coef-

ficient correlation (PLCC) and Spearman coefficient correlation (SROCC) (rp = 0.754,

rs = 0.685) compared with the rest of the models. Armadillo contains some details,

which means it is easy for participants to notice the different quality between the refer-

ence model and the distorted version as shown in Figure 3.6.
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Figure 3.6: The reference mesh, three distorted Armadillo model meshes, and the
enlarged views of some representative distorted regions on the meshes as marked in
the rectangles.

In comparison, the Venus model has a lower linear relationship and a higher nonlinear

relationship (rp = 0.698, rs = 0.701) because a participant in the VR setting is easy

to zoom and rotate the model compared with the desktop, which helps the participant to

notice small areas that might not appear well on the traditional desktop.

The third model is Rocker Arm, which shows a fair relationship between VR setting

and traditional desktop setting (rp = 0.623, rs = 0.513). In both settings, participants

often did not notice if there was a distortion in the shape because the shape did not have

much details they could detect. The last model is Dyno which has the worst result com-

pared with the rest of the models. The linear coefficient correlation is better than the

nonlinear coefficient correlation (rp = 0.624, rs = 0.499). The reason behind the worst

correlation is that the Dyno model has less detail area which makes it hard to detect the

quality even if the reference is available as shown in Figure 3.7. Note the Figures 3.6 and
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3.7 show according enlarged parts in reference model for comparison.

Figure 3.7: The reference mesh, three distorted Dyno model meshes, and the en-
larged views of some representative distorted regions on the meshes as marked in
the rectangles.

After calculating PLCC and SROCC for individual distortion types, we further com-

pute PLCC and SROCC for all the distortions for each shape, using the same formulae,

as indicated in the ‘All’ row in Table 3.2.

Table 3.2: Pearson and Spearman correlation analysis comparing VR and desktop
MOS scores for different stimuli (the distortion type followed by distortion location.

Distortion Type and Location
Armadillo Venus Dyno Rocker Arm

PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC
Noise Uniform 0.850 1 0.934 1 1 1 0.549 0.500
Noise Rough 0.993 1 0.882 1 0.657 0.500 0.093 0

Noise Intermediate 0.925 1 0.828 0.500 -0.348 0.500 0.729 0.500
Smooth 0.667 0.500 0.981 1 0.667 0.866 0.995 1

Taubin Uniform 0.564 0.500 0.686 0.500 0.975 1 0.183 0.500
Taubin Rough 0.873 1 0.269 0.500 0.500 0.500 -0.660 -0.500

Taubin Intermediate 0.538 0.500 0.995 1 0.829 1 -0.868 -1
All 0.754 0.685 0.698 0.701 0.624 0.499 0.623 0.513
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Figure 3.8: Comparison of MOS for both VR and desktop settings in the Pairwise
Comparison (PC) experiment for all the stimuli shapes.
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3.4.2 Distortion by Type and Location

As we explained in the previous section, this dataset has two main distortion types: adding

noise and Taubin (smoothing), but each type has different levels of strength and different

locations. These distortions have different levels of strength and four types of locations

on meshes: uniformly on the whole mesh, smooth areas, rough areas, and intermediate

areas, where different areas are identified based on local curvature variations.

We now group the results based on type and location, and for each type, we show

different distorted shapes and levels of distortion strength (see Figure 3.10). The x-axis

corresponds to each distorted shape (a combination of 4 shapes and three levels of dis-

tortion strength as shown in Appendix A.1. As we only have three values of distortion

level strength (Low, Medium and High), we calculated them using Pearson and Spearman

correlations. The PLCC and SROCC correlations between VR and desktop settings for

different distortion types and locations are summarised in Table 3.3 (For results in the

‘All’ row, we computed the same formulae but using the whole dataset) with a detailed

breakdown given in Table 3.2. More details are presented in Appendix A.2.

In the VR setting, users perceive 3D models differently compared to the desktop set-

ting due to the higher resolution and enhanced interactivity that VR offers. Consequently,

Mean Opinion Score (MOS) evaluations appear more sensitive to the location of dis-

tortions on 3D models. A clear example of this is the Noise Uniform distortion. This

distortion, which uniformly adds noise across all shapes, was the most easily detected by

participants. It produced consistent results in both VR and desktop settings, as indicated

by high correlation coefficients (rp = 0.732, rs = 0.753). For the Noise Rough and Noise

Intermediate distortions, noise is selectively added to the rough and intermediate regions

of the mesh. These areas typically already contain detailed information, making the added

noise less perceptible. As depicted in Figure 3.10, the x-axis groups three samples, each

representing a different level of distortion strength (low, medium, and high) across four

distinct shapes. Although adding more noise generally results in lower Mean Opinion
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Scores (MOS) in both VR and desktop settings, the difference between these two envi-

ronments is not substantial. Importantly, the decrease in MOS scores due to noise in rough

or intermediate areas is significantly less than when noise is added uniformly across the

entire mesh. In the case of adding noise to the smooth regions, the MOS scores have larger

drops with increasing strength of noise, close to the Noise Uniform case. This shows that

with better observation/interaction, subjective scores are more sensitive to where distor-

tion, especially noise, is applied. In contrast, the results of the desktop settings show little

difference between locations. For Taubin distortions we noticed that the VR setting is

more consistent than the desktop setting between different subjects.

Table 3.3: Pearson and Spearman coefficient correlations between MOS scores from
VR and desktop settings, grouped based on distortion types and locations.

Distortion Type/Location Pearson Correlation (PLCC) Spearman Correlation (SROCC)
Noise Uniform 0.732 0.753
Noise Rough 0.441 0.448

Noise Intermediate 0.273 0.266
Noise Smooth 0.335 0.387

Taubin Uniform 0.526 0.413
Taubin Rough 0.307 0.123

Taubin Intermediate -0.078 -0.004
All 0.929 0.929

A visual example is shown in Figure 3.9 where (b) is the shape with high-level noise

applied on the rough regions, whereas (c) is with medium-level noise applied on the

smooth regions.We have compared the same mesh using the same distortion type but

different locations to determine if the location affected the shape visualisation and MOS

score. It is obvious that the distortion in (c) is more visible than in (b), which is correctly

reflected in the MOS scores in the VR setting but not so in the desktop setting, where the

strength of distortion rather than the location has more impact on the perceptual quality.

Because of such differences, the correlations in these locations are significantly lower

than in the uniform case.
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Figure 3.9: An example of the distortion types. (a) Original Venus model and illus-
tration of the different types of regions; (b) high-level noise applied on rough regions;
(c) medium-level noise applied on smooth regions.

We now compare smoothing (Taubin) and adding noise. As shown in Figure 3.10,

Noise Uniform is highly correlated between VR and desktop settings. Also, this type of

distortion shows a lower score in MOS on both settings which starts from 0.4 to 0.55.

However, in Noise Rough and Intermediate distortion, VR participants give a high MOS

score distortion on these types of distortion compared to desktop participants. MOS

scores where smoothing is applied tend to be higher than with noise added, especially

when distortions are applied uniformly. In contrast, in the desktop setting, these types

of distortions have lower MOS scores. Similarly, different strength levels also have less

effect on MOS scores than the desktop setting. These also lead to lower correlations be-

tween VR and desktop settings in smoothing. In the case of Taubin distortion, we notice

that VR and desktop give high MOS distortion. This means this type of distortion is more

visible in both settings. Nevertheless, if we consider all samples (shapes, distortions, lo-

cations and strength levels), the MOS scores remain highly correlated between VR and

desktop settings (rp = 0.929, rs = 0.929).
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Figure 3.10: Comparison of MOS scores between the VR and desktop settings. Each
figure shows a type of distortion (Noise, Smoothing and Taubin) applied to certain
locations (Uniform, Rough, Intermediate and Smooth). The x-axis corresponds to
VR MOS scores or Desktop MOS scores, and the y-axis shows the (normalised) MOS
scores averaged over all subjects for the distorted shapes. The blue and green plots
correspond to the VR and desktop settings, respectively.
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3.5 Summary

This chapter proposed a subjective study using linear and nonlinear correlation coeffi-

cients to compare MQA in virtual reality and traditional desktop display settings. Our

analysis indicates the actual perceived mesh quality varies according to shapes and is

sensitive to different types/locations of distortion. We notice that overall MOS score dis-

tributions are highly correlated between the VR and desktop settings. However, in the VR

settings, noise is more noticeable than a loss of details, when compared with the desktop

setting. In particular, noise added to the entire shapes or smooth regions tends to be more

noticeable than in other regions, and the differences are much more significant in the VR

setting. The findings can provide useful guidance when processing 3D shapes for VR

applications. In future work, we aim to construct a larger-scale database of perceptual

quality under different combinations of distortions.
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Chapter 4

Learning to Predict 3D Mesh Saliency

Overview

As previously mentioned, saliency is related to the perceptual quality of 3D shapes.

This chapter introduces novel methods for measuring salience on a 3D model, measured

by running experiments with an eye tracker, which produces a saliency measurement that

is accurate to human visual judgment. After giving a brief introduction of the problem in

Section 4.1, relevant literature is discussed in the context of this chapter in Section 4.2,

which extends the literature reviewed in Chapter 2. Section 4.3 details some existing ap-

plications that benefit from 3D mesh saliency. Section 4.4 and Section 4.5 show Voronoi

tessellation and SSIM method used in our 3D mesh saliency and our method to build sub-

jective quality perception for mesh saliency via eye-tracking .The user study experiment

conducted for measuring 3D mesh saliency is described in Section 4.6. With the data

collected during the user study, we obtain ground truth mesh saliency by fusing eye fix-

ations from individual views and different participants. The ground truth mesh saliency

is further used to evaluate existing mesh saliency methods 4.7. Learning new methods of

measuring 3D mesh saliency is presented in Section 4.8, and the results are shown in Sec-

tion 4.9, which achieves better results than existing methods. Finally, some conclusion

thoughts and suggestions for future work are given in Section 4.10. In the next chapter,

we will demonstrate that incorporating saliency weighting into objective quality metrics

lead to improved performance.
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4.1 Introduction

Mesh saliency can play an important role in computer graphics in determining the out-

comes of many tasks, such as feature detection [191], shape recognition [200], mesh

segmentation [36], mesh watermarking [137], 3D printing [218], etc. Mesh saliency mea-

sures the perceptual importance of local regions on a mesh, which is subjective. It can

be considered from a generic perspective where some 3D surface regions are consid-

ered more important than others [115, 192], but also task-dependent, e.g. in relation to

touching [105]. Mesh saliency is also related to other metrics that measure “uniqueness”

or “distinctiveness”, e.g. surface distinction [184] and region distinctness [116]. How-

ever, distinctiveness measures focus on regions that set a shape apart from others. The

ground truth for mesh saliency is typically determined by human perception, and subjec-

tive judgement is therefore involved in assessing the performance of such approaches.

Many computational models for image visual saliency have been proposed and imple-

mented. In 1985, Itti et al. [93] proposed an early model which stated that image locations

with saliency would have some distinction from their surrounding environment. Some re-

searchers in this field, such as [84, 140, 210] have described in their works various other

models of saliency. In 2002, Stove and Straßer [199] used saliency information acquired

from an individual’s eye movements to simplify images, generating a non-photorealistic,

painterly rendering. However, these works focus on eye tracking for image saliency rather

than the saliency of 3D shapes, which we investigate in this chapter.

Although there are many ways to detect 3D mesh saliency, few techniques have been

developed to evaluate their effectiveness. Many papers utilise heatmaps for showing

salient model parts or utilise saliency-led mesh simplification to demonstrate the method-

ology while preserving attention-grabbing parts. Even though such approaches show how

they operate at a high level, they make it hard to compare the effectiveness of various

methods as they only provide a subjective evaluation or may not measure the saliency

directly. The challenges in existing mesh saliency models are largely built with hard-
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coded formulae, which cannot capture true human perception. Some existing techniques

utilise indirect measures to capture user perception (e.g., mouse clicks), which can be un-

reliable. Our contribution is to investigate a methodology to produce ground truth mesh

saliency through the fusion of eye-tracking data for different views of rendered 3D shapes.

Based on this, we further develop machine learning methods for predicting saliency on

3D meshes. In this chapter:

• We investigate using eye-tracking data of rendered views of 3D shapes to obtain

ground truth saliency on meshes.

• As each view is only able to cover part of the mesh, and different views may contain

shape parts with significantly different levels of saliency, an optimisation approach

is developed to fuse saliency derived from individual views to take into account

their relative saliency levels while ensuring consistent saliency values in the shared

regions.

• We further build machine learning models to predict mesh saliency based on local

geometric features and existing 3D saliency prediction models. Our experiments

show that a learning-based approach performs better than existing saliency methods

on unseen shapes.

4.2 Related Work

Several algorithms for computing the saliency of 3D models have been developed re-

cently. Lee et al. [115] were the first to introduce the concept of mesh saliency, a compu-

tational measure of regional importance on a mesh. Their approach is based on differences

in Gaussian, a geometric measure aiming to approximate human perceptual importance.

Kim et al. [101] conducted a user study comparing earlier mesh-saliency approaches to

human eye movements using a 2D method. To measure the association between mesh

saliency and fixation positions for 3D rendered images, they implemented the standard-
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ised chance-adjusted saliency and demonstrated that the existing computational models

of mesh saliency could significantly better predict human eye movements than a purely

random model or a curvature model. Their goal is that the computational model of mesh

saliency has a better correlation with human eye fixations than a random model regardless

of viewing direction for the first few seconds after stimulus onset.

Although the importance of regions on 3D shapes can be considered general, it can

also be task-specific. For example, the work [105] considers the problem of tactile mesh

saliency, where saliency is defined in the context of grasping, pressing and touching. This

chapter focuses on general visual saliency (i.e., without a specific task).

Many algorithms are based on the ‘centre-surround’ method of Lee et al. [115] that

uses the absolute difference between the Gaussian-weighted average of the mean curva-

ture at scales σ, and 2σ, with the Gaussian filtering limited to neighbourhoods of size

2σ. Several scales with different σ values are jointly used to capture saliency at different

scales. Yang et al. [233] proposed a method for quantitatively calculating visual atten-

tion based on eye-tracking data for 3D scene maps by obtaining the participants’ gaze

behaviour differences to establish a quantitative relationship between eye movement in-

dexes and visual saliency.

Liu et al.’s [128] use of virtual agents to simulate how humans interact with objects

helps to understand shapes and to identify their salient parts in relation to their func-

tions. Moreover, Chen et al. [37] investigated human perception and considered 3D mesh

Schelling points, which are feature points people choose in a coordination task. They

found that Schelling point sets are usually highly symmetric, and local curvature prop-

erties are the most useful method for identifying Schelling points. They propose using

sophisticated deep learning approaches to discover mesh Schelling points automatically,

without the need for participant observations. The authors use mesh convolution and

pooling to extract meaningful characteristics from mesh objects and then predict the 3D

heat map of Schelling points end-to-end [34].
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The multi-scale computational model was developed by Song et al. [192] and uses a

set of meshes which are simplified to various degrees. It also calculates the scale saliency

map related to each and every scale through the computation of the spectral mesh saliency

for every scale. The scale saliency maps can then be put together to produce a final

saliency map.

