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Abstract
We consider singular block operator problems of the type arising in the study of
stability of the Ekman boundary layer. The essential spectrum is located, and an
analysis of the L? solutions of a related first order system of differential equations
allows the development of a Titchmarsh—Weyl coefticient M (). This, in turn, permits
a rigorous analysis of the convergence of approximations to the spectrum arising from
regular problems. Numerical results illustrate the theory.

————— S

1. Introduction

Recently, a number of papers have appeared on the spectral analysis of block
operators (cf. [1, 2, 4, 15]). This work has its origin and motivation in the analysis
of stability in fluid mechanics and magnetohydrodynamics (cf. [9, 19, 27]).

In this paper, our first goal is to determine conditions under which a block operator
(whose blocks are ordinary differential operators) can be reduced to a system of first
order ODEs. We give some examples where this is not the case; and Theorem 2-1
gives sufficient conditions for this to be true.

Our main goal is the spectral analysis of the block operator which arises in the
study of stability of the Ekman boundary layer (cf. Faller [12], Lilly [20]):

(=D? + a2)? + iaRV(—D? + o?) + iaRV" 2D <y>
2D + iaRU’ (=D* +a®) +iaRV | \?
—-D>*+a% 0

with boundary conditions

y(0) = y'(0) = 2(0) = 0,

/

y(00) = y"(00) = 2(00) = 0. (1-2)

Here, a is the wave number, R is the Reynolds number, and U, V' are known smooth
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functions. For the operator theory which we develop later, the conditions at co have to
be stated more rigorously. We shall see that the conditions required are y € H*[0, o0)
and z € H?[0,00), where HP[0,00) is the usual Sobolev space of functions whose
(weak) derivatives of orders 0, 1,...,p lie in L?[0, c0). Equation (1-1) is equivalent to
a system of first order ODEs.

Throughout this paper we shall assume that the functions U, V satisfy the following
conditions:

(A1:1) U € C'[0,00),V € C?0, 00);
(A12) lim, . U'(z) =lim,_o V(x) = lim,_o, V"(z) = 0;
(A13) U, V,V" € L']0, o0).

The paper is set out as follows. Section 2 deals with general 2 X 2 block operators, and
conditions are found for the eigenvalue problem to be equivalent to a system of first
order ODEs. In Section 3 we find the essential spectrum for the Ekman problem. Sec-
tion 4 discusses the L? and non-L? solutions. In Section 5 we show that all eigenvalues
are located in a certain semi-infinite strip. Section 6 investigates the possible existence
of an open set of eigenvalues. We need to know that such sets do not exist in order
to construct the Titchmarsh-Weyl M ()A) matrices in Section 7. We show that the
truncated problem on a finite interval [0, X | (with additional boundary conditions
at X)) has no open sets of eigenvalues. Furthermore, for generic Reynolds numbers,
the Ekman problem on [0, co) has no open sets of eigenvalues. (More precisely, the
set of Reynolds numbers which admit such sets has no accumulation points.) The
nonexistence of open sets of eigenvalues for all Reynolds numbers remains an open
question. In Section 8, assuming that there are no open sets of eigenvalues, we use
M () to show that the eigenvalues of the truncated problems converge to the eigen-
values of the Ekman problem (and only to those eigenvalues). In Section 9 we discuss
the shooting method that we use to approximate the eigenvalues. We have developed
a package of subroutines SLNSA for solving nonselfadjoint eigenvalue problems. In
Section 10 we calculate the neutral curve and critical Reynolds number (for certain
parameters of the problem), and compare with results of Lilly [20].

2. Transformation of block operator problems to systems of ODE's

We shall consider spectral problems for 2x2 matrix operators of the form

(e 2) ()= (), o
(e 2) ()7 o)) 22

where the blocks A, B,C, D, M, N, P,Q are ordinary differential operators. Here,
A is a complex parameter, and for simplicity, we suppose that y(x) and z(x) are
complex, scalar functions defined on a finite interval [a,b]. (The calculations and
results of this section are valid for vector functions as well. Later, finite intervals
will play the role of truncations of the infinite interval [0, 00).) If we set A(A\) =

A—AM, B(\) = B— AN, C(A\) = C — AP, D(A) = D — AQ. then (2:2) has the

or more generally
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form
ANy + B(A)z =0, (2-3)
C(A)y+ DAz =0. (2-4)
The block operator problem consists of these equations, together with 2n independ-

ent, separated boundary conditions for y, and 2m independent, separated boundary
conditions for z of the form:

2n—1 2n—1

> pasy @) = 0= qasy®(0)  (1<a<n), (2:5)
B=0 B=0
2m—1 2m—1

D @) =0= 37 520 (1< p<m), (2:6)
v=0 v=0

where the coefficients pag, ¢ag, 7y, S are complex constants. The differential oper-
ators are assumed to have the form:

ANy = ag(x)y®™ + ag(z, Ny® ™ + -+ agn (2, Ny,

B(\)z = by(x, \)2® + by (z, \)2* -+ bz, )z, 27)
CA)y = colz, Ny™ + ci(z, Ny "V + -+ e, Ny,

D(\)z = do(z, \)2®™ + dy (2, \)2""D + o+ dyy (7, V)2,

and to satisfy the following assumptions:

(A21) h<2n,h+Ek<2(m+n);

(A2-2) the coefficients a;,b;, ¢, dg, which are complex functions, are analytic in A
for each x and are at least |k — 2m/| times differentiable with respect to x;

(A2-3) ap(z) #+ 0; and if m > 0, then dy(z, A) = do(z) * 0;

(A2-4) if h+k =2(m+mn), then ay(z)dy(z, A) — by(x, N)co(x, A) has only isolated zeros
for each value of . In particular, it is not identically zero.

Under these assumptions, we shall show that the problem (2-3-2-6) is equivalent

to a system of first order ODEs with separated boundary conditions. However the

coefficients of this first order system may have singularities.

Example 1. To illustrate the nature of the singularities in the coefficients of the
ODEs, consider the problem:

-D* 1 v\ =\ (Y
qlz) u(x)) \z) “\z)
where D = d/dzx, and with boundary conditions y(0) = 0 = y(1). This is equivalent

to the problem
yi = Y2,

, [ ul@)
Yo — (/\_q(x) _/\>y17

with boundary conditions y(0) = 0 = y,(1).

Remark 1. Assumption (A2-4) implies that A(A)y + B(A)z cannot be a lin-
ear combination of C(A)y + D(A)z and its derivatives. For if it were, and if
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f(z)d’? /dx? (C(N)y + D(N)z) is the highest derivative in the linear combination, then
2n = h+jand k = 2m+j, sothat h+k = h+2m+3j = 2m+2n. Furthermore, ay = fe¢,
and by = fdy, which implies that aydy — bycy is identically zero. If A(A)y + B(\)z is a
linear combination of C(A)y + D(\)z and its derivatives, then the system is determ-
ined by C(A\)y+ D()\)z, and can be expected to have strange behaviour, as illustrated
by the following two examples.

Example 2. This is an example where A(A)y+ B(\)z is a derivative of C(A)y+
D()\)z. Consider the problem

D4 D’) v\ _ \ D:} D4 Yy
D D?*)J\z) 1 D z)’
with boundary conditions y(0) = y'(0) = 0 = y(1) = ¥'(1), 2(0) = 0 = z(1). Here,
ANy + BNz =y — Ay + 20 — 22 =0,
CANy+DNz=vy —Ay+2" =X =0.
If we choose any z € C*|0, 1], such that 2z (0) = 0 = 2U)(1) for 0<j <2, and set
= —2/, then (y,2)T
with infinite multiplicity.

is an eigenfunction for all A € C. Thus every A is an eigenvalue

Example 3. In this example, assumption (A4) is violated, but A(A)y + B(A\)z is not
a linear combination of C'(\)y + D(\)z and its derivatives. Consider the problem

(b V)00

with boundary conditions y(0) = 0 = y(1). Here,
ANy + BNz =9y" =2 y' +2' —2X2 =0,

CANy+DNz=y —Ay+2z=0. (2-8)
For A = 0, these equations are:
y// + Z/ — 07
y +z2=0. (2-9)

If we choose any function y € C*°[0, 1] such that y(0) = 0 = y(1), and set z = —y/,
then (2:9) is satisfied, so (y, z)7 is an eigenfunction for A = 0. Thus A = 0 is an
eigenvalue with infinite multiplicity. If A # 0, then the first equation of (2-8) together
with the derivative of the second equation imply that z = —%y’. Substituting this
into the second equation of (2-8), we obtain 3y’ = 2)y. Therefore y = cexp (2A\x), and
we see that the only solution is (y, 2) = (0,0). Thus the only eigenvalue is A = 0.

Since Examples 2 and 3 have eigenvalues with infinite multiplicity, neither prob-
lem can be equivalent to a system of first order ODEs with separated boundary
conditions.

In the following, we assume that conditions (A2-1)—-(A2-4) are satisfied.

Lemma 2-1. If k > 2m, then equations (2-3), (2-4) can be transformed to an equivalent
system:
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Where

ANy = ap(@)y® + s (2, Ny + o+ G (@, Ny,

B(\)z = bo(w, 2™ + by (2, A) 2™ D + o+ by (2, M)z
and k<m if m > 0; moreover, B(\)z =0 (i.e. z does not appear in the Jirst equation) if
m = 0. The coefficients of A(X) and B(\) may have singularities. However, if m >0 and
h+ k <2(m +n), then there are no singularities.