Most research is dedicated to detecting saliency on 2D images and 3D meshes; little

work has been conducted on 3D point clouds for accurate saliency detection. Guo et al.

[77] introduce a new saliency detection approach for point clouds by using principal com-

ponent analysis (PCA) in a sigma-set feature space, a method that is introduced to trans-

form covariance descriptors to Euclidean space. In this method, they construct local shape

descriptors based on covariance matrices for saliency detection, considering that covari-

ance matrices can naturally model nonlinear correlations of different low-level compact

and rotational-invariant features. By transforming these covariance matrices to vector de-

scriptors in Euclidean vector space by applying the sigma-point technique, which keeps

the inherent statistics of regions of 3D point clouds. PCA is employed in the descriptor

space for identifying saliency patterns in a point cloud based on their informative descrip-

tors. This method shows its advantages of being structure-sensitive, capturing geometry

information and being computationally efficient.

Mesh saliency has many interesting applications. Leifman et al. [116] presented

an algorithm for identifying regions of interest on 3D surfaces. Their method studies

3D regions of distinctiveness from local and global perspectives and demonstrates that

saliency derived from their method is effective for viewpoint selection. Howlett et al.

[89] demonstrated the value of saliency for guiding 3D simplification, where saliency

was captured using an eye-tracker for recording the two-dimensional image area in which

an individual has looked at a three-dimensional model.
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4.3 3D Mesh Saliency Applications

This section reviews some applications that could benefit from 3D mesh saliency. Rather

than analysing each application in depth and comparing it to possibly related approaches,

this section aims to emphasise the relevance and utility of 3D mesh saliency for various

applications to stimulate further work in this domain.

Before discussing the 3D view selection and 3D mesh simplification applications in

detail, we consider the importance of these applications on 3D mesh quality and saliency.

3D mesh view selection is important in mesh quality assessment because it allows for a

more detailed analysis of the mesh structure and geometry. When viewing a mesh from

different angles, it is easier to identify various issues that may be present, such as mesh

distortion, irregularity, or discontinuity. For example, when analysing the mesh quality of

a complex surface or object, a mesh view selection can help to identify regions with more

important details and therefore require higher mesh density. Similarly, by examining the

mesh from different angles, it is possible to identify regions with poor connectivity or

mesh distortion caused by poor element shape. Furthermore, 3D mesh view selection can

be used to check for mesh quality at different levels of detail, from a global view of the

entire mesh to a more detailed examination of specific regions or elements.

As a common approach to reduce computational and storage costs, 3D mesh simpli-

fication is one of the most important techniques because it reduces vertices, edges, and

faces while preserving the mesh’s overall shape and important features. This process can

be used to improve the efficiency of algorithms that require mesh processing, such as sim-

ulation or rendering. Therefore, it is important for mesh quality assessment methods to

evaluate the perceptual quality for simplified meshes.

Simplification can also be used as a preprocessing step for mesh analysis algorithms

that are sensitive to the number of vertices in a mesh. For example, computing the cur-

vature of a mesh requires the computation of local neighborhoods around each vertex,
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which can be computationally expensive for large meshes. A simplified mesh reduces the

number of vertices, allowing curvature computation to be performed more efficiently.

As saliency helps with mesh quality, it can be used to guide the mesh in these applica-

tions by identifying the important features and regions that should be preserved. Saliency

measures can help identify regions of high curvature, sharp edges, or features that are

important for simulation or rendering. By preserving these salient features, the 3D view

selections allow for a detailed analysis of the mesh structure and geometry and the sim-

plified mesh can retain the essential information while reducing the complexity of the

mesh. There are several techniques for salience-based mesh simplification, including the

use of salience measures based on curvature, distance, or feature detection. For example,

curvature-based salience measures can identify regions of the mesh with high or low cur-

vature, and guide the simplification process to preserve the high-curvature regions while

simplifying the low-curvature regions.

4.3.1 3D View Selection

Although it is often problem-dependent, 3D view selection aims to find the most infor-

mative views for 3D shapes. The best view is often selected by computing the geometric

complexity based on view descriptors. A descriptor calculates the geometric complexity

from the visible surface of the 3D object. The viewpoint which maximises the geometric

complexity is considered to have the most information on that view of the object. Lee et

al. [115] suggested that the best view contains the most important features of a 3D object.

The view selection algorithms assess the quality of the view according to the descriptors.

To develop the best view selection algorithms, mesh saliency can be utilised that detect

the salient regions of the 3D mesh model. Researchers in [57] developed a best view

selection method and introduced seven descriptors, including view area, mesh saliency,

the ratio of the visible area, silhouette length, surface area entropy, silhouette entropy, and

curvature entropy for the performance evaluation. These descriptors are also considered

to be used to solve computer vision research problems in the future.
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Researchers in [193] introduced the best view selection technique based on a deep

CNN model named Classification-for-Saliency CNN (CFS-CNN). First, they rendered

the mesh into 24 2D views. These views are selected between -30° to +30° elevation.

Then a weakly supervised learner is designed using the pre-trained VGG-19 network

[33]. The VGG-19 network introduced two new layers: the View Saliency (VS) layer

and the Saliency-based Pooling (SP) layer. The VS layer learns the saliency features

from different layers of VGG-19 and feeds the features into the SP layer to further use

these features in the classification. After training the CFS-CNN, the CAM (Class Activity

Map) method [190] is utilised to calculate the saliency map for each pixel. After that, they

generate the view-based saliency maps from a 2D to a 3D saliency map. The proposed

method learns the vertex-level annotation from scene saliency to select the best view in

the 3D scenes. The score Si of the i-th view Zi is defined as

Si =
Li

∑
a Ma(Zi)∑

j(Lj

∑
a Ma(Zj))

(4.1)

Here, Ma(Zi) represents the 3D saliency of vertex a, and Li is the saliency of the view

Zi. The best view should be prominent when compared with other views.

Song et al. [194] introduced an unsupervised multi-view CNN (UMVCNN) frame-

work to select the best view for 3D objects. The UMVCNN model is based on the VGG-

19 network [33] and extracts features from the Softmax Layer associated with the FC9

layer. Then the saliency map is generated by back-propagating the vector with entries

from the Softmax Layer to input views. After that, a 3D saliency map Mi is obtained by

transforming the saliency from 2D to 3D. Then the salient viewpoint is selected where

the sum of saliency maps of the 3D object is maximised. Giorgi et al. [72] presented a

salient view selection technique based on semantics. They divide the shape into features

such as blobs and tubes using the Plumber method [159]. For most shapes, the salient

views correspond to the tubular parts. Here, the semantic-based technique assigns higher

weights to the tubular features than blobs. A scoring function is designed to evaluate the

different viewpoints. The scoring function considers visibility, relevance, and feature type
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for salient view selection.

4.3.2 3D Mesh Simplification

3D Mesh simplification decreases the number of faces, vertices, and edges of 3D mesh

models. Mesh simplification is performed after the acquisition of geometric data. The

faces and vertices are merged appropriately, simplifying the complex mesh model.

However, informative features such as sharp area, volume, and boundary should be

preserved. Pellizzoni et al. [161] proposed a mesh simplification algorithm named iter-

ative edge contraction (IEC). Their method is based on [84] which utilised the quadratic

error metric to find the optimal position of the vertex. Unlike the classic method [84],

the discrete curvature is computed using the Gauss-Bonnet method where the discrete

Gaussian curvature at a vertex is defined as 2π minus the total angles formed by edges

emanating from the vertex, which more aggressively simplifies rounded and flat regions.

In [119], the simplification process works to preserve the topological structure as

much as possible. The original 3D mesh model is approximated using fewer faces and

points. Asgharian et al. [18] presented a technique for simplifying a complex 3D mesh.

They reduce the vertices by mesh re-sampling utilising the Nyquist theorem that speci-

fies the most relevant samples necessary for simplification. The Nyquist method selects

the maximum and minimum curvature in different directions in the original 3D mesh for

adaptive sampling. The sampling approach obtains the optimal number of samples in

the simplified 3D mesh. The presented simplification model observed that visual qual-

ity could be preserved without significantly losing precision. To simplify the triangular

meshes, a novel Laplacian-based technique [131] is introduced, which can also preserve

the different geometric features. The Laplacian-based method produced fast and efficient

results. To classify the vertices, the Laplacian descriptor is combined with the K-means

clustering method. The introduced method showed promising results in terms of accuracy

and preserving geometric features.
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4.4 Voronoi Tessellation and Delaunay Triangulation

In geometry, Voronoi tessellation and Delaunay triangulation are used for partitioning and

analysing points as shown in Figure 4.1. Algorithms like these are usually used in 2D, but

they can also be applied to 3D meshes [67]. These are used in our pipeline to construct

ground truth mesh saliency maps from eye fixation data.

Figure 4.1: This illustration shows the Voronoi and Delaunay area in a 3D mesh
around a given vertex.

Voronoi diagrams divide planes into regions based on their proximity. Each region

contains points that are closest to a particular input point. By doing this, Voronoi cells or

Voronoi polygons can be formed, covering the entire plane. By using Voronoi tessella-

tion, 3D space can be divided into polyhedral cells. All points in space closer to an input

point are considered to be part of the Voronoi cell for that input point. They are typically

bound by planar surfaces called facets. Voronoi cells are formed by connecting pairs of

neighbouring input points with perpendicular bisectors [55]. In the case of a 3D point

cloud, the goal is to create polyhedral cells that cover 3D space. A point cloud consists of

cells that represent specific points. Each Voronoi cell contains all the points in space that

are closest to a particular point. Those lines that connect neighbouring points in the cloud

are the perpendicular bisectors that define their boundaries. There are several algorithms

available for computing Voronoi tessellation for 3D point clouds, such as Fortune’s algo-

rithm and incremental algorithm. Based on proximity relationships between points, these

algorithms iteratively add points and construct Voronoi cells. As a result, the 3D space is

divided into polyhedral cells, where each cell represents a point in the cloud [202].
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The Delaunay triangulation, on the other hand, is a triangulation of input points. A

triangle formed by input points will not have any points inside the circumcircle. Delau-

nay triangulations maximise the minimum angle of all triangles in 2D by connecting input

points to form triangles. The Delaunay triangulation can be extended to 3D meshes by

connecting the input points to form tetrahedra, which are the 3D equivalents of triangles.

By connecting four non-coplanar points in 3D Delaunay triangulation, no point lies inside

the circumspect of any tetrahedron created by the input points [38]. As for the Delaunay

triangulation of a 3D point cloud, the goal is to create a triangulated mesh. In the point

cloud, triangles are formed by connecting three non-collinear points. There should be no

point in a Delaunay triangulation that lies inside a tetrahedron formed by the points. A

Bowyer-Watson algorithm or an incremental algorithm can be used to compute the Delau-

nay triangulation of a 3D point cloud. In these algorithms, points are added and tetrahe-

dra are formed based on Delaunay criteria. In this case, the triangles are non-overlapping

and have the minimum angle that covers the point cloud. Delaunay triangulation and

Voronoi tessellation can both provide valuable information about spatial relationships be-

tween points in 3D point clouds. The Voronoi tessellation illustrates how space is divided

around each point. Delaunay triangulations provide a connectivity structure that is useful

for generating meshes and reconstructing surfaces.

4.5 Integration of Structural Similarity Index Model (SSIM)

in a Subjective Experiment Utilising Eye-tracking

The quality estimation model proposed by Wang et al. [223] determines the structural

similarity between two images and is used as the framework of quality measurement, so a

distorted image can be compared with the original one to figure out how visually precise

the indistinct image is to the novel image. They proposed a metric for structural similarity

measure (SSIM). The SSIM method joins three mechanisms to create a similarity measure

between two images through contrast, luminance and structure.
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Figure 4.2: This illustration shows a diagram of the structural similarity (SSIM)
measurement system [223]

Comparing two images A and B, the SSIM method takes a spatial patch around each

pixel to get local information around the pixel. Then a Gaussian function scales the pixel

intensity to give more influence to points closer to the centre of the patch. The mean

patch intensity is then calculated to produce µx and µy where x and y are spatial patches

of pixels in the same spatial position in images A and B. We would like to measure the

similarity between two saliency maps. In Figure 4.2, the system separates the task of

similarity measurement into three comparisons: luminance, contrast and structure. First,

the luminance of each signal is compared. Assuming discrete signals, this is estimated

as the mean intensity. The luminance comparison function l(x, y) is then a function of

µx and µy. Second, the mean intensity from the signal. In discrete form, the resulting

signal corresponds to the projection of the vector onto the hyperplane. Using the standard

deviation as an estimate of the signal contrast, the contrast comparison c(x, y) is then the

comparison of σx and σy. Third, the signal is normalised (divided by its own standard

deviation), so that the two signals being compared have unit standard deviation. The

structure comparison s(x, y) is conducted on these normalised signals (x − µx)/σx and

(y − µy)/σy. Finally, the three components are combined to yield an overall similarity

measure:

S(x, y) = f (l(x, y), c(x, y), s(x, y)) . (4.2)

It is important to note that the three components are relatively independent. The image
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structure does not change when luminance or contrast is changed.

It is necessary to define the three functions l(x, y), c(x, y), s(x, y), as well as the com-

bination function, in order to define the similarity measure in (4.2). The similarity mea-

sure should also meet the following criteria: Symmetry: S(x, y) = S(y, x). Bounded-

ness: S(x, y) ≤ 1. Unique maximum: S(x, y) = 1 if and only if x = y (in discrete

representations, xi = yi for all i = 1, 2, . . . , N , where N is the number of pixels).

This can be used to construct a luminance comparison function below

l(x, y) =
(2µxµy + C1)

(µ2
x + µ2

y + C1)
(4.3)

where the constant C1 is included to stabilise the function when µx + µy approaches

zero. The standard deviations of the spatial patches are used as a contrast metric; with

this calculation, a contrast comparison function can be rendered close to the luminance

comparison function.

c(x, y) =
(σxσy + C2)

(σ2
x + σ2

y + C2)
(4.4)

where the C2 constant is another constant for stabilisation. In order to calculate the final

part structure.

s(x, y) =
(σxy + C3)

(σxσy + C3)
(4.5)

We combine the three comparisons of (4.3), (4.4) and (4.5) and name the resulting simi-

larity measure the SSIM index between signals x and y.

SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ (4.6)

where α > 0, β > 0, and γ > 0 are parameters used to adjust the relative importance of

the three components. It is easy to verify that this definition satisfies the three conditions

given above. In order to simplify the expression, we set α = β = γ ≥ 1.

Finally, once we obtain the similarity measured SSIM index between signals x and

y as in equation (4.6), we now calculate the SSIM index between the neighbourhoods of
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two pixels, taking C3 =
C2

2
produces the following function:

SSIM(x, y) =
(2µxµy + C1) + (2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(4.7)

As SSIM is a method used for 2D images, it focuses on luminance, contrast and struc-

ture. In this work, we translate it to 3D meshes. The luminance equivalent consists of a

vertex property on the mesh, such as colour, normal, or vertex position instead of pixel

intensity. As we use SSIM to measure the similarity of mesh saliency, the mesh saliency

value at each vertex is used in place of luminance. The contrast would be variability in the

vertices’ properties, e.g. the variability of saliency values. In 3D meshes, unlike 2D im-

ages where the neighbourhood is directly defined, the topological structure is determined

by the adjacency or connectivity of vertices and edges. To address this, the only change

made in this work is how to extend the SSIM function to 3D meshes and how to analyse

the spatial patches (as neighbourhoods on meshes). Instead of inputting 2D images, a

value list is sent for each vertex representing the saliency at that vertex is used for each

input mesh.

The area covered by a pixel in an image is uniform for all pixels in that image, but this

is not necessarily true for 3D models. Each vertex is connected to faces of different sizes,

and each vertex has a different degree of influence on how the model looks. To account

for the varied vertex effect, the saliency value of each vertex will be multiplied by the

Voronoi area of the vertex (see Figure 4.1), which for a triangular mesh is the sum of 1/3

of the area of each face of the vertex. Changing SSIM to operate on 3D heat-maps re-

quires adapting the neighbourhoods of the standard SSIM. SSIM takes a window around

each pixel when working on 2D images, but this does not work directly for meshes due

to their irregular connectivity. We, therefore, replace such windows with neighbourhoods

on meshes within a certain distance to the vertex of concern. For this purpose, a smaller

neighbourhood than that used in eye-tracking mapping is more meaningful. We set the

SSIM neighbourhood distance threshold as 0.02 × dmax where dmax is the farthest dis-

tance between pairs of vertices on the mesh. Increasing the size of the neighbourhood in
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SSIM calculations to 3% or higher of dmax would generally make the method less sensi-

tive and could potentially reduce the method’s ability to detect small important structural

differences.

We explained in Section 2.7 eye tracking and the metrics that are used in different

applications. In our experiment, we used eye tracking (fixations). Eye tracking data is

widely used for the analysis of the behaviour of visualisation research, human-computer

interaction, scene perception and visual quality. Hanhela et al. [79] developed a model to

extort 3D gaze data in sequence from a camera eye-tracking data. Per eye gaze data has

been analysed by using the stereoscopic of the human visual system by the conversion

of data into stereoscopic volume-of-interest through a 3D heat-map of the eye tracking

experiment. By finding a connection between observers and increasing the tracking pre-

cision in this model, it is possible to optimise the participation of observers concerned

in 3D gaze-tracking experimentation which helps to achieve a high precision level in 3D

gaze tracking. In our experiment, the eye tracking experimental design includes several

steps, the first showing the 3D shape to the participant. The second step is mapping the

eye-tracking data to produce a heat-map describing the 3D saliency of the model. The

implementation detail is given in Appendix B.3 Figure B1.

Unlike subjective image saliency measure which is straightforward to present to the

participants, measuring 3D mesh saliency increases the question of how we present mod-

els to participants. We could show a rotating animated model to the participant; however,

this may introduce a bias as people lose focus towards the end of the image view. This

project takes 20 2D images of a model from various positions around the model to show

all parts of a model without introducing a bias (see Figure 4.3). The images are taken from

the centre of different faces of an icosahedron scaled to surround the model to ensure even

coverage. Icosahedrons have 20 equal triangular faces, 30 edges, and 12 vertices. When

it is subdivided (each triangular face is split into smaller triangles), it looks more like

a sphere. Due to the fact that it uses a relatively small number of vertices and faces, it

provides a good approximation of a sphere. Note eye tracking provides an intuitive way
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for collecting user interest given visual stimuli. However, the participant cannot see the

entire shape at once. To address this, we place each shape at the centre of origin, scale

it to fit in the unit sphere, and render 20 evenly distributed views (using face centres of

an icosahedron as the camera location with the camera direction pointing to the origin) to

provide sufficient coverage of the shape shown Figure 4.3.

Figure 4.3: Example of 3D shape is rendered from 20 different views.
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Several lights are placed around each point of the camera to ensure equal lighting.

Specular lighting strength was set to 0 as bright spots on a model could draw people’s

attention. This would give areas of relatively low geometric interest high saliency. To

facilitate mapping between the mesh and 2D rendered images, we also generate another

set of images. A 3D scatterplot marks the location of each vertex on the mesh. Each

vertex marker is colour coded by the vertex index using RGB encoding. Each marker

takes up exactly one pixel of the image. When given a fixation location in pixels the

remapping code can identify which vertex is at that location (or closest to it). The mesh

and the background of the image are then coloured black. This ensures that the only non-

zero RGB values are the vertices, otherwise, the remapping code could take the grey areas

of the mesh as a colour-coded vertex and either have array-bound errors or just incorrect

vertex selection. The benefit of having the mesh in the scene blacked out is that vertices

behind the mesh that would not be visible to a viewer do not show up on the vertex map

as they are blocked by the mesh as shown in Figure 4.4. This stops the situation where a

fixation may lie between two vertices and the remapping decides the fixation is on a vertex

on the opposite side of the mesh, where the participant could not see at all. After these

images have been generated, they will be used to obtain saliency data for each image in

an eye-tracking experiment.

Note that although 2D-rendered images are used to collect eye-tracking data, the

saliency values are associated with mesh vertices, and thus are ensured to be view-independent.

However, the number of views can affect the quality of mesh saliency maps. In cases

where fewer than 20 images are used, the mesh model’s coverage may be limited. There-

fore, it may be difficult to determine salient regions accurately if we do not have a com-

prehensive understanding of the model’s appearance from different angles. Due to the

limited viewpoints, the saliency map may be more sensitive to the views used in data

collection. However, the specific impact will depend on the saliency algorithm and the

quality of the data used. It is possible to estimate saliency using around 20 images and

provide reasonably good coverage of viewpoints. It is more likely that a saliency map will

capture a range of salient features with various viewpoints. Using more images can result
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Figure 4.4: Example of an object from two views and its corresponding vertex maps.

in more accurate and saliency maps. However, the actual effect depends on factors such

as the model’s complexity and its distribution. A saliency algorithm, dataset, and model

characteristics can all influence the optimal number of images for saliency estimation. To

determine which method is most appropriate for a particular application, it will need to

experiment with different numbers of images and evaluate the resulting saliency maps.

4.5.1 Design of User Experiments

The design of our experiment is shown in Figure B1 in the Appendix. When producing

these view images, we must ensure they express clear clues for 3D shapes but avoid

introducing artefacts that may distract user attention. We have done a demo to check the

suitable background colour that makes the participants focus on the shape rather than the

background colour. We found the black background colour is more suitable to focus on



95

compared with the white background Figure 4.5.

Our preliminary user evaluation shows that the black background is less distracting

than the white background (see Figure 4.6), so participants will concentrate on the actual

shapes rather than their attention wandering around in the background. We also set the

light source to be in the same location as the camera and pointing towards the object’s

centre, ensuring the captured view is well-lit (but not over-exposed).

Figure 4.5: Example views of one mesh (Armadillo) white background. 8 out of 20
views are shown here.
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Figure 4.6: Example views of one mesh (Armadillo) with the black background. 20
views are shown here.
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4.6 Experimental Setup

To make the task manageable, in particular, to ensure that participants can concentrate

while doing the study, we select 20 shapes as shown in the references in Appendix B.1 in

our study. This leads to 400 rendered images, 20 views per shape at 1920×1080 pixel res-

olution. As described before, each participant is shown four views of each shape, leading

to a total of 80 images. The eye-tracking data of all users is then fused to produce ground

truth mesh saliency on 20 shapes. When applying our dataset for machine learning, We

have used 5-fold cross-validation, a method of cross-validation that randomly partitions

the original sample into 5 equal subsamples. Among the 5 subsamples, one subsample

is retained as validation data, and the remaining 4 subsamples are used as training data.

During cross-validation, each subsample is used as validation data exactly once, as the

process is repeated five times. The average of the five results can then be used to pro-

duce a single estimate. Note that although 20 shapes are not many, each shape contains

thousands of vertices, and thus it is sufficient for training machine learning models when

applied at the vertex level.

As the subjective result is hard to measure, before we started the experiment, we

showed the participants a trailer of the experiment to ensure that the participants fully

understood the task before starting. Some other studies allow the user to rotate and zoom

in/out of the model, but our study is different because we use an eye tracker camera to

calculate the time users need for each view. Also, we let the participants ask questions

during the trailer to feel more confident about getting accurate results. The participants

are then shown images of these rendered views, and their eye-tracking data is captured.

However, adjacent views naturally have large overlaps, which not only happens naturally

but is also useful, as this allows saliency captured from different views to be reliably fused.

However, this leads to a potential problem of memorising: when a user is presented with

a similar view shortly before, he/she may not actively try to explore interesting features

of the shape.
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To avoid this, as we present in Figure 4.7 we carefully group the 20 views into five

groups, each with four views, such that these four views are as widespread as possible,

and each user is only asked to look at one group of views for each shape. The user is then

asked to watch these views (4 views per shape) in a random order to avoid bias, with each

rendered view shown for 5 seconds [54]. If the participant has less than 5 seconds, it may

not be enough to capture all the primary points of interest, although it may be adequate for

very simple stimuli like asking what the object in the scene is. However, when viewing a

scene for longer than 5 seconds, the viewer may also look at less important regions. Each

rendered image is followed by 2 seconds grey background to break any fixation from the

previous image and to provide a pause to allow the subjects’ eyes to relax and focus (see

Figure 4.8).

Figure 4.7: Examples of 4 views in each shape and the eye fixation of a participant.

4.6.1 Experimental Procedure

The experiments were administered within the School of Computer Science and Infor-

matics, Cardiff University. Participants in our experiment participated voluntarily without

being awarded monetary or other rewards. A consent form was given to the participants
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Figure 4.8: Example of how we run the experiment using eye tracker after each
shape, we use the grey background to give a participant break.

before the experiment began. They were also informed that they could leave the experi-

ment at any time and that they were not required to complete it. The names and gaze data

of the participants were kept anonymous. The eye tracker we used to collect their gaze

data was used during their participation. The experiment was carried out in a computer

vision lab with an occasional reflective surface and constant close light. The viewing

distance was maintained at around 60 cm.

The eye movements of the participants were measured employing a non-invasive Sen-

soMotoric Instrument (SMI) Red-m eye-tracker operating at a rate of 250 Hz. Eye track-

ing manufacturers often report accuracy at <0.5° [63], but the SMI device we use reports

accuracy at 0.4°. In order to evaluate the accuracy of existing methods using the data from

the eye-tacking experiment, it is necessary to compare the saliency map from the exist-

ing work with the saliency map derived from the eye-tracking (ground truth) experiment

which we normalise from 0 to 1. By the means of SMI’s BeGaze™Analysis Software,

gaze data was extracted from the raw eye-tracking data obtained throughout the experi-

ment.

For every 3D mesh, this data contains the number of fixation points, and for each fixa-

tion point, its coordinates and duration. Fixation was strictly outlined by SMI’s computer

software using the distribution and duration-based formula established, with a minimum
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period of 100 ms [226]. The mean duration of fixations µi for a subject i is:

µi =
1

n

n∑
j=1

xj (4.8)

where n is the total variety of fixations recorded over the 80 stimuli utilised in our study

and xj is the period of the fixation j.

Participants: Forty female and twenty male members from the School of Computer

Science at Cardiff University, with ages in the range of 20 to 39, volunteered to participate.

Design and procedure: Participants were informed that their task in the experiment

was to look at the region on the model that they thought was of most interest, and the

participant was not allowed to move their head during the experiment so that if there was

an issue we can pause the experiment and then recommence. The experiment took only

ten minutes per participant.

Failure of eye tracking: During the experiment, we selected the normal vision par-

ticipant, but we noticed some failures in capturing eyes during the experiment. We have

found 5 participants who have stigmatised or tired eyes if they are focusing they lose

consternation. We removed their data from our work to avoid any misleading results, as

shown in Figure 4.9.

4.6.2 Ethical Approval

The Human Ethics Committee of the Cardiff University SREC reference: COMSC/Ethics/2019/212

has authorised this study. All information that is collected about the participants during

the experiment of this research is kept strictly confidential. The information is stored

securely through Cardiff One Drive, for a period of five years. We may share the data

we collect with researchers at other institutions, but any information that leaves Cardiff

University will have participant personal details removed. In any sort of output we might

publish, we will not include information that will make it possible for other people to
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Figure 4.9: Example of a stigmatised failure to capture eye tracking.

know the participant’s name or identify them in any way.

4.7 Obtaining Ground Truth and Evaluation of Existing

Methods

In the following, we discuss how we work out the ground truth saliency map on a mesh

M from subjective eye-tracking data (see Figure 4.10).

Let Ri (i = 1, 2, . . . , 20) be the 20 rendered views of M . For each view Ri, the eye

tracking data of all the users is collected and represented as a sequence of eye fixation

points (x
(i)
j , y

(i)
j , t

(i)
j ), where j is the fixation index, (x(i)

j , y
(i)
j ) are the coordinates of the

fixation point in the image domain, and t
(i)
j is the duration of the fixation. The duration of

fixations in our experiment is a minimum of 100 and the maximum is 200 milliseconds

However, since we are only focusing on one object, this period of time should avoid bias

[226]. As mentioned in other studies [178], the duration should be between 100 and 300
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ms depending on the task.

As fixation points tend to be sparse, following the common practice in image saliency

research that applies Gaussian blurring to the fixation map to estimate the saliency map.

To determine the most effective sigma value for Gaussian blurring in our saliency map

generation method, we conducted experiments with and compare the performance of dif-

ferent sigma values such as 1.0, 1.5, 2.0 and 2.5 etc. With lower sigma, obtained saliency

maps do not provide a good coverage for salient regions due to the discrete fixation points.

On the other hand, higher sigma values such as 2.5 over-smooth the maps, leading to

saliency regions covering not so significant part of the mesh. For our specific saliency

map generation method, a sigma value of 1.5 is most effective. Compared to other tested

sigma values, it provides a balanced trade-off between coverage and detail preservation.

We map discrete fixation maps to meshes to obtain per-vertex saliency values as follows.

We first map 2D fixation point (x(i)
j , y

(i)
j ) to the corresponding fixation vertex v

(i)
j on the

3D mesh M . It iterates over each fixation in the experiment. Each fixation takes the vertex

map corresponding to the 2D image fixation, takes the fixation x and y position in pixels

finds the nearest coloured pixel in the vertex map and decodes the RGB value into a vertex

index. Let dmax be the distance between the two farthest apart vertices on the mesh. Each

vertex v in the neighbourhood N (i)
j on the mesh M receives a saliency contribution from

the fixation vertex v
(i)
j according to the following formula:

s(v, v
(i)
j ) = exp{−d(v, v

(i)
j )/d̄} · t(i)j (∀v ∈ N (i)

j ). (4.9)

In practice, d̄ is set to 0.05 times dmax, and N (i)
j is defined as those vertices v with

distance to the fixation vertex d(v, v
(i)
j ) ≤ d̄. This ensures each fixation point influences

a reasonably sized neighbourhood, with the influence dropping where the distance from

the fixation point increases. The distance measure d(·, ·) is ideally geodesic distances,

although, in practice, Euclidean distance gives a decent approximation and is used in our

experiments due to the relatively small neighbourhood size and shapes not having highly

folded structures. Then, the contributions of all fixation points from the same view are
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summed up to work out the saliency value for each vertex w.r.t. the given view s
(i)
v :

s(i)v =
∑
j

s(v, v
(i)
j ). (4.10)

However, the saliency values for different views are not directly comparable. For ex-

ample, if one view contains highly regions, e.g., faces, some potentially important but less

significant regions, e.g. hands, may receive low saliency, whereas if the hands are seen

without faces at the same time, they may be seen as highly salient in that particular view.