Proof. The equations (2:3), (2-4) have the form:

agy®” + ary® Y + - agy + bz o+ bz = 0, (2-10)

coy™ + ey 4y + dpZT 4+ dypz = 0. (2-11)
Dividing (2-11) by d and differentiating p times, which we may do for any p < |k—2m]|
by Assumption (A2-2), we obtain a sequence of equations:

Yoy + 40,1y P+t gy + 23+ 50 12T 4 G a2 = 0,
"/oy(h“) + 71,<)y‘h) o Yi,hY + Z(2m+1) + (51112’(27"71) o 5172mz — 07

Yoy + Ay 1y oy gy ey oy + 2B 45y 2T 4 6y 9z = 0, (2-12)

fy(’y(hﬂ’) + ﬁp7ly(h+p_l) IS ’N)’p,p—ly(hﬂ) + ’7p,liy(h') oty py L2m+p) 4 6}7,1'3(2"1'_]) ot Oy omz=0.

The coefficient vy = ¢y/dy. By Assumption (A2-3), if m > 0, then dy = dy(x) * 0, and
7o is non-singular. The term 2*™ has been eliminated in the succeeding equations by
using the first equation. We obtain an equivalent system by using these equations,
since (2-11) is retained. Taking 2m +p = k, we obtain h + p = h + k — 2m < 2n. The
matrix of coefficients of (2-10) and (2-12) is

ay Qi .. Up—ph—t Q2n—p - Q2 bo by . bp—2m—1 br_2m br—2m+1 .. g

0o 0 .. 0 Y - Yo O 0 . 0 1 o1 . 00 om
0 0 . Yo Y10 - Yih 0o 0 .. 1 0 (S]] . 5] 2m
FO ’N}/pl .. ’N}/p p—1 Ypo - Yph 1 0 .. 0 0 6})1 .. (;p 2m

where I'y (the term in the last row and first column) is defined as follows: if h +
k<2(m+n),then [y =0;if h+k =2(m +n), then [y = . If h +k <2(m +n), then
the terms by, b,...,bx_2,, in the top row can be changed to zeros by subtracting
multiples of the lower rows. The leading coeflicient is unchanged in this process. If
h + k = 2(n + m), then the term I'j = ~, is first converted to zero by subtracting
Yo/ aop X (top row) from the last row. In this process, the 1 in the last row is converted
to (apdy — bycy)/andy. By assumption (A2-4) this coefficient can have only isolated
zeros for each value of X\. The term b, in the top row is now converted to zero by
subtracting agdoby/(aody — bycy) X (bottom row) from the top row. In this process,
singularities may be introduced into some coefficients in the top row. Finally, the
(new) terms by, bo, ..., bg_2, in the top row are converted to zeros by subtracting
multiples of the lower rows (above the last row). The new top row now corresponds
to an equation of the form:

ao(@)y®™ + (2, Ny + -t g (, Ny + bo(w, N2 -+ by, )z = 0,

where k< 2m— 1. If m = 0, then z and its derivatives do not appear in this equation.
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THEOREM 2-1. Suppose that the conditions (A2-1)—(A2-4) are satisfied. Then the sys-
tem (2:3-2-6) can be transformed to an equivalent system of first order ODEs with separ-
ated boundary conditions. The system of ODEs has the form:

(#)=¢(2);

where
Yo 20
Y1 21
Y = , Z = ,
Yan—1 Zam—1

and G is a 2(m +n) X 2(m + n) matriz whose coefficients are functions of (x, X) which
may have singularities. If k <2m, or if m > 0 and h+k <2(m+n), then these coefficients
are non-singular. The boundary conditions corresponding to (2-5) and (2-6) are:

2n—1 2n—1

> Pasysla) =0= > qagysh)  (1<a<n),
B=0 B=0
2m—1 2m—1

Z Tuwzv(a) =0 = Z S 2u(D) (1< pm).
v=0 v=0

If m =0, then Z does not appear in the ODEs or the boundary conditions. However, in
this case, the system must be supplemented by an equation of the form z = f(Y).

Proof. By Lemma 2-1, we may assume that either m = 0 or k<2m. Set
Y =Wy voni) =@y -y N and if m>0, set Z = (29 21+ 2am_1)L =
(z 2/ - 20m=D)T Then

Y=y (for 0<<2n—2),
Yot = ao() " (@rYom—1 + -+ azmyo + bozi, + - - bizo),
2i =z (for0<j<2m —2),

Zhm_y = do(@) " (Coyr + -+ Cryo + dizam—1 + -+ dagm20).

If m = 0, then Z does not appear in the above equations.

The Ekman boundary layer

The analysis of stability for the Ekman boundary layer leads to the block operator
problem (1-1)—(1-2). In this case, 2n = 4,2m = 2 and h = k = 1. Thus we are in
the case where h + k <2(m + n). Following the procedure of Theorem 2-1, we can
transform (1-1) to an equivalent system of first order ODEs. Set

Uy Yy
lw | _ Y _ (v _[~= .
= = = = . 2.1
u s s | v <U2> (z’) (2-13)
U4 y///

Then (1-1) is equivalent to

()-<()
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where
o 1 0 0 0 0
o 0 1 0 0 o0
{0 0 0 1 0 0 o 1=
G - Ay 0 Qy3 0 0 -2 ’ (2 1b)
o 0 0 o0 o0 1
[¢131 2 0 0 Qg 0
with
ay = —(a* +id® RV + iaRV" — a?)\),
a3 = 207 +iaRV — )\,
Agr — iOéRU/,
ags = & +iaRV — \.
The boundary conditions are:
Uq (0) = UZ(O> = Ut (0) = 0, (216)

and

u € (L*[0,00)), v € (L*[0,00))°.

3. The essential spectrum of the Elkman problem

Throughout this section, we make extensive use of assumptions (A1-1-A1-3).
Let the matrix operator on the left-hand side of (1-1) be denoted by M, and on
the right-hand side by N. Thus (1-1) has the form

M¢ = AN, where ¢ = (y,2)T.
We are also interested in the operator
L=M—AN.
The domains of the operators L, M and N will now be defined. Let X; = H?[0,00) N
H}[0,00) (with H*-norm), X5 =Y; =Y, = L*[0,00) and X = X; x X5, Y = Y] X Y.
Let Dy = H*[0,00) N HZ[0, 00) (with H*-norm), and D, = H?[0,00) N H}[0, c0) (with
L?-norm).
Define the domains: D(N) = X, D(M) = D, x Dy C X, D(Ll) = D(M).
Then N: X - Y, M: DM)Cc X =Y, L: D(L)Cc X =Y.

The construction of the operators used here closely follows that to be found for the
Orr—Sommerfeld case in Langer and Tretter [18] and for a more general abstract
case in Shkalikov [24].

We shall say that X is an eigenvalue for (M, N) if the operator L = M — AN is not
injective.

As indicated in [11], several different definitions of essential spectrum have ap-
peared in the literature. The definition we shall use here is:

Ous(T) ={\ € C: T — A\ is not Fredholm},
Ous(M,N)={\ € C: M — AN is not Fredholm}.
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N is bounded because the differential operator —D? + a2 is a bounded operator from
H?[0,00) to L*[0,00). It is also straightforward to show that N is injective, with
bounded inverse. Therefore (see, e.g., [11, theorem 3-16]) the operator L = M — AN
is Fredholm if and only if N~'L = N='M — XI is Fredholm (and the two operators
have the same nullity, deficiency and index). Thus

Ous(M,N) = 0, (N~'M).
Another useful characterization is:
Ous(M,N) ={A € C:0 € g,(M— AN)}.
Our aim is to calculate o,.(M, N). We shall begin by showing:
THEOREM 3-1. The operators L and M are closed.

Proof. Since N: X — Y is an isomorphism of Hilbert spaces, L = M — AN is closed
if M is closed. To show that M is closed, let

P(y,z) = (=D* + o*)*y + iaRV (—D* + o)y + iaRV"y + 22/,

Qy,2) = (—D* + o®)z + iaRV z + 2y + iaRUy.

v\ _ P(%Z))
M = .
(2)= (a5
To show that the graph of M is closed, suppose there is a sequence (y,,, z,)T € D(M),
such that (Yn, z,)T — (Yo, 20)T in X, and (P(Yn, 2n), QWn, 2:))T — (Po, Qo)T in Y.
Hence y, — 4 in H*-norm, and 2, — 25, P(Yn,2n) — Po. QYn, 2n) — Qo in L*-

norm. We must show that P(yo, z0) = Py and Q(yo, z0) = Q. Since Q(yn, 2,) — Qo in
L? norm, it follows that

Then

lim (—D* + a®)z, = lim (Q(Yn, 2,) — 2y, — iaRU"y,, — iaRV z,)
n—oo n—oo
= Qo — 2y, — iaRU'yy — iRV z,
in L*-norm, because hypotheses (A1-1-A1-3) imply that U’ and V are bounded. But
the operator —D? + o with domain H?[0,00) N H}[0, c0) is closed (cf. [11, theorem
X1-9-5]). Therefore lim,,_...(—D* + a?)z, = (—D? + a*)z, and this implies that
Q(Yo, 20) = Qo. Thus 2, — zy in H?>-norm, therefore z/, — z{, in L*-norm. Furthermore,

lim (—D*+ a®)?y, = lim (P(yn, 2n) — iaRV (—D* + o)y, — iaRV"y,, — 22")

n—oo

= Py — iaRV(—=D* + ®)yy — iaRV"y, — 22

in L*-norm. But [11, theorem 1X-9-5] implies that the operator (—D?* + o®)? with
domain H*[0,00) N H;[0,00) is closed. Therefore lim,,_...(—D* + &?)*y,, = (—=D* +
a®)?yo, and so P(yo, 20) = By

Define perturbations of M and L as follows. Let

(—D?* + a?)? 2D
M, =

2w D a) . DO = D)
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K- <iozRV(—D:3 +a?) +iaRV" 0 ) DK
iaRU’ iRV
Lo =M, — AN, D(Ly) =D(L) = D(M).
Then M = My+ K and L = L, + K.
THarOREM 3-2. K is Ly-compact.