Therefore, the relative importance of each vertex needs to be normalised when fusing in-

puts from different views. Let the rendered view V(i) be the vertices that are visible from

view Ri. We further introduce a weight wi for the i-th view and use the commonly seen

regions as anchors for normalisation, formulated as the following optimisation problem:

minw1,w2,...,w20

∑
i1,i2∈{1,2,...,20},i1 ̸=i2

∑
v∈V(i1)

⋂
V(i2)

(
wi1s

(i1)
v − wi2s

(i2)
v

)2
, (4.11)

where i1 and i2 iterate over all adjacent views (with at least one shared vertex). This

ensures shared vertices across multiple views have saliency values as consistent as possi-

ble. To avoid getting trivial solutions with w1 = w2 = · · · = w20 = 0, we additionally

introduce a constraint: ∑
i

wi = 1. (4.12)

The above least-squares optimisation problem can be easily solved by solving a (small)

linear system with the weights of individual views as unknowns. The final saliency value

for sv is obtained by averaging over values, linearly scaled to [0, 1]:

sv =

∑20
i=1,v∈V(i) wi · s(i)v − smin

smax − smin

, (4.13)

where smin and smax are the minimum and maximum values of sv (before linear scaling).

Our collected ground truth saliency maps can be used to evaluate the effectiveness
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of existing mesh saliency (MeshSIFT [49], SHOT [208], Gaussian curvature and Off-

centre bias [21]) and existing 3D saliency models, namely Lee et al. [115, 184] and

Song et al. [192] in a quantitative way. To evaluate the existing methods of measuring

saliency, methods are required for comparing two saliency maps on the same mesh, i.e.

the ground truth generated by the eye tracking experiment and the saliency map output

by a saliency prediction method. The prediction method’s performance is better if it has

a closer distribution to the ground truth.

A basic measure for the similarity between these maps is Mean Square Error (MSE),

which is 0 if they are a perfect match, and a high value if they are dissimilar. This measure

is simple, but it only works well when the absolute salient values of two saliency maps

are close. In practice, however, it is the relative importance which is more important. For

instance, if one region is more important than another, it is hard to know how much the

salience value of the first region should be larger than that of the second. To address this,

we utilise the SSIM method (see Section 4.5), a measure widely used in image analysis

and is known to be better correlated to perceptual similarity and less sensitive to absolute

value differences. We extend the standard SSIM defined in the image domain to 3D mesh

heat maps.

4.8 Learning New Methods of Measuring 3D Mesh Saliency

Once we obtained the ground truth now we used machine learning to learn a salience

model based on a combination of geometric features (i.e. MeshSIFT [49], SHOT [208],

Gaussian curvature and Off-centre bias [21]) and existing 3D saliency models, namely Lee

et al. [115, 184] and Song et al. [192]. Existing methods for mesh saliency are largely

based on handcrafted rules. In this work, we investigate using learning-based approaches

to predict mesh saliency. To make this task feasible,we take features at each vertex as

input and predict saliency values so that they are as close as possible to the ground truth

saliency described in the previous Section 4.7.
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Here, Off-center bias measures the Euclidean distance of a vertex position from the

object’s centre such that the further away from the centre, the more salient it is. This is

intuitive as protrusions tend to have higher saliency values. We used a non-linear suppres-

sion operator similar to the one proposed by Itti et al. [94]. Let fv = (fv,1, fv,2, . . . , fv,N)

be the feature vector containing both geometry-related and existing saliency estimation

results for vertex v, where N is the total number of feature values for a vertex. Machine

learning models are built using all the vertices of the meshes in the training set, and then

we retain test set mesh vertices for testing purposes. For this purpose,

There are three separate built linear and nonlinear combination models that we used in

this study to get more accurate in measuring 3D mesh saliency, i.e. Least Square Regres-

sion (LSR), Feed-forward Neural Network (FNN) and Support Vector Regression (SVR).

The advantages of using these methods are discussed as follows. There are many reasons

why least squares regression (LSR) is a simple algorithm to implement. It is also com-

putationally efficient, which is very useful when dealing with large 3D meshes. Also, the

coefficients of the least squares regression model can be interpreted directly, which could

help us understand how different 3D mesh features contribute to its saliency. Moreover,

least squares regression can provide a good fit to the data when the relationship between

features and saliency is linear or approximately linear. Support Vector Regression (SVR)

uses a subset of the training points to calculate the decision function, making it rela-

tively robust to outliers. A nonlinear relationship between a feature and a target value

can be modelled by SVR by using different kernel functions. It provides flexibility and

potentially higher predictive accuracy for complex, nonlinear data relationships. Lastly,

Feed-forward Neural Networks (FNNs) have only one direction of input to output. The

difference between them and recurrent neural networks is that they do not have cycles

or loops. Feedforward neural networks are easily parallelisable because each layer has

independent nodes. It can be helpful when using hardware accelerators like GPUs.
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4.8.1 Least Squares Regression

The first method is the Least Square Regression (LSR), a straightforward method for the

data set that minimises each method’s (MSE) against the ground truth by linearly scaling

each method by weight for its data set. Then these weights can be applied to each of the

test set models’ saliency maps to produce a saliency map weighted by the learned model.

Figure B4 in the Appendix show the flow of how LSR predicts the weight. SSIM can then

evaluate the method’s accuracy for the test set against ground truth. The least squares

regression aims to work out the optimal per-feature weight ωk and bias b such that the

model best predicts the saliency values in the training set, i.e.

min
∑
v

(
N∑
k=1

ωkfv,k + b− sv

)2

. (4.14)

4.8.2 Support Vector Regression

Support Vector Regression (SVR) is a type of Support Vector Machine (SVM) that is used

for regression problems. For 3D mesh saliency, SVR could be used to learn a mapping

between local geometric features and saliency values as shown in Appendix Figure B4.

To calculate the local geometric features of each vertex in the mesh, there are several

properties that are used, such as mean curvature, Gaussian curvature, and shape index. It

is possible to represent each vertex’s features as a vector. We have used the same process

as least squares regression. SVR, the standard model, takes per-vertex features as input

and predicts the saliency value for the vertex [237].

s = f(x) =
∑
n

(αn − αn∗)(xn ∗ x) + b, (4.15)

where s represents the predicted saliency of a vertex. f(x) represents the function learned

by the SVR model. x represents the feature vector for a vertex, which includes its geo-

metric properties. n is a sum over all the training vertices, αn and αn∗ are the Lagrange
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multipliers. They are non-zero only for the support vectors. (xn ∗ x) is the dot product

of the nth training example xn and the new feature vector x. b is the bias term, which

adjusts the average predicted saliency. Using this equation, we calculate a weighted sum

of the dot products between the new feature vector x and each of the training vertices xn.

Using the difference between the Lagrange multipliers, we can determine how much each

training vertex influences the prediction.

4.8.3 Machine Learning based on Neural Networks

The third method is to use the Feed-forward Neural Network (FNN) of MATLAB in the

toolbox of the neural network. The FNN is different from the least squares regression in

a way that replaces the linear model with the neural network. This data will be trained by

the FNN until it can no longer be improved. For the remaining of the selected models, the

network will then simulate the output against the ground truth and SSIM will assess the

similarity between the network and ground truth as shown in Appendix Figure B3.

In this network, three layers are used where the input layer contains N nodes corre-

sponding to the input features, the hidden layer contains ten nodes, and the output layer

contains one node corresponding to the predicted mesh saliency value [156]. The output

is in only one direction, forward. The network has no phases or loops. The main purpose

of using a feed-forward network is because this task has only one single layer perception

forward from input nodes to hidden nodes.

Our dataset only contains a small number of 3D shapes, so learning at the shape level

is not practical. Instead, our neural network is trained to predict mesh saliency at the

vertex level, which is feasible. As saliency prediction based on vertex geometric features

is relatively straightforward, we found that a shallow feedforward network with 3 layers

achieves better performance than alternative architectures.
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Teapot Red circular box Cup Dragon

Armadillo                                Head                         Grog                       Bulldog                     Kitten                                         

Spot                                       Bunny                                   Gargoyle                             Sheep   

Happy                                      Ramesses Chair

Ant                                       Frog                                   Raptor                                     Falling                                                             

Figure 4.10: Examples of ground truth salient maps derived from eye tracking data;
red and yellow are salient areas, while green and blue are non-salient areas. Source
of the data present in the Appendix B.1
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4.9 Results and Discussions

Figure 4.11 illustrates the saliency maps before and after normalisation. It is evident that

normalising views was practical. Areas that garnered attention from multiple viewpoints,

especially the faces shown in Figure 4.10, were accentuated due to participants focusing

on them. However, participants did not focus on faces in some shapes like Armadillo and

Kitten, directing their attention elsewhere. Compared to predominant areas like faces,

these areas seem less emphasised which is a valuable result for future work.

Figure 4.11: Examples of comparison of saliency maps before and after normalising
views. From left to right Armadillo (before), Armadillo (after), Kitten (before) and
Kitten (after)

4.9.1 Eye Tracking and Mesh Saliency Ground Truth Results

We now show some examples demonstrating the effectiveness of our fusion strategy for

saliency from individual views. As shown in Figure 4.12, the initial eye-tracking data

is captured on individual views, which are then fused using our method to produce a

consistent saliency map on each mesh (with a normalised saliency value assigned to each

vertex of the mesh). As shown, the fusion works well, with salient areas that get a lot

of attention from multiple different views, like both faces in the examples in Figure 4.12.

Regions which receive little attention from the participants correspond to those boring/less

distinctive areas of the model, and they have low saliency values.
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Figure 4.12: Examples of 2D fixation maps and the results of fusing them to form
consistent saliency maps on 3D models; red and yellow are salient areas, while green
and blue are non-salient areas.

More examples of ground truth saliency maps from eye tracking are shown in Fig-

ure 4.13. Similar trends are observed, although, for objects not including faces (e.g. the

Falling shape), salient regions tend to be more flexible, and some regions on the body

are also relatively salient (although less so than faces); see, e.g. the Gargoyle shape.

Participants paid the most attention to models with visible facial features.

Figure 4.13: Examples of ground truth salient maps derived from eye tracking data;
red and yellow are salient areas, while green and blue are non-salient areas. From
left to right Falling, Bulldog and Gargoyle shapes.



111

As shown in Figure 4.13, the saliency map of the Falling mesh is far from the rest of

the models, while other models show the head has a very high salience. Furthermore, this

finding is to be predicted; very little else is known to be notable on models with faces.

This might be because the saliency values around the face greatly outweigh any other

values, as each participant will look at the face at some point. This means there is a minor

salience quality when the saliency map is normalised 0 to 1 area that is not in the facial

region.

One way of circumventing this would be to use a non-linear scaling to stop super

salient areas from blocking out the rest of the dataset. The second possibility is that,

obviously, people first look at the most salient area of an image. The most salient area

in the case of these models might be the head. However, as participants only have 5

seconds to examine each image, they may not have time to look at other slightly less

salient areas on the mesh. For example, the body or other parts. For this problem, it could

be possible to reduce the exposure time of each object and assign a higher saliency weight

to fixations at the beginning of a viewing, so that the first objects viewed would be given

greater importance than the last point viewed.

4.9.2 Evaluation Results of Existing and Our Learning Methods

We now apply our evaluation methodology to existing mesh saliency methods and our

learning-based methods. To ensure a fair comparison, in particular between existing

methods and learning-based methods, we only report the average performance on the

test set. For existing methods, we test representative methods Lee et al. [115], and Song

et al. [192], and baseline methods Gaussian curvature and off-centre-bias. Quantitative

evaluation on our eye tracking-based test set is reported in Table 4.1. As can be seen,

Song et al.’s method achieves better performance than other existing and baseline meth-

ods, according to both SSIM and MSE. Other methods tend to perform similarly, with

Lee et al.’s results better than the three baseline methods in both metrics.
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The variants of learning-based methods perform better than existing methods, accord-

ing to both SSIM and MSE metrics. We found that least squares regression outperformed

more complicated methods, including feed-forward neural networks and SVR. This is

probably because of the relatively limited data, and the simpler linear model avoids over-

fitting and generalizes better to unseen data. Our learning-based method achieves (0.906

SSIM and 0.004 MSE), which are significantly better than state-of-the-art methods (0.751

SSIM and 0.010 MSE) for Song et al [192].

In Figure 4.14, we show the visual comparison of different results of Ant shape, along

with SSIM values. Moreover, we explain before how we generated the existing methods

and geometric features to produce the result. This figure shows the output of these meth-

ods together. As can be seen, ground truth (captured using an eye tracker) is generally

plausible, and learning-based methods, particularly those based on least-squares regres-

sion, predict saliency maps more similar to the ground truth. SSIM is a method used for

2D images. As described before, it is translated to the 3D meshes. Note, SSIM does not

consider colour differences, only luminance, contrast and structure changes, it may not

accurately reflect perceptual similarity, particularly for complex 3D objects. This means

there could be cases where SSIM scores are acceptable, but visual quality is not expected.

Table 4.1: Average SSIM value and Mean Square Error (MSE) for each exist-
ing method and our learning-based method for evaluating the quality of predicted
saliency maps against the ground truth derived from eye tracking. The only test set
is used to ensure a fair comparison. For SSIM, larger is better, and for MSE, smaller
is better.

Models SSIM MSE

E
xi

st
in

g
m

od
el

s

Off-center bias 0.620 0.020
Lee et al. 0.629 0.016
Song et al. 0.751 0.010
Gaussian curvature 0.616 0.022
Mesh SIFT 0.720 0.012
SHOT 0.620 0.016

L
ea

rn
t

m
od

el
s Least squares regression (LSR) 0.906 0.004

Feed-forward neural network (FNN) 0.895 0.006
Support vector regression (SVR) 0.861 0.009
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(a) Ground Truth (b) Least-Square SSIM 0.986 

(c) Feed-Forward SSIM 0.964 (d) Support Vector SSIM 0.910 

(e) RanSong SSIM 0.788 (f) Lee SSIM 0.692 

(g) Off-Canter SSIM 0.671 (h) SIFT SSIM 0.662 

(i) Gaussian Curvature SSIM 0.643 (j) SHOT SSIM 0.618 

Figure 4.14: Example of Ant’s saliency results: (a) ground truth, (b,c,d) our
learning-based methods, (e,f) existing methods and (g-j) geometry feature-based
baseline methods.
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4.10 Summary

Estimating saliency on meshes is a fundamental tool that benefits many downstream ap-

plications. Existing methods largely focus on developing dedicated formulas to achieve

this, but it is difficult to fully capture perceptual importance using these methods. This

chapter investigates a methodology to produce ground truth saliency maps on meshes

using eye-tracking data. In particular, we fuse saliency maps from individual views to

produce a single consistent saliency map for a given mesh. We further develop learning-

based methods that take existing saliency prediction results and geometric features at

each vertex as input to predict the local saliency value. Qualitative and quantitative re-

sults show that our learning-based methods, particularly the model based on least squares

regression, outperform state-of-the-art methods. In future work, we would like to build a

larger dataset and evaluate the effectiveness of more machine learning methods, including

methods based on deep neural networks.
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Chapter 5

Objective Quality Assessment Measures

for Mesh Quality

Overview

Chapter 3 presented our methodology on 3D mesh quality scores using a subjective

study while wearing a VR device. This chapter focuses on objective quality measures

used in a traditional normal display desktop setting and compares them with our VR

subjective study. The objective study in this chapter compares different quality assessment

methods, which are methods focused on measuring the dissimilarity between two meshes

by calculating the geometry distance between them. We evaluate the state-of-the-art mesh

perceptual difference metrics for predicting the objective quality scores captured in the

VR setting and compare these with the desktop setting. Since salient regions are more

important than others and can have a more significant impact on perceptual quality, we

further propose a new mesh perceptual difference measure incorporating mesh saliency.

After a brief introduction, in Section 5.1 we provide an overview of perceptual ob-

jective quality measures on 3D meshes and summarise state-of-the-art objective quality

methods in Section 5.2. In Section 5.3, we present the details of comparing the subjective

and objective quality assessment studies. Section 5.4 and Section 5.5 present our data

and results of the proposed objective quality metric on both settings. Finally, Section 5.7

presents the conclusion of our work and future work.
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5.1 Introduction

Many applications including Virtual Reality benefit from 3D object processing, transmis-

sion and visualisation. When dealing with 3D models (often represented by polygonal

meshes), several processing methods, such as filtering, denoising, simplification, water-

marking and compression, are routinely used. These algorithms have different objectives,

but the way they modify the mesh’s visual appearance is an important consideration. A

watermarking scheme seeks maximum robustness while keeping the geometric modifi-

cation as unnoticeable as possible; similarly, a compression or simplification algorithm

seeks minimum streaming size or triangle number while keeping the visual difference

with the original mesh as slight as possible. Denoising or filtering algorithms are used to

enhance the model’s quality while keeping its original form.

As we discussed earlier, these algorithms generally use geometric distances (e.g., Eu-

clidean vertex-to-vertex distances, Hausdorff distances) that do not capture visual quality

or the perception of the difference between two 3D models. It may be possible to capture

the perception of visuals by conducting subjective experiments in which human observers

provide their opinions about the processed models. The problem with such subjective

evaluations is that they are both time-consuming and expensive and cannot be incorpo-

rated into automatic systems. Several perceptual-based objective quality metrics have

been proposed in the computer graphics community to better reflect differences of 3D

objects in visual perception.

Subjective research and objective measurements can be used to assess perceptual qual-

ity. A subjective experiment based on human judgment of a set of distorted objects is used

to analyse and compare with geometric measures. Objective metrics are methods that are

supposed to predict/or measure visual quality loss. Most present processing techniques

(simplification, watermarking, and compression) are driven and/or assessed by basic met-

rics such as Hausdorff distance (HD) and root mean square error (RMS), but these are not

consistent with human vision, which is a significant issue. In this regard, we first compare
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the VR and desktop settings using perceptual-based metrics such as mesh structural dis-

tortion measure (MSDM) and multi-scale mesh structural distortion measure (MSDM2)

[108], and compare their prediction quality for VR and desktop settings. We further pro-

pose a new metric that incorporates mesh saliency.

5.2 Mesh Difference Metrics

Several objective quality criteria for 3D models have been established, inspired by the

large quantity of past work on image and video quality evaluation. These are typically

full-reference comparing the distorted model to its original/reference (as we discussed in

Chapter 3) and employ the traditional technique used in image quality assessment: vertex-

level local feature differences are determined, which are then pooled across the whole 3D

model to generate a global quality score.

In the following sections, we provide a brief explanation of the metrics that were

examined. Two traditional geometric measurements are HD and RMSE. Karni and Gots-

man [99] and Sorkine et al. [195] proposed two new RMSE combinations and the GL,

which we have also incorporated. Finally, we have considered four of the more recent

model-based perceptual measures: Lavoué et al. mesh structural distortion measure [111],

Corsini and Drelie Gelasca et al. [43] roughness-based metrics. We do not use perceptual

image-based metrics in our studies since they are less reliable for predicting the perceived

visual impairment on 3D models, as mentioned at the start of Section 2.6.2.

Hausdorff Distance (HD) in 3D space, the distance between a point p and an object

A is represented by the calculation e(p,A):

e(p,A) = min
vAi ∈A

d
(
p, vAi

)
(5.1)

This equation demonstrates the relationship between the ith on vertex object A and
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the d Euclidean distance. The following calculation is the asymmetric Hausdorff Distance

between two objects, A and B.

Ha(A,B) = max
vAi ∈A

e
(
vAi , B

)
. (5.2)

After that, the symmetric Hausdorff Distance is defined as follows:

Hd(A,B) = max {Ha(A,B), Ha(B,A)} . (5.3)

Root Mean Square Error (RMS) is based on the assumption that correspondence

vertices between the two objects are available. Because of this, it can only be used to

compare two meshes with the same connectivity. In formula

RMS(A,B) =

(
1

n

n∑
i=1

∥∥vAi − vBi
∥∥2)1/2

(5.4)

Where n is the number of vertices in each mesh and vBi is the vertex of B matches vAi of

A.

Geometric Laplacian Measures (GL1) and (GL2): Karni and Gotsman [99] in-

vented the GL. It is based on a measure of the vertices’ smoothness. In particular, given a

vertex v.

GL(v) = v −
∑

i∈n(v) l
−1
i vi∑

i∈n(v) l
−1
i

(5.5)

where li is the Euclidean distance from v to vi and n(v) is the set of indices for v′s

neighbours. After a Laplacian smoothing step, GL(v) shows the difference and its new

position. Taking into account Eq. 5.5, Karni and Gotsman [99] has created a visual metric

GL1 between two objects A and B defined as

GL(A,B) = α RMS(A,B) + (1− α)

(
1

n

n∑
i=1

∥∥GL
(
vAi
)
−GL

(
vBi
)∥∥2)1/2

(5.6)

Following previous work, two settings are considered: GL1 where α = 0.5, and GL2
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where α = 0.15. The latter puts more emphasis on geometric Laplacian differences.

Mesh Structural Distortion Measure (MSDM): Lavoué et al.’s[111] MSDM mea-

sure is based on the idea of structural similarity for evaluating the quality of 2D images by

Wang et al. [223]. It is calculated in a bottom-up approach, where local distortion mea-

sure is first calculated. The local neighbourhood around vertex v is defined as vertices

within the sphere centred at v with radius r (set to 0.5 % of the bounding box length of

the mesh). It is likely that some edges intersect with the sphere, so to improve accuracy,

especially with poor tessellation, edge points are also added, which are defined as inter-

section points of edges with the sphere. Curvatures at the edge points are obtained by a

simple linear interpolation of curvatures at the endpoints of edges.

LMSDM defines how to measure the distance between two local mesh windows a

and b:

LMSDM(a, b) =
(
0.4× L(a, b)3 + 0.4× C(a, b)3 + 0.2× S(a, b)3

) 1
3 . (5.7)

where

L(a, b) =
∥µa − µb∥
max(µa, µb)

C(a, b) =
∥σa − σb∥
max(σa, σb)

S(a, b) =
∥σaσb − σab∥

σaσb

(5.8)

which are defined using the mean µ and standard deviation σ of curvatures within local

regions a and b respectively. These distance functions have a solid intuitive relationship to

psychovisual ideas and several previous efforts on 3D perception. A normalised curvature

distance is denoted by L. The curvature distance, which Kim et al. [100] also discuss, is

inherently tied to normal directions, which drive rendering and hence the visual appear-

ance of the 3D object. The standard deviations, indicating the roughness of the surfaces,

are used to calculate C. Several researchers emphasised the importance of roughness dis-
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tance for perceptual measurements [99, 43]. Finally, S, like Howlett et al. [89] and Lee et

al. [115], seeks to identify changes in key features by evaluating the covariance between

the local windows.

The psychovisual research community [58] acknowledges that there are three main

significant groups of regions in an image or a 3D object edge, textured or smooth. These

categories are related to the notion of masking; textured (or rough) parts have a high

degree of masking, but geometric changes on edges or smooth regions are considerably

more evident. The suggested metric captures these behaviours: The C coefficient will

indicate a geometric change on a smooth zone that changes the roughness degree, but the

structural S coefficient will highlight a change on an edge region.

A Minkowski sum of the nw local window distances between two meshes A and B

determines their global measure:

MSDM(A,B)=

(
1

nw

nw∑
j=1

LMSDM(aj, bj)
3

)1/3

∈ [0, 1) (5.9)

nw is the total number of local mesh windows, and bj is B’s local window that corre-

sponds to A’s window of aj . Practically, this measure is asymmetric and considers one

local window per vertex of the original mesh. When the measured objects are visually sig-

nificantly different from others, their value goes toward 1 (the theoretical limit), whereas

it is equal to 0 for identical ones.

Multi-scale Mesh Structural Distortion Measure Method (MSDM2). Similar to

MSDM, this technique is primarily influenced by Wang et al. [223] 2D image SSIM

metric, which argues that the human visual system is well-suited to retrieving structural

information. As a result, this metric is based on structural differences (as measured by

curvature statistics) derived from corresponding local regions from the meshes being com-

pared. Compared with MSDM, MSDM2 is calculated in a multiscale manner. As Zhu

et al. [253] have demonstrated, the perceptibility of distortion on a 3D object is depen-

dent on its level of detail and viewing conditions (e.g. display resolution and viewing
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distance). As a result, a single-scale technique may be applicable only in certain circum-

stances. As a result, it develops a multi-scale distortion measure, similar to what Lee

et al. [115] proposed for their saliency model, to capture distortion at all perceptually

significant scales, improving efficiency and robustness. Different scales are implemented

through using different radii of local neighbourhoods.

The visual distortion measure is computed as follows. Given a distorted mesh Md and

the associated reference (i.e. original) mesh Mr, scale-dependent curvatures are computed

on vertices from both meshes, using fast projection and barycentric interpolation, and

each vertex of the distorted mesh Md is matched with its corresponding 3D point and

curvature value from the reference mesh Mr. A local distortion measure is calculated

for each vertex of Md as the difference of Gaussian-weighted statistics obtained across a

local spherical region of radius r. The global multiscale distortion score is then calculated

using Minkowski pooling to combine the local values. The above steps are repeated at

multiple scales, resulting in several distortion maps, and the final distortion map is created

by combining all of the local distortion maps.

The MSDM2 method starts with a fast asymmetric match between the distorted ob-

ject Md and the original object Mr, then computes Gaussian-weighted curvature statistics

at multiple scales over local windows for each vertex to produce a local distortion map

pooled into a single global multiscale distortion score (GMD) [111]. The final metric is

obtained by averaging forward (Md −→ Mr) and backward (Mr −→ Md) global distor-

tion scores. In practice, three scales are used, where r = 2ε, 3ε, 4ε, where ε is 0.5% of

the model’s bounding box’s maximum length. The key differences between the planned

MSDM2 and its predecessor MSDM [111] are as follows: The curvature scale size (im-

proving robustness). MSDM requires an implicit vertex-vertex correlation, but MSDM2

does a rapid projection and curvature interpolation. It suggests that there is no connec-

tion limitation, which increases the quality of the matching. Curvature statistics have been

mostly improved; moreover, they have been standardised using Gaussian weighting meth-

ods, and their combination has been modified. The connection with human judgement has
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improved significantly.

Direct Reconstruction of 3D Worker Pose (3DWPM1 and 3DWPM2): Taking into

account that visual artefacts caused by watermarking can be measured by the amount of

roughness introduced on the surface, Corsini et al. [43] proposed two perceptual metrics

for the quality evaluation of watermarking algorithms. The watermarking visual impair-

ment is evaluated by considering the increment of roughness between the original model

and the watermarked model in the following way:

3DWPM(A,B) = log

(
ρ(B)− ρ(A)

ρ(A)
+ k

)
− log(k) (5.10)

There are two total roughness values: ρ(A) represents the roughness of the original model

and ρ(B) represents the roughness of the watermarked model. In order to avoid numerical

instability, the constant k is used. There are two ways to measure the roughness of a

model.

The first roughness measure 3DWPM1 is a variant of the method by Wu et al. [229].

Dihedral angles, the angle between two adjacent normals, are used in this metric to mea-

sure per-face roughness. The dihedral angle [43] is related to surface roughness. As a

result, the dihedral angles between adjacent faces of a smooth surface are close to zero

because the face normals vary slowly over the surface. An evaluation of roughness takes

into account the scale of the roughness by converting the average roughness per face into

an average roughness per vertex and considering rings of varying sizes (1-ring, 2-ring,

etc.). The roughness of the 3D object is the sum of the roughness of all vertices. The sec-

ond method 3DWPM2 is by [43], artefacts are more easily perceived on smooth surfaces.

A smoothing algorithm is then applied to the surface and the roughness is measured as

the variance between the smoothed version and the original.
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5.3 Comparison of Objective Quality Measures for VR

and Desktop

To understand the relationship between the subjective and objective quality measures, we

apply existing geometric and perceptually inspired geometry-based 3D metrics for trian-

gular meshes, including HD, RMS, as well as GL1 [99] and GL2 [195] which combine

RMS with Laplacian coordinates, roughness-based 3DWPM1 and 3DWPM2 [44], as well

as MSDM and MSDM2 [108]. As mesh difference measures tend to be at significantly

different scales, comparing their absolute values is not meaningful. Therefore, we use

Pearson Linear Correlation Coefficient (PLCC) and Spearman Rank Order Correlation

Coefficient (SROCC) to evaluate these methods. For MSDM and MSDM2, we use author

provided code in their MePP/MePP2 projects. MeshLab/Metro is used to calculated HD,

and we re-implemented other metrics.

Table 5.1: Pearson (PLCC) & Spearman (SROCC) correlations value (%) between
Mean Opinion Scores in VR and desktop settings, and values from the objective
mesh quality metrics for the General-purpose dataset.

Metric
Armadillo Venus Dyno Rocker Arm All

PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC
Hausdorff 30.2 69.5 0.8 1.6 22.6 30.9 5.5 18.1 1.3 13.8

VR-Hausdorff 30.5 32.5 18.7 6.1 26.7 2.0 31.6 12.5 13.2 1.9
RMS 32.2 62.7 77.3 90.1 0.0 0.3 3.0 7.3 7.9 26.8

VR-RMS 21.7 11.2 76.7 68.2 22.4 34.1 3.3 14.7 25.1 21.8
GL1 43.7 70.2 80.2 92.0 3.2 15.5 8.4 14.2 12.6 33.1

VR-GL1 37.1 25.5 79.1 67.8 36.7 45.6 14.6 19.7 34.4 26.2
GL2 55.5 77.8 77.6 91.0 12.5 30.6 17.1 29.0 18.0 39.3

VR-GL2 52.9 37.0 78.5 63.9 53.0 54.3 28.3 30.5 43.3 30.7
3DWPM1 35.7 65.8 46.6 71.6 35.7 62.7 53.2 87.5 38.3 69.3

VR-3DWPM1 70.0 65.1 54.5 31.6 66.9 43.2 76.8 56.4 60.8 46.6
3DWPM2 43.1 74.1 16.4 34.8 19.9 52.4 29.9 37.8 24.6 49.0

VR-3DWPM2 50.4 64.6 28.5 22.9 44.9 46.2 53.8 54.0 40.9 45.5
MSDM 70.0 84.8 72.3 87.6 56.8 73.0 75.0 89.8 56.4 73.9

VR-MSDM 74.7 70.4 86.6 87.0 76.5 60.3 70.7 44.5 77.1 65.6
MSDM2 72.8 81.6 76.5 89.3 73.5 85.9 76.1 89.6 66.2 80.4

VR-MSDM2 93.5 91.7 84.5 82.1 75.6 58.6 76.9 51.5 76.8 68.5
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5.4 Data Analysis

We completed the experiment and can now collect the MOS, but before we do any data

analysis, we tested the participants’ performance in order to ensure the data collected

is meaningful. We follow the ITU-R BT.500-13 recommendation [179] and show the

participants a trailer with a different dataset to ensure they understand how the experiment

works. To calculate the Interquartile Range (IQR) [179] of our data, we must first identify

outliers. The first quartile (Q1), median, and third quartile (Q3) are identified. As a result,

we compute IQR = Q3 - Q1. We then calculate the maximum value as Q3 + (+1.5×

IQR). Finally, compute the lower value (Q1 - (+1.5× IQR). One outlier was discovered

in both settings and was removed from the data set.