Proof. Suppose there is a sequence (Y, 2,)7 € D(Ly) such that

s 20) 17, = 1ns 20) " I + [ Lo(yn, 2a) T3 < C

for some constant C' > 0. We must show that there is a subsequence (which we shall

simply denote by (y,, z,)T again) such that K (y,,2,)T converges in Y. We shall use

the notations: H*> = H?[0,00), L* = L*[0,00) and |Jullz = |Jullg2. |Jull = |Jul/z:. Then

| Wns 20)T I3 = lynll3 + ||z ]|?. Therefore y,, is bounded in H? and z, is bounded in L.
Let P: Y — Y, and P: Y — Y5 be the orthogonal projections, and let

Ly=PLy, Ly=hL, K =PK, K,=PFPK

Since ||y|3 = ||Piy|]? + || Poy||* for y € Y, we see that Li(yy, 2,)" and La(yn, z,)" are
bounded in L?, and we must show that there is a subsequence such that K (y,, z,)7
and Ks (Y, 2n)T converge in L.

A calculation shows that:

Li(Yn, 2n)" = (—=D* + &®)*y,, — M(—=D* + a%)y,, + 22/,
Lo(Yn, 2n)" =2y, + (—D* + &)z, — A2y,
K\(Yn, 2n)" = iaRV (=D?* + o®)y, + iaRV"y,,
Ko (Yn, 20)" = iaRU"y, +iaRV z,.

Since y,, is bounded in H?, y/, is bounded in L?. Now y/,, 2, and La(y,,, 2,)T bounded in
L? imply that (—D*+a?)z, is bounded in L?. Let A(z) = (—D?*+a?)z, with D(A) = D,,
and B(z) = iaRV z, with D(B) = {2z : 2, B(z) € L*}. Since lim, .., V(z) = 0 and B
has lower order that A, [11, theorem 1X-8-2| implies that B is A-compact. Therefore
there is a subsequence so that ia RV z,, converges in L?. Similarly, since (—D?+ a?)y,,
is bounded in L?, there is a subsequence such that iaRU"y,, converges in L?. This
shows that there is a subsequence such that K,(y,, 2,)? converges in L?.

Now we must show that there is a subsequence so that K (y,, z,)"
L?. Since z, and (—=D? + o®)z, are bounded in L?, z,, is bounded in H?. This implies
that z/, is bounded in L?. This together with the boundedness of L, (y,, zn)T in L?
implies that (—D? + o?)*y,, — A(—D? + a?)y,, is bounded in L?. [11, theorem 1X-8-2]
now implies the existence of a subsequence so that K, (y,, z,)T converges in L.

converges in

COROLLARY 3-1. 0,(M, N) = 0.(My, N).

Proof. Since K is Ly-compact, and L = Ly + K, it follows that 0, (L) = 0. (Lo).
(cf. [11, theorem X1-2-1]). Furthermore,

Ouss(M,N)={A € C:0 € 0,4(L)} and g,4(My, N) ={A € C: 0 € 0,4(Ly)}.
Therefore o,,(M, N) = 0, (Mo, N).
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Our task is now to calculate o, (My, N). For this purpose, we transform the equa-
tion

Uy Y
/
A A R e
Uus Yy V2 z
Uy y///
and obtain
u U
_A = 3.1
<U,> <U> h, (3-1)
where
0O 1 0 0 0 0 0
0O o0 1 0 0 0 0
10 0o 0 1 0 0 10 a.
A h (07%] 0 Qy3 0 0 -2 ’ h= f ’ (5 2)
0O 0 0 0 0 1 0
O 2 O O Qgs O _g
with
ay = —at + P\,
A43 = 2a° — A,
A5 = a2 — .
The boundary conditions are:
u1(0) = u2(0) = v(0) =0 (3-3)

and
u € (L*]0,00))*, v € (L*[0,00)).
The characteristic polynomial of A is

p(p) = p(u: N) = det (ul — A) = (11 — o® + AP’ (1 — o®) + 4y
=15+ 2X = 3t + (NP — 40P\ + 30t + 4) i — oF (N — oF)?.

The roots of p(u) are the values of an algebraic function p = p(A). They live on
a Riemann surface which is a 6-sheeted branched covering of C. There are finitely
many points A € C over which the Riemann surface is branched. These are the roots
of the discriminant of p(u), and will be called the branch points. They are the values of
A such that p(u) has multiple roots. Thus, with the exception of finitely many points
A, p(p) has 6 different roots. Since p(u) is an even polynomial, the roots occur in &
pairs. The roots +p and —p are different, except for the root p = 0, which occurs for
A = a?. When no root is purely imaginary, they can be ordered: juy, fi2, fis, iy, fhs, fe-
such that Re (ux) <0 for 1 <k <3 and Re () >0 for 4 <k <6. This is important
because the function e#+® € L*[0, 00) for 1 <k <3, and e+ ¢ L*[0, 00) for 4 <k <6.
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We will show that o,.(M,, N) = S(M,, N), where
S(My, N) = {X € C: p(u) has a purely imaginary root}. (3-4)
We shall now identify this set explicitly.
THEOREM 3-3. The following are equivalent.
(1) A € S(M, N).
(2) A —a? — )2+ &) +4£ =0 for some ¢ € R.
(This equation is satisfied if and only if p(A) = i€ is a root of p(u; A).)
(3) A =v+in, where n* = 4(1 — o*/v),v >’
Proof. (1) and (2) are equivalent, since (2) is is the result of setting ;1 = £ in the
characteristic equation of A: (> — a® + \)?(u* — o®) + 4p®> = 0.
Solving for A in (2), we obtain:

A= (P +&) £
Thus
v=of+€ and n=+TF— =42¢/1 - —.

This shows that (2) is equivalent to (3).

Recall the following definition of “singular sequence” for a linear map T : D(T') C
X — X. (cf. [11, definition IX-1-2].) A sequence {z,, : n € N} C D(T) is called a
singular sequence for T'— A if the following conditions are satisfied:

(1) it has no convergent subsequence;
(2) ||zn]lx =1 forn € N;
(3) im oo (T — Az, = 0.

Condition (2) may be relaxed to:
(2)) 0<a<||zn||x <bfor n>=N.

Theorem IX-1-3 in [11] implies that if T" is a closed, densely defined operator such
that T' — AI has a singular sequence, then A € o, (7).

Similarly, we shall define “singular sequence” for M, — AN as a sequence {z,, : n €
N} satisfying (1) and (2°) above, and

(3°) lim 00 (Mo — ANz, = 0.
(Clearly, a singular sequence for M, — AN is also a singular sequence for N~ M, — \I.

Since 0,(My, N) = 0,,(N""M,), we see that if My — AN has a singular sequence,
then )\ S 0‘(1,\§9(M)7 N)

THEOREM 3-4. S(My, N) C 0,(M, N).

Proof. Using an idea from the proof of [11, theorem IX.7-3], we shall construct a
singular sequence for My — AN, when A € S(M,, N). Note that u(A) = 0 is a root of
p(u; A) only when A = o®. We shall first consider the case A + o?.

Let n € (C°(—o00,00) be a function satisfying the following conditions:
n(xz)=1, for |z|<1/2;n(x)=0, for |z|>1; and 0<n(x)<1 on (—o0,00). Let
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I, = {z : |z — z,] <, }(n € N) be mutually disjoint intervals in (0,00), with
lim ;00 £, = 00. Suppose that A € S(M,, N). Then there is a root p(A) = i€ of p(u, A),
where £ € R; € # 0, since we have assumed that A # a®. We define:

yn(m) = 651/2(_D2 + a2 - )‘)( [(x - xn)g ] exp [Zf T — xn)])
zn(z) = 726_'/2D(77[(x —xp)l, ] exp|i€(x — xn)])
Cn(x) = (yn(x),zn(a:))T,

where D = d/dx. We claim that {¢, : n € N} is a singular sequence for M, — AN.

Since Supp (¢,) C I,,, and the intervals I,, are disjoint, the functions ¢, are ortho-
gonal to each other. Therefore condition (2°) (0 <a < ||(,|lx <b, for n > Ny) implies
(1) (there is no convergent subsequence). Tt remains to prove (2°) and (3).

Proof of (2°). We start with the observation
||Cn||§< = llynlls + lzall* = 1 D*yall* + | Dyall* + llyall* + ll2n]1*.
Let
wn = 6, 29(D) (n[(z = wn) " explig(@ — z)]),
where g(t) = Zf:() a;t?, (a; € C,0< j < k). There are constants b; = b;(£) so that

1/z<2b 9n x—xn)ﬁ ] +g(i&)n [( xﬂ)g;l}) exp (i€ — )],
n 2d < n 2 = . 2y ’
/z—zn|gén/2w " do < [lwn| /9«’—%I<én W, ()| dx

/ wntalfdo = [
|z—zp | <L lz|<1

Given € > 0, there exists N = N(g ), such that for n > N, (and for all x)

2

Zbe Inul (@) + g(i€) n(z)| da.