To analyse user ratings, a common method is to compute the mean opinion score

(MOS) for each stimulus.

MOSe =
1

10×N

N∑
i=1

sie, (5.11)

where sie refers to the score assigned by participant i to the stimulus e, and N denotes the

number of (valid) subjects. We further divided the scores by 10 to normalise them in the

range of [0, 1]. We follow most of the existing work [10, 35] and set the scores such that

0 means the worst quality, and 1 is the best quality. So we expect the MOS to decrease as

the distortion level increases.

5.5 Comparison of MOS Scores for VR and Desktop

As shown in Table 5.1, we compare results between Mean Opinion Scores (MOS) in

VR and desktop, with mesh differences predicted by objective measures. To make results

easier to read, we group them in pairs, showing the comparative performance with desktop

and VR MOS scores. Since these methods predict mesh difference (i.e., smaller means

better) whereas MOS scores are designed such that larger values mean better quality, we
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report correlations with the negative sign dropped (equivalent to the correlations between

MOS scores and negated mesh difference values). The “All” performance is obtained by

analysing predictions of all shapes together as shown in Table 5.1. PLCC for “All” is

defined as follows

All =

∑
(x− x̄)(y − ȳ)√∑

(x− x̄)2
∑

(y − ȳ)2
(5.12)

where x̄, ȳ are the sample means for (x) and and (y). So, if the value is close to +1,

it indicates a strong positive correlation; if the value is close to -1, it shows a strong

negative correlation. SROCC is similarly calculated on all the shapes together.

The overall trend of the performance of different methods is consistent between desk-

top and VR: Purely geometric metrics such as Hausdorff and RMS perform poorly in

both cases. GL1 and GL2 metrics work slightly better, but it remains a simple geomet-

ric metric, so there is a big gap between the performance of GL1/GL2 and other met-

rics which are more perceptually inspired, including 3DWPM1, 3DWPM2, MSDM and

MSDM2. In both desktop and VR settings, 3DWPM1 shows better prediction capability

than 3DWPM2, in both PLCC and SROCC for most shapes and overall. In compari-

son, MSDM/MSDM2 perform consistently better than other analysed metrics. The gap

between MSDM and MSDM2 is smaller for the VR setting compared with the desktop

setting. In the VR setting, MSDM2 with multiscale analysis achieves lower PLCC than

MSDM (by 0.3%) but higher SROCC (by 2.9%), whereas in the desktop setting, MSDM2

is better than MSDM by a large margin (9.8% for PLCC and 6.5% for SROCC overall).

Nevertheless, MSDM2 remains the best-performing metric overall for VR quality predic-

tion. We summerise the result in the table Table 5.1 :

• There is consistency in the performance trends of the different methods between

desktop and VR settings.

• Pure geometric metrics like Hausdorff and RMS deliver poor results in both envi-

ronments.

• GL1 and GL2 metrics, though a bit better, are still simple geometric metrics and
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thus underperform compared to more perceptually-inspired metrics.

• Metrics such as 3DWPM1, 3DWPM2, MSDM, and MSDM2, which are inspired by

perceptual cues, perform significantly better.

• In both VR and desktop settings, 3DWPM1 predicts better than 3DWPM2 in terms

of both PLCC and SROCC for most shapes overall.

• MSDM and MSDM2 consistently outperform all other metrics that were analysed.

• The performance gap between MSDM and MSDM2 is smaller in the VR setting

compared to the desktop setting.

• In the VR setting, MSDM2 achieves a slightly lower PLCC but higher SROCC

compared to MSDM.

• In the desktop setting, MSDM2 surpasses MSDM by a significant margin, 9.8% for

PLCC and 6.5% for SROCC.

• Despite variations in different settings and metrics, MSDM2 proves to be the best-

performing metric for predicting VR quality overall.

Another interesting observation is that depending on the objects, comparing VR and

desktop correlations, PLCC correlations are higher for VR compared with desktop, and

SROCC correlations are higher for desktop than VR. As a large number of objective

quality metrics are evaluated, this behaviour is likely due to the distribution of subjec-

tive scores. The majority of these metrics show a linear relationship with the amount

of distortion, which suggests that under VR settings, participants are more capable of

detecting geometric distortions. This leads to a more linear relationship between Mean

Opinion Scores (MOS) and the level of distortions. In contrast, despite a consistent rank-

ing in desktop settings, the relationship between MOS scores and geometric distortions

tends to be less linear, indicating a more complex or non-linear interaction between these

variables.
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5.6 Saliency-Weighted Objective Quality Metrics

Inspired by the image-based IQA metrics, salient regions are more important for human

perception, and as a result, it can be hypothesised that these regions should have a more

significant importance when measuring visual quality (difference). Since MSDM2 per-

forms best in the previous study, we incorporate saliency measures as weights to combine

local MSDM (LMSDM) to form the global MSDM values. We define the saliency weight

MSDM2 below:

SalMSDM2(A,B) =

(
1∑
j ŝj

nw∑
j=1

ŝjLMSDM(aj, bj)
3

)1/3

(5.13)

where nw is the number of neighbourhoods, in practice, these can be the same as the

number of vertices. ŝj is the adjusted saliency value at j-th vertex, calculated as

ŝj = γsj + (1− γ), (5.14)

where sj is the saliency value for the j-th vertex, and γ is a weight to control the contri-

bution of salient vertices. γ ∈ [0, 1]. Setting γ = 0 reduces to the traditional non-salient

MSDM2. Setting γ = 1 means non-salient regions (with sj = 0) will have no contribu-

tions. In practice, we find that γ = 1 works well and is set as our default (but this may

depend on particular saliency maps/measures).

Table 5.2 shows the results comparing MSDM2 and saliency weight MSDM2 in pre-

dicting mesh quality on our VR perceptual dataset. Existing mesh saliency measures

Lee [115], Song [193], and our learning-based least squares regression model LSR (see

Chapter 4 for details). Overall, our MSDM2-LSR improves PLCC by 1.1% and SROCC

by 1.0% compared with MSDM2 in terms of overall performance. Given the already de-

cent performance of MSDM2, this demonstrates the effectiveness of saliency-weighting

for objective mesh quality prediction. Our saliency-weighted MSDM2 also achieves com-

parable or better PLCC and SROCC correlations for individual shapes, compared with
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MSDM2, showing its robust performance.

Table 5.2: Pearson (PLCC) & Spearman (SROCC) correlations value (%) between
Mean Opinion Scores in VR setting and MSDM2 along with different saliency
weighting: Lee [115], Song [193], and our least squares regression model, denoted
as LSR (see Chapter 4). We also compare with saliency-weighted MSDM2 based on
ground truth saliency for the Armadillo model (as it is the only shared model used
in our saliency subjective study (see Chapter 4), denoted as MSDM2-GT.

Metric
Armadillo Venus Dyno Rocker Arm All

PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC
MSDM2 93.5 91.7 84.5 82.1 75.6 58.6 76.9 51.5 76.8 68.5

MSDM2-Lee 95.5 95.1 83.6 80.4 74.9 58.8 75.5 50.9 76.0 67.9
MSDM2-Song 93.5 91.7 84.5 82.1 75.6 58.6 76.9 51.5 75.9 69.6
MSDM2-LSR 93.5 92.0 84.6 82.7 75.8 58.6 77.3 52.4 77.9 69.5
MSDM2-GT 94.4 94.8 - - - - - - - -

In comparison, when adding saliency weighting using other saliency methods, the

overall performance is not improved, except for MSDM2-Song which achieves 69.6%

SROCC, compared with 68.5% obtained by MSDM2. Nevertheless, for individual shapes,

these can still be effectively. One of the examples is Armadillo, where MSDM2-Lee per-

forms particularly well, achieving 95.5% PLCC and 95.1% SROCC, compared to 93.5%

PLCC and 91.7% SROCC for MSDM2. This indicates that individual saliency methods

may be advantageous for specific inputs, and there may be scope for improving saliency

measures for specific applications such as mesh quality prediction.

Out of the 4 shapes used in the LIRIS/EPFL General-Purpose dataset, the Armadillo

shape is also included in our eye-tracking-based subjective mesh saliency study (see

Chapter 4 for details), so we also report the performance when ground truth (GT) saliency

is used in SalMSDM2. As can be seen, ground truth saliency is effective, achieving 94.4%

PLCC and 94.8% SROCC, compared to 93.5% PLCC and 91.7% SROCC for MSDM2,

better than MSDM2-Song and MSDM2-LSR. It is interesting to note that, MSDM2-Lee

in this case actually outperforms MSDM2-GT. This shows that an effective predicted

saliency map can be equally as good as ground truth saliency maps, for helping with

mesh quality prediction. Nevertheless, it can still be difficult to ensure consistent quality

for all kinds of input shapes. It is worth noting that although the Armadillo model is in-
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cluded in our subjective saliency dataset, but it is only used for testing so our least-squares

regression model does not have the unfair advantage.

5.7 Summary

This chapter evaluates different geometric and perceptually inspired metrics for measur-

ing the dissimilarity of shapes. We compare their performance with subjective MOS

scores obtained from VR and desktop settings. The overall trend remains consistent, and

perceptually inspired metrics work consistently better than geometric metrics. In partic-

ular, MSDM/MSDM2 perform better than alternative metrics for predicting perceptual

mesh quality under the VR setting. Comparing VR with desktop, it was found that VR

MOS scores tend to preserve better linearity in terms of geometric distortions. To fur-

ther improve the mesh quality prediction, we proposed a saliency-weighted MSDM2 and

demonstrated that using our least-squares regression-based saliency maps, the method

improves both PLCC and SROCC correlations consistently. We present our work that

the visual saliency can be used to improve Mesh Quality Assessment in Chapters 4 and

5. Such techniques can be useful for real-time VR applications where geometry can be

selectively simplified during streaming.
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Chapter 6

Conclusion & Future Work

Overview

This thesis aims to measure the 3D mesh visual quality assessment. This chapter

presents a summary of the thesis’s work in Section 6.1. In Section 6.2 we discussed the

novel contributions. A summary of the most important findings from each contribution

chapter is provided. Finally, Section 6.3 discusses the work that carry out in the future.

6.1 Summary

In response to the limited research on the quality of 3D meshes, especially within VR en-

vironment, our study concentrates on visual quality assessment in this area. Given the in-

creasing prevalence of 3D meshes as vital graphical elements for constructing immersive

VR experiences, we explore the effects of diverse 3D distortion types on the perceptual

quality of 3D shapes in VR setups. Our primary aim is to comprehend how different types

and intensity levels of 3D mesh distortions impact VR perceived quality and user expe-

rience a critical consideration for real-time applications. We employ both Pearson and

Spearman Correlation Coefficients to analyze the correlations between VR and desktop

settings under varying types and levels of distortions. Our experimental findings reveal a

positive linear relationship between the two settings.

In addition, we introduce a method of predicting 3D mesh saliency using neural net-
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works. A mesh saliency algorithm was devised to identify crucial regions of the 3D mesh.

By leveraging eye-tracking experiment data, machine learning optimises both linear and

nonlinear models to measure geometric features. This approach shows that mesh saliency

significantly enhances mesh quality prediction.

6.2 Novel Contribution

Mesh Quality Assessment (MQA) is relatively new compared to Image Quality Assess-

ment (IQA). This thesis focuses on 3D mesh quality assessment as there is limited work

on 3D mesh quality in a VR setting. Most existing studies measure the quality of 3D

mesh in a desktop environment, which inspired our work to measure the quality in a vir-

tual reality environment. However, in the VR setting, this is a crucial area for downstream

applications. This is because massive amounts of data are necessary to support augmented

reality and virtual reality. Also. The existing studies used hard-coded formula methods

to measure 3D mesh saliency, which are difficult to measure. We introduce new methods

of measuring 3D mesh saliency. We ran an experiment using an eye tracker, which pro-

duced a salient measurement accurate to human visual judgement. The thesis included

the following contributions that can be discussed in each contribution.

6.2.1 Subjective Study of 3D Mesh Quality Scores in Virtual Reality

Perceiving distortion in VR and desktop settings can differ due to the unique character-

istics and user experiences offered by each setting. A number of factors can affect per-

ceived distortion, including the quality of the VR headset, the capabilities of the graphics

processor, the complexity of the virtual scene, and the user’s own perception. Chapter

3 presented a subjective study comparing the quality of 3D mesh distorted with refer-

ence shape (undistorted) in VR and traditional desktop display settings. In addition, we

observed how various forms of distortions impact the visual quality of the 3D mesh by
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gathering subjective scores for deformed shapes utilising linear and nonlinear correlation

coefficients. The study reveals that the perceived quality of 3D meshes varies and is sen-

sitive to the type and location of distortion. The distributions of total MOS scores are

substantially associated between VR and desktop settings. However, noise is more visi-

ble in the VR setting than detail loss, as compared to the desktop setting. Mainly, noise

applied to complete meshes or smooth parts tends to be more evident than noise added to

other regions, and the variations are far more pronounced in VR. The results may guide

the processing of 3D meshes for virtual reality applications.

As we focused above on 3D mesh distortion, there are other factors that can be affect

the quality of 3D mesh in VR and desktop settings. Artefacts in VR distort the accurate

representation of the virtual world. Users of VR headsets typically see virtual content

through lenses. There is a possibility that these lenses will introduce optical distortions

such as chromatic aberration or barrel distortion, which can adversely affect the quality

of the image. In some cases, users may notice colour fringing or image warping at the

edges of their view. The Field of View (FoV) of VR headsets is limited as compared to

human vision. In the case of users experiencing a ”tunnel vision” effect, their peripheral

vision may appear less detailed or distorted as a result of a restricted field of vision.

Further, VR experiences often involve head movements, and any delay or lag can result in

motion-related distortions. There may be a delay between the movement of the user’s head

and the corresponding change in the virtual world if the system fails to update the view

quickly enough. Motion sickness or disconnection may happen as a result of perceiving

the quality incorrectly.

When it comes to desktop settings, distortion usually refers to visual artefacts or

anomalies that adversely affect the quality of content displayed. Streaming or file com-

pression can result in compression artifacts when applied to reduce file sizes. As a result

of these artefacts, visual distortions appear, such as blockiness, blurring, or pixelation. As

a result, mesh clarity and perceived quality are reduced.
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6.2.2 Learning to Predict 3D Mesh Saliency

This chapter is about learning to predict 3D mesh saliency with a focus on general vi-

sual saliency (i.e.,without specific task). Chapter 4 estimating saliency on a mesh is an

essential technique with numerous downstream applications. Existing approaches rely

mostly on building specialised formulae, which is hard to measure, and capturing percep-

tual significance using these methods is challenging. This thesis examines a technique for

producing ground truth saliency maps on meshes using eye-tracking data. In particular,

we combine saliency maps from several viewpoints to build a single saliency map that

is defined for a particular mesh (so not view-dependent). We continue to build learning-

based algorithms that use previous saliency prediction findings and geometric features at

each vertex to predict the local saliency value. According to qualitative and quantitative

findings, the learning-based approaches outperform state-of-the-art methods, especially

the model based on least squares regression.Our work can be useful for employing deep

learning approaches and compare deep learning results with traditional machine learning

to make improvements. Also, it helps to understand how the deep learning accuracy and

speed are different with the traditional machine learning. As 3D mesh data is relatively

small, more data will improve the measurements of saliency for 3D shapes.

6.2.3 Objective Quality Assessment Measures for Mesh Quality

Chapter 5 evaluates different methods that measure how different two meshes are from

each other by determining their geometry and/or perceptual distance. We compare the

state-of-the-art mesh perceptual difference metrics for predicting the objective quality

scores captured in the VR setting with the desktop setting. We found that our methods,

VR-MSDM and VR-MSDM2, are better at measuring 3D mesh quality than the state-of-

the-art. We further incorporated mesh saliency into the mesh difference measure, which

is shown to improve the perceptual quality prediction for the VR setting.



134

6.3 Future Work

This thesis has contributed to understanding 3D mesh quality both subjectively and objec-

tively; nonetheless, techniques for measuring 3D mesh quality are still in earlier stages,

especially in the VR area, and further study is required. Each chapter’s contribution pro-

poses some possible future research areas (see Chapters 3, 4 and 5). Here, further thoughts

are provided.

• Objects quality in Virtual Reality (VR): Further research will focus on how

visibility information can be effectively incorporated into objective quality mea-

sures. Objects in VR scenes may change their position and orientation based on

designed behaviour or in response to user interaction. The visibility of objects in

VR scenes is therefore affected, along with other factors such as occlusion and

lighting, which can influence the perceptual quality of 3D objects. Also, larger

subjective databases of 3D quality perception could enable deep-learning models

to be effectively built for 3D mesh quality measure especially in VR setting, simi-

lar to the success of Learned Perceptual Image Patch Similarity (LPIPS) for image

quality measures [245].

• Saliency-based metrics: The saliency of visual content, such as images, 3D meshes

and videos, plays a crucial role in quality assessment and evaluation. Saliency refers

to the areas of an image or 3D mesh that catch the viewer’s attention. In quality as-

sessment, it is essential to understand visual saliency, since it facilitates the determi-

nation of the most visually significant or important regions of an image or 3D mesh.

A visual saliency assessment is used in quality assessment in order to evaluate the

overall aesthetic appeal, composition, and attention-grabbing aspects of visual con-

tent. Analysing the salient regions allows the identification of potential areas that

may affect the perceived quality of the content. Visual quality can be assessed us-

ing a variety of approaches based on saliency. The purpose of saliency metrics is

to identify the salient regions in 3D mesh and assign weights or importance values
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to these regions. It is possible for the algorithm to take into account the visual sig-

nificance of different regions by incorporating these weights into the overall quality

assessment. For practical applications, such saliency prediction methods need to be

sufficiently fast, especially for real-time adaptive streaming applications. Current

mesh saliency methods are generally time-consuming, especially on complicated

3D shapes which need such techniques for saliency-guided simplification. In the

future, with the increasing availability of labelled data, graph convolutional neural

networks can potentially be built on 3D meshes to efficiently predict saliency maps

in an end-to-end manner.

• Deep learning-based methods: In order to predict visual saliency, deep learning

techniques can be used, such as convolutional neural networks (CNNs). By using

these models, quality assessment algorithms are able to detect salient features and

regions.In recent years, much progress has been made in understanding the repre-

sentations learned by CNNs to recognise scenes and objects (e.g. [250]). However,

there needs to be more knowledge of how deep saliency models learn. How does

saliency computation arise in deep saliency architectures, and how do the patterns

learn at various network levels diverge from those learned for object recognition?

To investigate this, one may compare the results of two different deep networks

trained on an identical set of stimuli and labelled with object category labels and

saliency annotations, respectively (e.g. clicks).

• Region of Interest (ROI) detection: The purpose of this technique is to identify

the areas in 3D mesh that are likely to be visually appealing and informative. It is

possible to determine the quality of 3D mesh by the presence of salient objects or

areas. Some of the possibilities can be used for real-time implications. The ability

to detect ROI in real-time is crucial for applications such as live video streaming,

augmented reality (AR), and virtual reality (VR). Research in the future should fo-

cus on developing efficient ROI detection algorithms that can be run in real-time

on resource-constrained devices. It may be necessary to explore techniques such

as model compression, optimisation, and hardware acceleration in order to achieve
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real-time performance. Also, subjective evaluation, although objective measures

play an important role in quality assessment, subjective evaluation is equally im-

portant in capturing human perceptions and preferences. In the future, user studies

can be conducted to collect subjective ratings and preferences for various salient re-

gions. Based on these data, subjective quality assessment models can be developed

that align with human perceptions and preferences.

• Eye-tracking data: Human visual attention can be studied through eye-tracking

experiments. Using eye-tracking data, researchers can determine which areas at-

tract the most attention and evaluate the quality of visual content based on those

areas. Some of the future work personalised saliency models. Most saliency mod-

els are designed based on the average behaviour of the human gaze. Despite this,

individuals may have unique gaze patterns which are influenced by factors such as

culture, experience, or cognitive differences. It is possible that future research will

focus on developing personalised saliency models that can adapt to individual users

and provide more accurate predictions of their visual attention. Also, in real-world

environments, the majority of eye-tracking studies are conducted in controlled lab-

oratory settings, which may not be representative of real-life conditions. To un-

derstand how gaze behaviour and perception of visual quality are affected by eye

tracking and saliency visual quality in naturalistic environments, such as outdoor

scenes or interactive settings, future research may examine these factors.

• Datasets and benchmarks on quality assessment: Regarding future research on

this thesis, a substantial amount of effort is required to build appropriate bench-

marks that allow the creation and assessment of 3D mesh quality and correspon-

dence strategies for various scenarios. Specifically, more research needs to be done

on how different materials affect the shape and how that might fit with or against

the assumptions of the current 3D mesh quality assessment and correspondence

methods. Generally, the 3D dataset is relatively small, especially 3D mesh saliency

datasets are still orders of magnitude smaller than their corresponding datasets in

other fields of computer vision, such as image analysis, where it is common to have
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datasets with over 1 million images [51].

There are still more substantial datasets available in the image domain. However,

3D mesh datasets are usually much smaller. For instance, Yohanandan et al. [239]

amassed a dataset of 300 million images called the JFT-300M and demonstrated

that object identification models performed more effectively when trained using this

dataset. Because of this, future studies in saliency will benefit significantly from

collecting additional data. A more considerable amount of data opens up new di-

mensions to evaluate models. Also, in future research, we want to construct a more

extensive dataset and examine the efficacy of other machine-learning approaches,

particularly those based on deep neural networks. In the future, when richer datasets

are available, our method will demonstrate its robust capacity for learning. One of

our future efforts is to construct a subjective database with complete coverage of

several elements, including various forms of distortion and models with varying

geometries. This study might assist authors seeking to perform a subjective qual-

ity experiment to evaluate the predicted 3D mesh quality of distortion models in

choosing the appropriate experimental approach for their particular challenge.
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[188] Luis A da Silva Cruz, Emil Dumić, Evangelos Alexiou, Joao Prazeres, Rafael

Duarte, Manuela Pereira, Antonio Pinheiro, and Touradj Ebrahimi. “Point cloud

quality evaluation: Towards a definition for test conditions”. In: 2019 Eleventh

International Conference on Quality of Multimedia Experience (QoMEX). IEEE.

2019, pp. 1–6.

[189] D Amnon Silverstein and Joyce E Farrell. “Efficient method for paired compari-

son”. In: Journal of Electronic Imaging 10.2 (2001), pp. 394–398.

[190] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. “Deep inside convolu-

tional networks: Visualising image classification models and saliency maps”. In:

(2014).



160

[191] Ivan Sipiran and Benjamin Bustos. “Key-components: detection of salient regions

on 3D meshes”. In: The Visual Computer 29.12 (2013), pp. 1319–1332.

[192] R. Song, Y. Liu, R.R. Martin, and P.L. Rosin. “Mesh saliency via spectral pro-

cessing”. In: ACM Transactions on Graphics (TOG) 33.1 (2014), p. 6.

[193] Ran Song, Yonghuai Liu, and Paul L Rosin. “Mesh saliency via weakly super-

vised classification-for-saliency CNN”. In: IEEE transactions on visualization

and computer graphics 27.1 (2019), pp. 151–164.

[194] Ran Song, Wei Zhang, Yitian Zhao, and Yonghuai Liu. “Unsupervised Multi-

view CNN for Salient View Selection of 3D Objects and Scenes”. In: European

Conference on Computer Vision. Springer. 2020, pp. 454–470.

[195] Olga Sorkine, Daniel Cohen-Or, and Sivan Toledo. “High-pass quantization for

mesh encoding.” In: Symposium on Geometry Processing. Vol. 42. Citeseer. 2003,

p. 3.
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Appendix A

Subjective Study of 3D Mesh Quality

Scores in Virtual Reality

A.1 Distortion by Shape

A.2 Distortion by Type, Location and Levels
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Table A.1: Comparison of MOS scores for both VR and desktop settings organ-
ised based on shape (Armadillo, Venus, Dyno and Rocker-Arm) and distortion
type/location.

Distortion by shape Category VR MOS Desktop MOS

Armadillo Noise Uniform Low 0.4213 0.4333

Armadillo Noise Uniform Medium 0.4694 0.4867

Armadillo Noise Uniform High 0.4894 0.4950

Armadillo Noise Rough Low 0.5149 0.4250

Armadillo Noise Rough Medium 0.5340 0.4667

Armadillo Noise Rough High 0.5915 0.6250

Armadillo Noise Intermediate Low 0.4532 0.4917

Armadillo Noise Intermediate Medium 0.5723 0.6750

Armadillo Noise Intermediate High 0.6574 0.6917

Armadillo Noise Smooth Low 0.4894 0.5500

Armadillo Noise Smooth Medium 0.5574 0.6250

Armadillo Noise Smooth High 0.6553 0.7000

Armadillo Taubin Uniform Low 0.5170 0.4167

Armadillo Taubin Uniform Medium 0.5894 0.4750

Armadillo Taubin Uniform High 0.6149 0.6250

Armadillo Taubin Rough Low 0.6383 0.4167

Armadillo Taubin Rough Medium 0.6766 0.5583

Armadillo Taubin Rough High 0.6787 0.7167

Armadillo Taubin Intermediate Low 0.5845 0.6000

Armadillo Taubin Intermediate Medium 0.6468 0.6167

Armadillo Taubin Intermediate High 0.6617 0.7083
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Distortion by shape Category VR MOS Desktop MOS

Venus Noise Uniform Low 0.4489 0.4250

Venus Noise Uniform Medium 0.4809 0.4667

Venus Noise Uniform High 0.5021 0.5000

Venus Noise Rough Low 0.5851 0.4917

Venus Noise Rough Medium 0.6255 0.5083

Venus NoiseRough High 0.6638 0.5917

Venus Noise Intermediate Low 0.6106 0.4917

Venus Noise Intermediate Medium 0.6426 0.5000

Venus Noise Intermediate High 0.6723 0.5333

Venus Noise Smooth Low 0.4872 0.4417

Venus Noise Smooth Medium 0.5362 0.4417

Venus Noise Smooth High 0.5553 0.5083

Venus Taubin Uniform Low 0.5298 0.4167

Venus Taubin Uniform Medium 0.5596 0.4583

Venus Taubin Uniform High 0.5745 0.5917

Venus Taubin Rough Low 0.6021 0.4500

Venus Taubin Rough Medium 0.6128 0.6333

Venus Taubin Rough High 0.6383 0.6417

Venus Taubin Intermediate Low 0.6085 0.5583

Venus Taubin Intermediate Medium 0.6191 0.6750

Venus Taubin Intermediate High 0.6298 0.7583
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Distortion by shape Category VR MOS Desktop MOS

Dyno Noise Uniform Low 0.4128 0.4417

Dyno Noise Uniform Medium 0.4745 0.4667

Dyno Noise Uniform High 0.5532 0.4833

Dyno Noise Rough Low 0.5979 0.4667

Dyno Noise Rough Medium 0.6511 0.5083

Dyno Noise Rough High 0.6830 0.6000

Dyno Noise Intermediate Low 0.6255 0.4583

Dyno Noise Intermediate Medium 0.6277 0.4833

Dyno Noise Intermediate High 0.6702 0.5417

Dyno Noise Smooth Low 0.5574 0.4250

Dyno Noise Smooth Medium 0.6447 0.4583

Dyno Nois e Smooth High 0.6447 0.4667

Dyno Taubin Uniform Low 0.6170 0.5333

Dyno Taubin Uniform Medium 0.6383 0.6000

Dyno Taubin Uniform High 0.6489 0.6750

Dyno Taubin Rough Low 0.6362 0.5667

Dyno Taubin Rough Medium 0.6511 0.6667

Dyno Taubin Rough High 0.6766 0.7250

Dyno Taubin Intermediate Low 0.6283 0.5750

Dyno Taubin Intermediate Medium 0.6404 0.6333

Dyno Taubin Intermediate High 0.6898 0.7917
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Distortion by shape Category VR MOS Desktop MOS

Rocker-Arm Noise Uniform Low 0.5461 0.4417

Rocker-Arm Noise Uniform Medium 0.5661 0.4667

Rocker-Arm Noise Uniform High 0.5661 0.4917

Rocker-Arm Noise Rough Low 0.6298 0.4250

Rocker-Arm Noise Rough Medium 0.6298 0.4750

Rocker-Arm Noise Rough High 0.6745 0.4833

Rocker-Arm Noise Intermediate Low 0.6298 0.4333

Rocker-Arm Noise Intermediate Medium 0.6723 0.4583

Rocker-Arm Noise Intermediate High 0.6915 0.5667

Rocker-Arm Noise Smooth Low 0.5661 0.4833

Rocker-Arm Noise Smooth Medium 0.5661 0.5000

Rocker-Arm Noise Smooth High 0.6723 0.5333

Rocker-Arm Taubin Uniform Low 0.6553 0.4250

Rocker-Arm Taubin Uniform Medium 0.6532 0.4583

Rocker-Arm Taubin Uniform High 0.6723 0.5583

Rocker-Arm Taubin Rough Low 0.6340 0.5917

Rocker-Arm Taubin Rough Medium 0.6447 0.6333

Rocker-Arm Taubin Rough High 0.6596 0.7667

Rocker-Arm Taubin Intermediate Low 0.6660 0.5917

Rocker-Arm Taubin Intermediate Medium 0.6745 0.6750

Rocker-Arm Taubin Intermediate High 0.7068 0.7000
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Table A.2: Comparison of MOS scores for both VR and desktop settings organised
based on distortion Type, Location and Levels (Noise Uniform, Noise Rough, Noise
Intermediate, Noise Smooth, Taubin Uniform, Taubin Rough and Taubin Interme-
diate)