Jn

Using the inequality [p + ¢q|* < 2(|p|2 + |q|?) (for p,q € C), we obtain (for n > N)

1

JwnlP < 2 [ (@ + lgti)Patey) do.

i

and since 0 <7(z) < 1,

Jwa|I* <4(€° + |g(i&)[?), forn>=N. (3-5)
Using the inequality [p + q|* = 1/2 |p|* — |q* (from 2|pq| < 1/2|p|* + 2|¢|*), we find

1/2

Junl?> [ lgliOPn) = ) d = 1/2]gli0) -
—1/2

Thus we have

1/2]g(8)|* — € < |Jwnl|* <4 (€2 + |g(i&)]?), for n> N(g). (3-6)
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Applying (3:6) to Y, Dy,, D*y,, and z,,, we obtain (for any given € > 0 and sufficiently
large n):
(|67 +a” = AP + )
< HEE + 0 - AP+
< 4N+ = AP+ €.

121€ +a® = AP =€ < lynl® <
1/2€218% + a® = AP — € < || Dynlf?
1/2€1¢ + o = AP — € < ||D*ynll?
This proves condition (2).

Proof of (3'). We start with the equation
v\ _ (P, Z)>
My — AN = )
-2 (1) = (G

P(y,z) = (=D* + o®)’y = A(=D* + a®)y + 2Dz,
Q(y, z) = 2Dy + (—=D* + &%)z — \z.

where

Applying this to ¢, = (Yn, 2,)T, we obtain
P, zn) = £, {[(=D* + &®)> = \(=D* + &*)|(=D* + o — \)
— 4D2}77 [(a: — :1:”)6,;‘] exp [i&(x — x,)].
By (3:5), for any € >0, there is an integer NV, so that
1Py, 20) [ <4 (€ + [g(i€)[7), for n >Ny,
where
gli) = [(€ + a®)* = M + a®)|(€ + a® = N) +4€7 = (£ + o — N))(§ + %) + 4€%

By Theorem 3-3(2) g¢(i§) =0, and so ||P(Yn,zn)|| <2¢ for n>=N,. Therefore
lim o0 P(Yn, 2n) = 0.

QWn, zn) = £;'*[2D(=D* + & — \) — 2(—D* + o*)D
+ QAD]n[(x — azn)ﬁgl] exp[i&(x — z,)] = 0.
This proves condition (3°) when X # o?.
We must still consider the case A = a?, & = 0. Define
yn(@) = 6, Pn[(@ = 20)6, '], 20(2) = 0, Gal(@) = (yal@), 20 (2)T
Then
I1€all5 = lynll* + 1[1Dynll* + [1D*ynll?,

_ _112 < _ _ 112
/ Gl —2n) 6] de < lyal® = / Gl — @)t '] de,
|z—2, |[<ln /2 |lz—xn | <l

1/2 1
1=/ () de < ||an|2</ n(x)? dr < 2.
- —1

1/2
By (3-5), with £ = 0,
Dy, |I? <4€, 0< || D?y,|* < 46

Therefore condition (2°) is satisfied, and this implies condition (1).
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Using the fact that A = a?, we have
Py, 2,) = 0, *[(=D* + a*)* — &*(—=D* + a*)n[(z — z,)¢,,'].
By (3-5), for any € > 0 there exists an integer Ny, such that for n > N,
1P (g, 20) I <4 (€7 + |g(0)),
where g(t) = (—t* + a®)? — o*(—t* + a?). Thus g(0) = 0, and
1P (¥, 20) || < 2€ for n = Nj.
We also have
Qn, 2n) = 26,7 D[(x — wn)7"].
By (3-5) for € > 0 there is an integer N such that for n > N,
1Qn, 2l <4 (e + RO)P),
where h(t) = 2t. Thus h(0) = 0 and ||Q(yn, 2»)|| < 2€ for n > N;. Hence lim,,_, o (M, —
a’N)¢, = 0.
Lemma 3-1. Let f, g, h € L*[0,00), and let

F(x) = / e“(z*t)f(t) dt + ae!”,

0

x T t
G(x) = / et @D g(t) dt +/ e“(””_t)</ eMt=5) £(s) ds) dt + axe!® + bet*,
0

0 0

x x t
H(z) = / et O R(t) dt +/ e““‘”(/ et g(s) ds) dt
0 0 0
x t s a .
+/ etz =t {/ ett=3) </ e”(s_t)f(r) dr> ds] dt + sze’” + bret”® + ce!”®.
0 0 0

(1) If Re (u) <0, then F, G, H € L*[0, 00) for any values of a, b, and c.
(2) If Re (1) >0, then there are unique values of a, b, ¢ such that F, G, H € L*[0, c0).
These values are:

a=F(0)= —/Oo e M f(t)dt,

0

b=G(0) = —/Oo e Mg(t)dt — /oo e M F(t)dt,

0 0

c=H(0) = /Oo e Mh(t)dt — /Oo e MG(t)dt.
0

0
When a,b, and c have these values, F,G and H have the following alternative
Jormulas:
(o]

e

)
oo

et =Y B(t) dt,

oo
Ml

o0

MGt dt.

Flay== [ e piode
G(z) = — / h et =D g(t) dt —
H(z)=— / O R(t) dt

/
/
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Proof. (1) Suppose Re (1) < 0. Note that if we prove that F' € L*[0, cc) (for arbit-
rary f € LZ[O, 00)), then it follows that G, H € L?*[0, 00). To show that F' € L?*[0, 00),
extend f to (—oo,00) by defining f(z) = 0, for z <0, and consider the Fourier trans-
form f(w) = [*_ e 27t f(¢) dt. Then

—00

/e“(z_t)f(t)dt:/ e“‘““(/ ezm“’tf(w)dw>dt
0 0 —0
:/ dw/ eH eBTIw =t £1) di
—00 0

/ h e (2miw — p) ' [T — ] f(w) dw

oo oo
= / XTI (27w — M)flf(w) dw — e’“/ (2miw — u)flf(w) dw
— 00 — 00
The first term on the last line € L*[0, 00) because it is the inverse Fourier transform
of an L?-function. The second term € L*[0,00) because the exponential is an L*-
function, and the integral converges since it is the inner product of two L*-functions.
Changing the order of integration is justified by the definition of the Fourier trans-
form on L?(—00,00) (as the L*-limit of Fourier transforms on L'(—o0, c0)).

(2) Suppose Re (1) > 0. Let a = —f(:}o e~ f(t) dt. Then

F(x) = /Z M@= £(t) dt + aet”

0

= /T e f(t) dt — /OO et f () dt = —/OO e £(¢) dt.

0 0

_/;0 et () dt:—/ wa—t) </ vt f, )

/ dw eHtelmiv= “tf ydt =— / et (2miw—p)” 1[—6(2”“’7“)”3)}f(w) dw

o0

g
2
I

:/ e“’“’”(?mw— 0~ fw) dw

and so F' € L*0, c0).
To show that G € L?*[0, 00), we note that since f(f ett=3) f(s) = F(t) — ae™, it follows

that
x t x

/ eu(w_t)</ eu(t_s)f(s)ds)dt:/ "I (t) dt — axel”

0 0 0
and

Gy = [ e gtydre [ et m dr b
0 0

If we put

b= —/ et =D g (t) dt —/ e F(t) dt,
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then

G(z) = _/000 e Mg(t) dt — /000 e M F(t) dt.

Therefore G € L*[0, 00) by the same argument as for F'.

We use a similar argument to show that H € L*[0, 00). Since

t s t
/ e”““”(/ et £ (1) dr) ds = G(t) — / et g(s) ds — ate't — bet,
0 0 0

it follows that

x t s
/ M@=t {/ e““”(/ e“(sfr)f(r) dr> ds] dt
0 0 0
T x t a
:/ e IG(t) dt — / e““”(/ et g(s) ds)dt — §x26’”" — bxet®
0 0 0

and
H(x) :/ CRa () dt+/ MG (t) dt + cet.
0 0
If we put
c= —/ e‘”th(t)dt—/ e MG(t) dt,
0 0
then

and therefore H € L?[0, 00).

Finally we will show that the triple (a, b, c) given in (2) is unique. Let (a, by, ¢() #
(a,b,c), and let Fy, G{, H; be the functions corresponding to (a,b(,c). If a; * a,
then Fy(z) = F(z) + (a; — a)e’®. Thus F; ¢ L*[0,00), since F € L*[0,00) and e"* ¢
L?[0,00). If a; = a and b, # b, then G, (z) = G(x) + (by — b)e'®, so G ¢ L*[0, ).
Similarly, if a; = a, by = b and ¢; * ¢, then H; ¢ L*[0, 00).

Recall that the characteristic polynomial for the matrix A (given in (3-2)) is p(u) =
p(; A) = det (ul — A) = (u® — o+ N)*(u* — o®) +4p>. If, for a given A, no eigenvalue of
Aispurely imaginary, then A ¢ S(M,, IV). In this case, the eigenvalues can be ordered:
M1, Mo, s, —p1, —pe, —pis, where Re (1) <0 for 1 <j < 3. There is a nonsingular
matrix S = S(A) such that SAS™' = D is in Jordan canonical form. It is not hard
to check that if A\ # a?, then the A-annihilator of the vector e; = (1,0,0,0,0,0)T
coincides with p(A). Therefore p(u) is the minimal polynomial of A. This means
that if p(u) has multiple roots, then the matrix D is not diagonal. There are three
possibilities for the matrix D (apart from permutation of the roots):

-Dl = dlag (Ml?,u?v M3y 4, MS’MG)’ where Re (M]) <Ofor1 <] < 37
My = — 1, 5 = —H2, He = —H3,
and p; F pj for i =+ j, (3-7)
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w10 0 0O 0
0O u 0 0 0 0
10 0 v 0 0 0 ) .
D, = 00 0 —p 1 o | where Re(u), Re (v) <0, and g+ v, (3-8)
00 0 0 —u O
0O 0 0 0 0 —v
w 1.0 0 O 0
O w 1 0 0 0
10 0 uw O O 0 . .
D, = 00 0 —p 1 o | where Re(u) < 0. (3-9)
0 00 0 —u 1
000 0 0 —u

LemMMA 3-2. Let D be one of the matrices (3-7)—(3-9). (We have assumed that no eigen-
value of D is purely imaginary.) Consider the initial value problem:

W' —Dw = f, w(0)=u',
where
w(@) = (wi (@), wa(@), wy (), wa(), ws(x), we(@) ", W = (w),wh, W), w, w,wh) ",
F@) = (fi(2), (@), fo(), ful), fo(@), fo(@)™ and fi € L*]0,00) for 1 <k<6.

The solution w(x) has the following properties:
1) for 1< <3, w; € L*0, 00) for all initial values wl,wz,w; eC
2) for 4 <k <6, there are unique initial values wi, wl, w§ € C so that wy, € L*[0, 00)
Jor 4 <k < 6. These values are the following:
(i) if D = Dy, then w), = — [~ e7"! fi.(t) dt
(ii) if D = Dy then w§ = — [ e”" f(t) dt, w“ = — [ et f5(t) dt and
wy = —[Tert fitydt + [ et ft ets=h £.(s) ds) dt;
(iii) of D = Dy then w) = — “OO e fo(t) dt,
w) = — [T et fi(t)ydt+ [ et ([ e fo(s) ds) dt. and
w) = — [ et fi(t)ydet+ [ ert ([T et tf( ) ds) dt
+ [T e [ et ([ e o) fo(r) drr) ds] dt.

Proof.
(i) If D = Dy, then the system of ODEs has the following form:

wi — pyw; = fy (for 1 <5 <3), wy, + ppwy = fi (for 4 <k <6).

The solution has the form:

/ e == £ (t) dt + et (for 1<j<3),

/ e M@ f ) dE + wheHE® (for 4 <k <6).
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(ii) If D = D,, then the system of ODEs has the following form:

— pwy —ws = fi, w’g*,uwzzfzv wg*Vw«’. I3

/ — !/ —_
wy T pwy — ws = f wy + pws = f5, w6+1/w(,- = f.

The solution has the form:

’U)g(.’l?) = / eV(:r 2 f ( )dt + 'LU0 Vz wz(x) = / eﬂ(w t)f ( )dt + w()ey,:c

0 0

T T t
wy(z) :/ eI () dt+/ e“(””_t)(/ e fo(s )ds)dt+w“x6’“ +wlet,
0

0 0

we(z) 2/ e T fo(t) dt + wie ", ws(z) :/ e MED fo(t) dt + wle M,

0 0

T x t
wy(zr) = / e eI fy(t) dt +/ e““’”(/ e M9 fi(s) ds) dt + wize M + wie M,
0

0 0

(iii) If D = Dj, then the system of ODEs has the following form:
Wi — pwy —wy = fi, wh — pwy — wy = fo, wh — pws = fi,
wi*'ﬂwa—ws:fu w +/1/U))—U)G f)7 w(/j+:u’w6:f6~

The solution has the form

wy(z) = / & fy(6) dt + e,

0

x x t
ws(z) = / a0 fy () dt + / ew—w( / =9 £y s >ds)dt+w§xe““+wé’e“”,
0

0 0

x x t
wy(x) = / e @0 fi(t) dt +/ et (/ e fy(s) ds) dt
0 0 0
x t s ()
+/ e‘“r_t)[/ etlt=3) (/ et fo(r )dr) ds] di+ > 2l +ulze” + wiet”,
0 0 0

we(w) = / e T fo(t) dt + whe V",

0

T T t
w;(x) :/ e T f(t) dt +/ e M= (/ e M) fi(s )ds) dt + wire " + wle M

0 0 0

x x t
wi(z) = / eTHE () dt + / e—w—w( / e‘““‘”f.a(S)ds)dt
0 0 0
x t s
+/ e M@= {/ e HE=s) </ e M) () dr) ds} dt
0 0 0

0
wy _
+ SpPeHT 4 wf-,’xe HE 4 w,ﬂfe nr,

The statements (1) and (2) follow from Lemma 3-1.
Recall that the equation Ly(y, 2)T = (f,g)T is equivalent to the system of ODEs

(3-1) with boundary conditions (3-3). Let S = S(A) = (s;5) (1<4,j<6) be a matrix
such that SAS™' = D, where D is one of the matrices Dy, D,, Dy displayed in
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(3-7)—(3-9). If we put

then (3-1) is equivalent to the system:

sif — s169
Sauf — 8269
w/ o DUJ — 534f — 8369 (310)
Suuf — 5469
ssaf — 8569
seaf — S669
The following notation will be needed below. Let
T=8"=(t; (1<i,j<6), (3-11)
tiy tip s tiy tis s
To= |t taa 23], Ty = | toy tos ta ] - (3-12)
ts1 T2 ts3 tse Ts5 Us6

Jorresponding to Lemma 3-2(2), we define three continuous linear maps ¢y:
L*0,00) — C (4<k<6). If we set fr, = f (4<k<6), then ¢(f) = w} in Lemma
3-2(2). Thus:

(i) it D = Dy, then ¢r(f) = —J, et £(£) dt
(ii) if D = Dy then ¢y(f) = —ﬁ””feh@mz—ﬁ%%mmamd
Oulf) = =T et fydt + [T et ([T et f(s) ds)
(iii) if D = D3 then ¢4(f) = — |, e”tf( ) dt
5() = _fooo et f(t)dt + fo ert( ft et5=t f(s) ds) dt and
Ou(f) = — [ et feydt+ [ ert ([ et f(s) ds) dt
+ [T e[ et [ ertr =) f(r) dr) ds| di.

We define a continuous linear map : Y — C? as follows:

S4404(f) — s1604(9)
U(f,9) = Ti | $5105(f) — $5695(9) | - (3-13)
S6406(f) — SesPs(9)
Observe that the sets U and V defined by
U=1() and V= Range (1)) (3-14)

are subspaces of C*. Recall that \ is an eigenvalue for (M,, N) if the operator L, =
My — AN is not injective.

THEOREM 3-5. Suppose that A & S(My, N). Then:

(1) (f,g) € Range (Ly) if and only if ¥(f,g) € UNV;

(2) def (Lo) = dim (/U N V)):

(3) A is an eigenvalue for (My, N) iof and only if det Ty(A) = 0;
(Here Tj is the 3 X 3 matrix defined in (3-12).)

(4) null (Ly) = null(1p);

(5) Ly is Fredholm.
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Proof. Since w = S(%), (1) = T(w). and so

u(0) w(0) w4(0)
u(0) | =15 | wa(0) | + 17 | w5(0)
Uy (O) 'U);(O) 'U)(;(O)

wy(0) wy(0)
To | w2(0) | + Ty | ws(0) | =0, (3-15)
w3 (0) wg(0)

and wy € L*[0, 00) for 1 <k <6.
For 1 <j <3, Lemma 3-2(1) says that w; € L*[0,00) for any choice of w;(0). By
(3-10) and Lemma 3-2(2), wy € L*[0,00) for 4 <k <6 if and only if
wi(0) = $kaPr(f) — skedr(g), for 4<k<6.

Therefore, by (3-13)—(3-15), (f, g) € Range (L) if and only if ¥ (f,g) € UN V. This
proves (1). Since ¥: Y — U is a continuous linear map, and dim (U N V) < oo, it also
follows that Range(Ly) is closed.

Since ¥(Y) = U, and 1(Range(Ly)) = UNV, we see that

def (L) = dim (U/(UNV)).

This proves (2).

Ais an eigenvalue for (My, N) if and only if the system w’— Dw = 0 has a nontrivial
solution w € (L]0, 00))% satisfying the boundary conditions (3-15). By Lemma 3-2(2)
wg(0) = 0 for 4 < k < 6. Thus the boundary conditions in this case are:

This proves (3) and (4). We have shown that Range (L) is closed, null (L) < oo and
def (Ly) < oo. Therefore L is Fredholm.

The following theorem follows from Corollary 3-1 and Theorems 3-3-3-5. This is the
first main result in this paper.

THEOREM 3-6.  0,(M,N)=S(My,N) ={v+in:n* =41 —a?/v), v=a*} (see
equation (3-4)).

The following important sets will often occur in the ensuing sections.

Definition 3-1.

Q(M,N) = C\ (BU 0. (M, N)),

where B is the set of branch points of the characteristic polynomial p(u). (i.e. This is
the set where p(u) has multiple roots.) Q(M, N) has two connected components:

Q(M,N) =Q(M,N)UQ_(M, N),
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where Q. (M, N) is the component containing the interval (a?, 00) C R, and Q_ (M, N)
contains the interval (—oo, a?).