Distortion by Type and Location Distortion Levels VR MOS Desktop MOS

Noise Uniform Armadillo-Low 0.4213 0.4333

Noise Uniform Armadillo-Medium 0.4694 0.4867

Noise Uniform Armadillo-High 0.4894 0.4950

Noise Uniform Venus-Low 0.4489 0.4250

Noise Uniform Venus -Medium 0.4809 0.4667

Noise Uniform Venus -High 0.5021 0.5000

Noise Uniform Dinosaur-Low 0.4128 0.4417

Noise Uniform Dinosaur-Medium 0.4745 0.4667

Noise Uniform Dinosaur-High 0.5332 0.4833

Noise Uniform RockerArm-Low 0.4681 0.4417

Noise Uniform RockerArm-Medium 0.4702 0.4833

Noise Uniform RockerArm-High 0.5364 0.4917

Distorton by Type and Location Distortion Levels VR MOS Desktop MOS

Noise Rough Armadillo-Low 0.5149 0.4250

Noise Rough Armadillo-Medium 0.5340 0.4667

Noise Rough Armadillo-High 0.5915 0.6228

Noise Rough Venus-Low 0.5851 0.4917

Noise Rough Venus -Medium 0.6255 0.5083

Noise Rough Venus -High 0.6638 0.5917

Noise Rough Dinosaur-Low 0.5979 0.4667

Noise Rough Dinosaur-Medium 0.6511 0.5083

Noise Rough Dinosaur-High 0.6830 0.6000

Noise Rough RockerArm-Low 0.6298 0.4250

Noise Rough RockerArm-Medium 0.6598 0.4750

Noise Rough RockerArm-High 0.6745 0.4833



175

Distorton by Type and Location Distortion Levels VR MOS Desktop MOS

Noise Intermediate Armadillo-Low 0.5484 0.4917

Noise Intermediate Armadillo-Medium 0.5723 0.6243

Noise Intermediate Armadillo-High 0.6574 0.6543

Noise Intermediate Venus-Low 0.6106 0.4917

Noise Intermediate Venus -Medium 0.6426 0.5000

Noise Intermediate Venus -High 0.6723 0.5333

Noise Intermediate Dinosaur-Low 0.6255 0.4583

Noise Intermediate Dinosaur-Medium 0.6277 0.4833

Noise Intermediate Dinosaur-High 0.6702 0.5417

Noise Intermediate RockerArm-Low 0.6298 0.4333

Noise Intermediate RockerArm-Medium 0.6723 0.4583

Noise Intermediate RockerArm-High 0.6915 0.5667

Distorton by Type and Location Distortion Levels VR MOS Desktop MOS

Noise Smooth Armadillo-Low 0.4894 0.5500

Noise Smooth Armadillo-Medium 0.5574 0.6225

Noise Smooth Armadillo-High 0.6553 0.6625

Noise Smooth Venus-Low 0.4872 0.4417

Noise Smooth Venus -Medium 0.5362 0.4617

Noise Smooth Venus -High 0.5553 0.5083

Noise Smooth Dinosaur-Low 0.5574 0.4250

Noise Smooth Dinosaur-Medium 0.6247 0.4583

Noise Smooth Dinosaur-High 0.6447 0.4667

Noise Smooth RockerArm-Low 0.4830 0.4833

Noise Smooth RockerArm-Medium 0.5553 0.5000

Noise Smooth RockerArm-High 0.6723 0.5333
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Distorton by Type and Location Distortion Levels VR MOS Desktop MOS

Taubin Uniform Armadillo-Low 0.5170 0.4167

Taubin Uniform Armadillo-Medium 0.5894 0.4750

Taubin Uniform Armadillo-High 0.6149 0.6250

Taubin Uniform Venus-Low 0.5298 0.4167

Taubin Uniform Venus -Medium 0.5596 0.4583

Taubin Uniform Venus -High 0.5745 0.5917

Taubin Uniform Dinosaur-Low 0.6170 0.5333

Taubin Uniform Dinosaur-Medium 0.6383 0.6000

Taubin Uniform Dinosaur-High 0.6489 0.6750

Taubin Uniform RockerArm-Low 0.6532 0.4250

Taubin Uniform RockerArm-Medium 0.6553 0.4583

Taubin Uniform RockerArm-High 0.6723 0.5583

Distorton by Type and Location Distortion Levels VR MOS Desktop MOS

Taubin Rough Armadillo-Low 0.6383 0.4167

Taubin Rough Armadillo-Medium 0.6766 0.5583

Taubin Rough Armadillo-High 0.6787 0.7167

Taubin Rough Venus-Low 0.6021 0.4500

Taubin Rough Venus -Medium 0.6128 0.6333

Taubin Rough Venus -High 0.6383 0.6417

Taubin Rough Dinosaur-Low 0.6362 0.5667

Taubin Rough Dinosaur-Medium 0.6511 0.6667

Taubin Rough Dinosaur-High 0.6766 0.7250

Taubin Rough RockerArm-Low 0.6340 0.5917

Taubin Rough RockerArm-Medium 0.6447 0.6333

Taubin Rough RockerArm-High 0.6596 0.7667
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Distortion by Type and Location Distortion Levels VR MOS Desktop MOS

Taubin Intermediate Armadillo-Low 0.6468 0.6000

Taubin Intermediate Armadillo-Medium 0.6617 0.6083

Taubin Intermediate Armadillo-High 0.6745 0.6167

Taubin Intermediate Venus-Low 0.6085 0.5583

Taubin Intermediate Venus -Medium 0.6191 0.6750

Taubin Intermediate Venus -High 0.6298 0.7583

Taubin Intermediate Dinosaur-Low 0.6298 0.5750

Taubin Intermediate Dinosaur-Medium 0.6383 0.6333

Taubin Intermediate Dinosaur-High 0.6404 0.7917

Taubin Intermediate RockerArm-Low 0.6468 0.5917

Taubin Intermediate RockerArm-Medium 0.6745 0.6750

Taubin Intermediate RockerArm-High 0.6660 0.7000



178

The figures below compare MOS scores averaged over all the shapes for both VR and
desktop settings for each type of location with changing level of distortion strength.
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Figure A1: Comparison of MOS scores averaged over all the shapes for both VR and
desktop settings for each type of location with changing level of distortion strength.
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Appendix B

Learning to Predict 3D Mesh Saliency

The following meshes were taken from the Stanford repository found at:

B.1 Dataset

http://graphics.stanford.edu/data/3Dscanrep/

Armadillo, Bunny, Dragon, happy

http://graphics.cs.williams.edu/data/meshes.xml#2

Head

http://graphics.cs.williams.edu/data/meshes.xml#2

Teapot

The following meshes were taken from the SHREC 2011 shape retrieval contest dataset

found at:

http://www.itl.nist.gov/iad/vug/sharp/contest/2011/NonRigid/

data.html

Ant and Falling

The following mesh was taken from Keenan’s 3D model repository which can be

http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.cs.williams.edu/data/meshes.xml#2
http://graphics.cs.williams.edu/data/meshes.xml#2
http://www.itl.nist.gov/iad/vug/sharp/contest/2011/NonRigid/data.html
http://www.itl.nist.gov/iad/vug/sharp/contest/2011/NonRigid/data.html
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found at:

http://www.cs.cmu.edu/˜kmcrane/Projects/ModelRepository/

Spot

The following meshes were taken from the AIM@SHAPE-VISIONAIR shape repos-

itory which can be found at:

http://visionair.ge.imati.cnr.it/ontologies/shapes

• Bulldog model is provided courtesy of VCG-ISTI

• Frog model is provided courtesy of Frank-terHaar

• Kitten model is provided courtesy of Frank-terHaar

• Red circular box model is provided courtesy of INRIA

• Chair model is provided courtesy of IMATI

• Cup model is provided courtesy of MPII

• Sheep model is provided courtesy of Frank-terHaar

• Ramesses model is provided courtesy of IMATI

• Gargoyle model is provided courtesy of VCG-ISTI

• Raptor model is provided courtesy of INRIA

• Grog model is provided courtesy of VCG-ISTI

B.2 Related Saliency Models and Geometric Features

Our learning-based method for mesh saliency prediction builds on top of existing geomet-

ric features and saliency models. Existing saliency models are mostly based on geometric

characteristics, and some also take global/local geometric information into account.

http://www.cs.cmu.edu/~kmcrane/Projects/ModelRepository/
http://visionair.ge.imati.cnr.it/ontologies/shapes
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B.2.1 Geometric Characteristics for Mesh Saliency

One of the mesh saliency measuring methods has been used by Lee et al. [115]. It works

based on the concept that salient regions are likely to be the areas that express unfamil-

iar geometric characteristics compared to the surrounding regions. Their approach first

calculates mean curvature on mesh vertices. To perform multiscale analysis, they apply

Gaussian filters of different scales to the mean curvatures. The centre-surround analysis

is then achieved via Differences of Gaussian. Finally, multiscale results are aggregated to

form the mesh saliency map.

Song et al. [192] propose a methodology for mesh saliency, perceptually based on the

importance of a surrounding area on a 3D surface mesh. This methodology incorporates

global context by use of the spectral attributes of the mesh, whereas in contrast, most

existing measures are restricted to local geometric cues. Moreover, Song’s method [192]

takes a set of meshes as a group of meshes simplified to different degrees and calculates

the saliency map for each scale by calculating the saliency of the spectral mesh for each

scale. The saliency maps of the scale are then combined to generate a final saliency map.

B.2.2 Geometric Feature Extraction

This section discusses geometric features used to obtain a good feature representation of

the meshes. We compute different types of features: Mesh SIFT and SHOT.

B.2.2.1 Mesh SIFT

The scale-invariant feature transform (SIFT) is a computer vision feature recognition al-

gorithm for detecting and defining local features in images [130]. It converts image data

into scale-invariant coordinates relative to local characteristics. An important aspect of

SIFT is that it creates large numbers of features that cover the image over a large range
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of sizes and locations. Mesh SIFT extends image-based SIFT descriptors to 3D meshes

developed by [49]. Here’s a simplified overview of these multi-step algorithms:

• Saliency Map Calculation: The saliency S(v) at a vertex v can be computed based

on curvature:

S(v) = |H(v)− avg(H(N(v)))|

where H(v) is the mean curvature at vertex v, N(v) is the set of vertices in the

neighborhood of v, and avg(H(N(v))) is the average curvature of this neighbor-

hood.

• Key Point Detection: The keypoints K can be determined based on saliency:

K = {v ∈ M | S(v) > T}

where T is a saliency threshold, and M is the set of all vertices in the mesh.

• Scale-space extrema detection: Let G(., ., σ) denote a 3D Gaussian function with

standard deviation σ. Then for each keypoint k at each scale σ, compute the blurred

curvature H(k, σ) = G(k.x, k.y, σ)H(k). Then find the scale σ at which H(k, σ)

is maximised.

• Orientation assignment: Assign an orientation to each keypoint based on the gra-

dient of the mesh. Let ∇H(k) denote the gradient of the mesh at keypoint k. Then

the orientation O(k) of the keypoint can be defined as the direction of ∇H(k).

• Descriptor calculation: For each keypoint, calculate a descriptor that captures the

local shape. This could be a histogram H(k, θ) of the distribution of orientations θ

in the local neighborhood of k, weighted by the saliency

H(k, θ) =
∑

v∈N(k) S(v)δ(θ −O(v))
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B.2.2.2 SHOT Descriptor

According to [208], the signature and histogram of orientation (SHOT) 3D descriptor can

be classified as histograms or signatures. It produces a local representation that is effi-

cient, descriptive, and robust to noise and clutter and variations in point density. When

working with triangular meshes, consider the vertices as points in 3D data. The normals at

each vertex can be calculated based on adjacent triangles. Calculate the normals at each

vertex of a triangular mesh by using adjacent triangles as points in the 3D data. There

are some steps that the SHOT descriptor should follow: Establishing Local Reference

Frames (LRFs), computing histograms and concatenating the histograms. In the case of

using SHOT in mesh saliency first calculate the SHOT descriptor for each vertex. Let’s

represent the SHOT descriptor for a vertex Vi as SHOT (Vi). then calculate the dissim-

ilarity between these descriptors, which could use a distance metric such as Euclidean

distance. using Euclidean distance, the dissimilarity D between two vertices Vi and Vj

could be represented as D(Vi, Vj) = ∥SHOT (Vi)− SHOT (Vj)∥. after that generate the

saliency map. A simple way to generate a saliency score S for a vertex Vi would be to

sum the dissimilarities between Vi and all other vertices in its neighbourhood N . This

could be represented as S(Vi) =
∑

Vj∈N D(Vi, Vj).
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B.3 Implementation Details for 3D Mesh Saliency

In this section, we gave more details to predict 3D mesh saliency with ground truth.

Figure B1: Illustrate data flow for eye tracking stimuli and remapping scripts.

This experiment uses toolbox graphs from MathWorks to plot the 3D mesh shapes.

These toolboxes will help to read any file format related to an image. We used OBJ.format,

so we placed all the 3D models in Selected Models folder. The script Take all use all

the 3D models in the Selected Models folder. then, the Take images generates 20 im-

ages, and each shape has 20 views. These images will then be taken to run the eye-

tracking experiment, and therefore the results of these experiments should be placed in

the Test Results folder. Then, Remap all can decision remap on every model in the Se-

lected Models folder. Remap which can output a MATLAB figure of every model with a

saliency heat-map and a comparison figure with the heat-map before and after normalis-

ing.
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Figure B2: Illustrate data flow for existing method and evaluating scripts..

This Figure shows the flowchart of how we generate the saliency value from each

method. The Existing method accuracy script takes a file of model names, and for every

method there on the file. The two maps being approved into the SSIM mesh helper are

going to be the methods being tested and the ground truth data from the eye-tracking

experiment. Later called SSIM for 3D Saliency script which runs the modified SSIM

script that works on 3D meshes.
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Figure B3: Illustrate data flow for existing method and evaluating scripts..
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Figure B4: Illustrate data flow for existing method and evaluating scripts.

The Least Square Regression the least squares regression method feeds it the depen-

dent relative data in being the eye-tracking experiment and the independent data being

the method saliency maps of the selected models. Then sign the weighting for every

method and an intercept that minimises the square error for the eye-tracking data. The

Least Square Regression script then outputs a weight array with one value correspond-

ing to each passed-in method. The Least Square Regression fit is applied to the data to

calculate the weights array. To do this, all existing method saliency maps are loaded

as the independent variables, and the ground truth is loaded as the dependent variable.

The weight can then be approved to the mixed method test script, which combines each

salience map linearly scaled with the weight.
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