4. L* and non-L* solutions as analytic functions

In Section 7 below, we develop the Titchmarsh—Weyl coefficients. These provide a
further characterization of isolated eigenvalues, and allow us to examine the effects of
regularizing the Ekman problem by replacing it by a problem on a finite interval. In
order to develop the Titchmarsh—Weyl coefficients we examine here the L? solutions
of the system of differential equations (2-14), which we now write as a perturbation
of the constant coefficient system of Section 3:

Y'= (AN + Q())Y, € [0,00), (41)

where A(A) is given in (3-2). We shall assume that A € Q(M, N) (see Definition 3-1).
Then the matrix A(A) possesses 6 distinct eigenvalues g (A), .. ., pg(A), with associated
eigenvectors v((A), ..., vg(A). The p; are ordered so that

Re (p11), Re (p2), Re (1) <0, Re (1), Re (5), Re (1) > 0. (4-2)

The (M) are values of a multivalued algebraic function. However, they are single-
valued analytic functions in any disc D C Q(M, N). We shall sometimes express this
by saying that the p;(\) are “locally analytic” in Q(M, N). By assumption (A1-3)
the matrix @ lies in L'[0, c0).

We denote by T'(\) the invertible (locally) analytic 6 x 6 matrix with columns
Vq,...,Vs. This is the same as the matrix given in (3-11). Making the transforma-
tion

Y =T(\NZ (4-3)
reduces (4-1) to the form
Z'= (D) + Qx,N)Z, (4-4)
in which D(A) = diag(u1(A), . . ., ps(A\) and Q(x, ) = T(N)~'Q(z)T(\). We define

D (z,\) = diag(e“‘(’\)x, eMz(>\)907 eu:e(>\)ﬂc7 0,0, 0),
Dy (z, A) = diag(0, 0,0, e N7 e rNT) (4-5)
and
D(z, \) = O (z) + Dy(2). (4-6)

It is easy to check that @ is a fundamental matrix for the differential system

7' = DMNZ (4-7)
Define
et 0
0 err
I 0 emsVr
Dy3(w, A) = 0 0 0 (4-8)
0 0 0
0 0 0
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Using the variation of parameters formula, it may be verified that for any a > 0, any
matrix function Z which satisfies an equation of the form

2o = 0o | () O N2 ) de

— Oy(z, A) /OO D, \) ' Q(t, N Z(t, \) dt + Dy (, ), (4-9)

will be a solution of (4-4). We use this fact to construct a 6 x 3 solution matrix of
(4-4) which is (locally) analytic in A and whose columns span the space of L?[0, 00)
solutions of (4-4). Note that from the Levinson Theorem |10, theorem 1-3] we already
know that the space of L*[0, c0) solutions of (4-4) is three-dimensional and contains
solutions with the asymptotic behaviour

Zk(x) = (ek + 0(1))exp (:uer)v r — 00, k= 1727 3, (410)
where the ey are the standard basis vectors of CS.

Let a > 0 be fixed, and let BCgx3|a, 00) denote the space of all continuous 6 x 3
matrix functions Z on [a, 0o) with

sup [ Z(@)] < +oc.

z€|a,00)

We define a map Xy : BCyxs|a, 00) — BCgsxs|a, 00) by
E\(2)@) = Oula ) [ 0N Qe Z(e)

— Dy, \) /OO D, N) T Q(t, N Z (L) dt + Dy (, N). (4-11)

It is not immediately obvious that £y maps into BCgx3|a, 00). To see this we observe
that
D, (m)(l)(t)fl = diag (em(k)(ﬂﬁﬂt)7 et2(A)(z—t) e/“ 0 0 ())

412
O, (z)D(t)~! = diag((),0,0,e“*()‘)(x_t),e"“(’\“ - )’euu(k)(a—t))_ ( )

These expressions, together with the assumptions Re (1, o, pt3) <0, Re (pa, 5, f16) >

0, give
H(D1( H< , w2t
(4-13)
[ou@0t) | < 1, t>a.
Furthermore, since Q € L'[0, co) it follows that
/ 1Q(t, N)|| dt < +oc. (4-14)
0

Equations (4-13) and (4-14) together with the fact that
Jim [@g,c3(2, )| = 0

ensure that £, does indeed map into BCjyxs|a, 00).
Now suppose that A lies in some compact set K (which we assume is a closed dise C
Q(M, N)). Exploiting (4-14), choose a such that

/ Q@ N dt <1 YA€ K. (4-15)
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Given any two maps Z; and Zy in BCyys|a, 00), the triangle inequality applied to
(4-11), together with (4-13), yields

tela,z|

IZ7(Z0)(@) - Er(Zo)@)] < ( / ||@<t,A>|dt) sup 1 Z(t) — Zoft)|

+( / ||Q<t,A>|dt) wp 1Z:(0) - Zo(t)],

te[x,00]|
which simplifies to
IZ7(Z0) (@) — Ea(Zo)(@)] < ( | 1aux dt) s 120 =201 @1o)
a €la,00

As the right-hand side in (4-16) does not depend on z, this inequality, together with
(4-15), shows that for A € X the map X, is a contraction on BCgxs|a, 00). Thus Xy
possesses a unique fixed point in BCgxs|a, 00), which is the bounded 6 x 3 matrix
solution of (4-9). We denote this solution by Zj,,.4.

The columns of Z,,,, are L> solutions of the differential equation (4-4). This
is because non-L* solutions of (4-4) blow up at infinity. In fact, by the Levinson
Theorem [10, theorem 1-3] three linearly independent non-L? solutions of (4:1) can
be constructed containing elements with the asymptotic behaviour

Z(@) = (ex + o(1) exp (), T — 00, k = 4,5,6.

Moreover, the columns of Z,,, form a basis for the space of L? solutions. To see
this it is sufficient to show that Z;,,,, is of full rank. If there were some 3-vector ¢
such that Z,,,sc = 0 then multiplying both sides of (4-9) on the right by ¢ would
give

q)(;xg(ﬂf, )\)C =0.

However since @5 is of full rank, this implies ¢ = 0. Thus Zj,,,.q is also of full rank.
Finally, since 2, is an analytic contraction for A € X, it follows that Z,,.« is also
analytic for A € K. (The fixed point is the limit of a Xy-orbit: Z,,+, = £5(Z,). This
is a uniformly convergent sequence of analytic functions.) Transforming back to the
original variables via (4-3), we have proved the following result.

THEOREM 4-1. Let K C Q(M, N) be a closed disc. Then the differential equation (4-1)
possesses a 6 X 3 solution matriz YViuua(x, \) which is analytic in A € X and whose
columns span the space of L* solutions of (4-1).

Remark 2. While we require x € [a, co) for the contraction argument, the solution
for z € [0, 00) is given by the same formula (4-9).

In addition to the analytic matrix Yj,,.q it will be necessary in our development
of the Titchmarsh—Weyl coefficients in Section 7 to have an analytic basis for the
remainder of the solution space of (4-1). This part of the solution space contains
functions which are not bounded, so the argument used above fails. Nevertheless one
can still use the method of Eastham [10] to obtain a result similar to Theorem 4-1.

THEOREM 4-2. Let K be a compact subset of a disc D C Q(M,N), such that
Re g (A) < Re ps(A) < Re pg(A) for A € K. Then the equation (4-1) possesses solutions
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Y., Y5 and Ys which are continuous on K, analytic in the interior of X, and which have
the asymplotic expansions
Yij(x, A) = exp (uj(MN)z) {v; +o(1)}, j=4,5,6,
uniformly for X € X as ¢ — oo.
Proof. 1t is sufficient to show that (4-4) has solutions Z,, Z; and Z; which have the
asymptotic behaviour
Zj(x’/\) :eXp(Nj(/\)m) {ej +O(1)}7 .] =4,5,6, (417)

for large positive z. To do this, fix j (4 < 7 < 6), and for a solution Z of (4-4) define
a new variable Z by

Z(x,A) = Z(z, A) exp (—p;(N)x). (4-18)

Then Z satisfies the differential equation

7' = (D) + Q(z,\)Z, (4-19)
in which

D = diag(pr — pij, - - -, js — 115)-
Following Eastham [10, p. 11], define

O (x,A) = dlag(exp (( — Mj)x)v <., €XP ((/.Lj,1 - :uj)x)’ 0,---,0),
(I)Q(x7 >‘) = dlag<07 01, eXp((/J’jJrl - :u’j)x)a s 79Xp((ub - /L])JJ)),
O =0, + O,
Following the approach which we used for Theorem 4-1 it can be shown that (4-19)
possesses a solution Z; which satisfies

Zj(x,\) — e; uniformly for A€ X as z — oo, (4-20)

and is a fixed point of the mapping
2yt @) [ O 0QENZWd - Bata ) [ 07 0QNZ() b

Provided a is chosen to satisfy (4:15) for A € K, this map is an analytic contraction,
and so its fixed point, which we denote Z;(x, A), is continuous on X and analytic in
the interior of X (where Re p4(A\) < Re p5(A\) < Re pg(A)). The corresponding solution
of (4-4) we denote by Z;(x, A) and is given, according to (4-18), by

Zj(w, ) = exp (i (Ne) Z; (@, A),

and, from (4-20), this solution Z; must have the property (4-17). This completes the
proof.

Remark 3. The vectors vy, vz, vg in Theorem 4-2 are the last three columns of the
matrix T'(A) in (4-3).

5. A-priori information about the spectrum

Both for theoretical and for computational purposes, it is very useful to have a-
priori information about the spectrum. In this section we show that all points of the
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spectrum of an Ekman problem lie in a right half-plane, whether the problem be
posed on a finite or a semi-infinite interval. The methods used are essentially those
used by Lahmann and Plum [17] for the Orr—Sommerfeld equation. Assumptions
(A1-1-A1-3) are needed to make these methods work.
We start as in Section 3 by writing the Ekman problem as
(MQ)(x) = MNQ)(z), = € [0,00),

with ¢ = (y,2)T and boundary conditions y(0) = /(0) = 2(0) = 0. We wish to
compute the quadratric forms associated with M and N. Integration by parts using
the boundary condition y(0) = 0 shows that the quadratic form associated with N
satisfies

12+ 2]

7o Tyl

N, €)= / ¢*N¢dz = ||

0

12 — lim G(a)y'(x).

We now establish that lim .., 7(z)y'(x) = 0. Because y € H?[0,00), we know that
both y and ¢’ lie in L*[0, c0), and hence 7y’ € L'[0, cc). Moreover,

lim g(z)y/(x) = FO)(0) + / @) = / 7+ 34"},

and the integral converges because y € H?[0, 00). Thus 7y’ has a finite limit at infinity
and lies in L'[0, 00). Necessarily, therefore,

lim g(z)y'(z) = 0,

T—00

and we obtain

N(G,Q) = / CNCdz = [l 2 + oyl + |22 (5:1)
(

)

Integration by parts also allows us to show that the quadratic form associated with
M is

M(¢, Q) =/ CMCdr = ly"|Iz: + 207 [[y' |17 + ' llyllL: + 12117 + o|l2]|%:
0

+ /OO {2(y'z + 2'y) +iaRV (&’ |y|* + |2|*) + iaRV"|y|* — iaRVy"y
+ i'c)vRU'yE} dx. (5-2)
This time, the boundary terms involve the limits
Tim PT()y(e),  lim () (@)

Since y € H*[0,00), we know that y"”" € L?[0,00) and y € L?*[0,00), and so y"”'y €
L'[0, 00). Moreover,

lim 77(z)y(x) = 77 (0)y(0) + / ) = / Ty + 77y,
0 0

r—00

and the integral converges because y™), ¢y, y' and y all lie in L?*[0, 00). Thus y”"y
lies in L'[0, 00) and has finite limit at infinity, so necessarily

lim y”(x)y(z) = 0.

Other boundary terms can be treated similarly.
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We now bound various terms on the right-hand side of (5-2) in terms of the
quadratic form associated with N. The bounds which we require are as follows:

ok [ Vielly + 1) do
0

aR/ V' lyl*d ‘ L'V 12 v o

= aR'/ vy (Vy) dx
0
aR'/ V'yg+V|y|?) dx
0

V|| L
Wiie

V| poe
<R{%(m1/a)+a||V|Loo}N<<,<);
o0 !
/U’yde‘gw +1/a)N (¢, C);
0 :
and finally

"Z+y'z)dx| = w’———’d 2i1 Ty < N(, Q).
M (7 +72) da M W'z -7 de zmu yz)‘ (€, 0)

In these inequalities, we use the shorthand |[|-||pe for ||-||Lecjo,00). Now if X is an
eigenvalue then

< aR||V|1=N((, )

aR ' / Vy'y dx
0

2

1o+ yllZ:)

2

< aR

aR

A= M(C,C)/N(CQ),

where ¢ = (y,2)T is the associated eigenfunction. Using the above inequalities and
the expression for M ((, () in (5-2) we obtain the following result.

THEOREM 5-1. Any eigenvalue A = v + ip satisfies

, R
v>a'- S U e + IV [z )@ + t/a) = aR|[V| =, (5-3)

, R R _
nl <2+ 2aR||V| = + E(IlU'IILw + [Vl poe) (e + 1 /) + EHV”IILw- (54)

Theorem 5-1 locates the eigenvalues of the Ekman problem on [0, 00) within a semi-
infinite strip. It is easy to check that the essential spectrum found in Section 3 also
lies within this region, which therefore encloses the whole spectrum since the residual
spectrum is empty.

If we consider the Ekman problem on any finite interval [0, X| with boundary
conditions

Y(0) =y'(0) = 2(0) = 0, y(X) =y'(X) = 2(X) =0, (5-5)

then similar bounds are obtained by precisely the same methods.
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THEOREM 5-2. The eigenvalues of the Ekman problem on any finite interval [0, X |
with boundary conditions (5-5) satisfy bounds of the form (5-3), (5-4), in which ||| L=~ is
now to be interpreted as |||

Lo°[0,X]-

What about the essential spectrum for a problem on [0, X]? Not surprisingly,
the essential spectrum of such a problem is empty. In fact, we now show that the
resolvent is the whole of C minus a set of isolated points.

THEOREM 5-3. The spectrum of the Ekman problem on |0, X | with the boundary con-
ditions (5-5) consists of a discrete set of isolated eigenvalues having no finite limit points.
In particular, there are no open sets of eigenvalues and there is no essential spectrum.

Proof. For a differential equation problem on a finite interval the points of the
resolvent are those values of A for which the characteristic determinant is nonzero.
The characteristic determinant is an entire function of A; if its zeros had a finite limit
point then the characteristic determinant would be identically zero throughout C.
Every A € C would then be an eigenvalue of the problem, contradicting the bounds
in Theorem 5-2.

We remark that the positivity of the quadratic form associated with N is very
important for these results. If boundary conditions were chosen so that N had a
non-trivial kernel, and if the flow profiles U and V were then chosen so that an
element y of that kernel also lay in the kernel of M, one would have My = Ny = 0
and hence My = ANy for any A € C. Thus every A € C would be an eigenvalue.

6. Open sets of eigenvalues

The possible existence of open sets of eigenvalues will be encountered in our con-
struction of the Titchmarsh—-Weyl matrix M (A). It will also play an important role
in the discussion of spectral inclusion and exactness. In the present section we shall
show, at least for generic Reynolds numbers R, that the Ekman problem does not
have an open set of eigenvalues. We have already shown (Theorem 5-3) that there is
no open set of eigenvalues for the corresponding truncated problem. We begin with
some examples of similar problems which do have open sets of eigenvalues.

Example 4. Consider the problem
w' = XDw, 0<zx<oo,

where w(z) € C°, XA € C, D = diag(—1,—2,-3,1,2,3), and with boundary condi-
tions

w4 (0) = w5(0) = we(0) = 0.

A value A is an eigenvalue if there exists a nontrivial solution w(z, \) = (w(z, A),
wa(x, N), . . ., we(w, A))T with components wy(z, ) € L*[0,00). The essential spectrum
for this problem is the imaginary axis o, = {A € C: Re (A) = 0}. The set of eigen-
values consists of all points in the right half-plane {\ € C : Re (A\) > 0}, and they all
have multiplicity 3. On the other hand, if we change the boundary conditions to

wi(0) — wy(0) = wa(0) — w5(0) = w3(0) — we(0) = 0,

then there are no eigenvalues.
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Example 5. Consider the corresponding truncated problem
w' =XDw, 0<z<1,
with boundary conditions
wi(0) = ws(0) = w3(0) = 0 = w(1) = w(1) = wy(1).

Then every A € Cis a triple eigenvalue. On the other hand, if we change the boundary
conditions to

’U)l(O) = wg(O) = ’LUg(O) =0= U}.l.(l) = ’UJ;(l) = w(i(l),

then there are no eigenvalues.
We will now show that the perturbed Ekman problem does not have an open set
of eigenvalues. Recall that this problem is

)+

u1(0) = u2(0) = v,(0) = 0, (6-2)

with boundary conditions

where A = A(]) is given in (3-2). When A has distinct eigenvalues, it can be diag-
onalized: T™'AT = D, where D = diag (1, fta, - - -, ptg). If X\ & 0,(M, N), then no

eigenvalue of A is purely imaginary. We shall always assume that these eigenvalues
are ordered so that

Re (1), Re(uz), Re(ps) <O and  Re (), Re (us), Re (pg) > 0.

The column vector t; = (t1;,ts;,...,tg;)" of T is an eigenvector of A corresponding

to ;.
Representative eigenvectors of A can be found from the block operator equation
(1-1) by setting y = e, z = be"* and solving for b. The result is

ty = pily), (6-3)
where
pi(p) = p* — o+ X, pa(p) = p(p® — o+ X),
ps(p) = (0 = o® + X),  pulp) = P (p® — o+ N), (6-4)
ps(p) = 2p,  po(p) = 247
Asin (3-12), let

tiy tiz tis pi(pr)  pi(p2)  pi(ps)
To= | tar tao tas | = | p2(pt1) p2(p2) p2(ps) | - (6-5)
b ls2 U5y ps()  ps(p2)  psps)

Recall (Definition 3-1) that
Q(M,N)=C\ (0.xM,N)UB),

where B is the set of branch points of the characteristic polynomial p(u; A\); and
Q(M, N) has two connected components Q. (M, N) and Q_ (M, N), where Q. (M, N)
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is the component containing the interval (o? 00) C R, and Q_(M, N) contains the
interval (—oo, ).

By Theorem 3-5(3), A is an eigenvalue for the problem (6-1)—(6-2) if and only if
det (1) = 0. We must show that det (7;) does not have an open set of zeros. In fact,
we shall show that det (7j) has no zeros at all in Q(M, N).

LrmMa 6-1.
det (Ty) = 2(X — o) (k1 — i) (1 — ) (a2 — p3) f(N), (6-6)
where

FA) =a+p+ps+ py, for A€ Q (M, N),

FON = —a+ iy + i + s, for A € Q_(M, N). (6-7)
Proof. From (6-3)—(6-5) and elementary manipulations of determinants, we obtain
WEops e AT
det (Ty) = —2pupiopus |11 pro | + 200 = &%) |y pa pis -
1 1 1 1 1 1
Furthermore,
AT AT
pa pz pg| = (e — pe)(pn — pra) (2 — ps) (pen + pio + i)
1 1 1
and
wops
pu p | = (e — p2) (e — ps) (p2 — pi3).
1 1 1

This implies that
det (To) = 2(p1 — pa)(pir — ps)(p2 — p3) F(N),
where
FO) = —pupapis + (X = @) (g + pa + pr). (6-8)
Now recall that p; (1< j<6) are zeros of
p(p) = det (A — pl) = (u* — o® + N)(p° — ) + 4p°
=15+ 22X = 3P )t + (NP — 40P\ + 30t + 4) P — P (N — oF)?

and oy = —py, 5 = —p2, g = — 3. This implies that

s = o*(A — a?)?
and so

ppiapis = (X — o).

Note that ppsps is a single-valued analytic function in each connected component
of Q(M, N). For X € R, p(p) has real roots £y, and complex conjugate roots pa, fi3.
Therefore ppaps € R for A € R. Since py <0, it follows that pypaps <0 for A €
R, A % o?. Therefore pipaps = —a(X — o) for A € Q (M, N) and ppapis = a(X — o?)
for A € Q_(M, N). Substituting this into (6-8), we obtain formulas (6-6)—(6-7).
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THEOREM 6-1. The perturbed Ekman problem (6-1)—(6-2) does not have any eigenval-
ues in Q(M, N).

Proof. We must show that det (1) does not have any zeros in Q(M, N). Equival-
ently, we will show that the function f(\) in (6-7) has no zeros in Q(M, N). From
(6-7) it is clear that f(A) has no zeros in Q_ (M, N), since Re (f(A)) <0 there. We now
consider A € Q. (M, N).

Since the characteristic polynomial

() = p® + 2\ = 3%t + (A2 — 40X + 3ot + 4)p — P (N — a?)?
= (1 =) (1 = 13) (* = 113),
it follows that
Wi+ s+ gy = 30 = A
[ + g+ s = N — 40X+ 3at + 4,
(s = o (A = a®).

Therefore puipaps = £a(X — o). As we noted in the proof of Lemma 6-1, piypops =
—a(X —a?) for A € Q. (M, N). Suppose that f(\) = 0 for some XA € Q. (M, N). Then

Pyt et uy = —a

and
[ fiapy = —a(X — o),
(i + puas + prois)® = (pips + (s + o) + 240 propis (i + pia + piz)
=\ — 40X + 30t + 4 + 207\ — &F)
=(A—a’)?+4.
Therefore

pupiz g+ popy = [(A = o)’ + 4]'2,
where z'/? indicates one of the square roots of z. It now follows that
(1= )= o) (= piz) = o +[(A = @) + 4]+ a(A = o),
and
(1 o) (e + o) (o + ) = p1° — agi® + [(A = @)’ + 4] — a(A = o).
Consequently
p(u) = pu® + (22X = 3a?)pt + (A — 40X + 3ot + 4)p” — (N — oF)?
= (= o) (o — p2) (e — paz) (g + ) (e + pr2) (o + ps)
= (' ap® + [(A = o + 4]t a(d — o) (4" — o’
A=) +4]"2u— a(A - o))
= 18+ {2[(A — a®)? + 4] — Pt + (N — 40PN+ 30t + ) pd — P\ — oP)
Equating the coefficients of u*, we obtain

2[(A — o?)? + 4] — a? = 2\ — 37,
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which implies that [(A — a?)*> + 4]'/2 = XA — a?, and (A — o®)? + 4 = (A — a?)%. The
Theorem follows from this contradiction. O]

We now consider the unperturbed Ekman problem in its guise as a system of first
order ODEs (2-14)—(2-16). For convenience we restate it here:

(“:) -G (“) . 0<z <00, (6-9)
v v

with boundary conditions

where

O o0 O 0 0 o

o o0 O 0 0 o0

10 0 O O 0 O
Q) = guu 0 g3 0 0 Of”

o o0 O 0 0 o

g1 0 0 0 gg O

qs1 = —iR(a3V(x) +aV'(z), qs=iaRV(zx),
g61 = 1aRU' (), g5 = iaRV (z).

Here, R is the Reynolds number, and A()) is given in (3-2) (and is the same matrix
that appears in (6-1)).

If D is a disc contained in Q(M, N), and Ry >0, Theorem 4-1 implies that there
is a 6 X 3 matrix Yyua(z, A\, R) (defined for 0 <z < oo, A € D, 0 < R< Ry) with the
following properties:

(1) the columns of Y},,,q span the space of L*-solutions of (6-9);
(2) Yiouna 18 an analytic function of A € D;
(3) Yiouna is an analytic function of R € [0, R,].

Note that property (3) follows from the proof of Theorem 4-1 for the same reason as
(2), namely the contraction map X is analytic in R.

Suppose that the columns of Yy,,.q are y;(x, X\, R) = (y1:(x, \, R), ..., ysi(z, A\, R))T,
for 1 <2< 3. A value A € D is an eigenvalue for the Ekman problem if and only if
there exists (¢, ca,¢3) % (0,0,0) such that c;y; + c2ys + c3y; satisfies the boundary
conditions (6-10), and this is equivalent to

det Yo(\, R) = 0, (6-11)
where
y11(07 )\7 R) 912(Oa /\7 R) y13(07 >\a R)
YoM, R) = | y21(0, A, R) y22(0, A\, R) 4230, A\, R) | . (6-12)
Ys1 (07 >‘7 R) y52(07 /\7 R) 3/53(07 >\7 R)
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Suppose that D; and D, are discs in Q, such that D; N Dy, + . Let Yy (\, R)
(resp. Yoo(A, R)) denote Yy(A, R) in D; (resp. Ds). Then there is a 3 X 3 ana-
lytic matrix C(A, R) (defined for A\ € D; N D,) such that det C(\, R) # 0 and
Yoo (A, R) = Your(A, R)C(\, R) for X € D; N Dy. Thus det Yy (A, R) = 0 if and only
if det Yoo (A, R) = 0 (for A € D{ N D,). If det Yy (A, R) = 0 for all A € D; (and some
fixed R), then det Yjo(A, R) = 0 for all A € D,. By applying this fact to chains of
intersecting discs, we see that if (for some given R) the Ekman problem has an open
set of eigenvalues, then at least one of the connected components of Q(M, N) con-
sists entirely of eigenvalues. We can immediately show that this cannot happen in

Q_(M,N).

THEOREM 6-2. Q_ (M, N) does not contain an open set of eigenvalues for the Ekman
problem (6-9)—(6-10).

Proof. As noted above, if there is an open set of eigenvalues in Q_ (M, N), then this
component consists entirely of eigenvalues. But by Theorem 5-1 the eigenvalues are
located in a right half-plane.

Unfortunately, we are unable to prove this for the other component Q. (M, N). But
we can show that for generic Reynolds numbers, Q. (M, N) does not have an open
set of eigenvalues.

THEOREM 6-3. Let Rog be the set of Reynolds numbers {R € R : R>0} such that the
Ekman problem (6-9)—(6-10) has a (nonempty) open set of eigenvalues.

(1) There exists Ry >0 such that [0, Ry] N Ror = .
(2) Rog has no accumulation points.

Proof. (1) The case R = 0 corresponds to the perturbed Ekman problem (6-1)—
(6-2). For R = 0, Yo(A, R) = Ty(A) (which was displayed in (6-5)). By Theorem 6-1
det Yy(A,0) = det Ty(A) £ 0, for all A € Q(M, N). Let Ay € Q. (M, N). Since Yy(\, R)
is analytic (and hence continuous) in R, it follows that det Y,(\g, R) # 0 for small R.

(2) Suppose that there is a sequence R, € Rog such that lim,_. R, = R,.
Then for each R,,, the component Q. (M, N) consists entirely of eigenvalues. Let
Ao € Qi (M, N); then det Ty(N\y) % 0. The function f(R) = det Y(A, R) is an analytic
function whose zeros accumulate. Therefore f(R) = 0. But this contradicts our
assumption that f(0) = det Ty(Ag) * 0.

7. The Titchmarsh—Weyl coefficients

We now know that Q_ (M, N) contains no open set of eigenvalues for the Ekman
problem, but there may be a sparse set o g of Reynolds numbers for which Q. (M, N)
consists entirely of eigenvalues. In this section we shall assume that the Reynolds
number does not belong to this sparse set, which may exist.

(A7-1) We assume that the Reynolds number R ¢ Rpg. Consequently, the Ekman
problem does not have a (nonempty) open set of eigenvalues.

Since the eigenvalues are the zeros of a locally analytic function (the characteristic
determinant (6-11)—(6-12)), assumption (A7-1) implies that the eigenvalues have no
accumulation point in Q(M, N).
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In Theorem 4-1 we proved that equation (4-1) has a 6 x 3 solution matrix Y, u.q(x, A)
in L*[0,00) with respect to z, and locally analytic in A. In general, the analytic
continuations of this matrix around branch points do not coincide with it. Thus
Yiouna(+s A) is really a multivalued function. We now consider the representation of
this solution matrix in terms of solutions with Dirichlet or Neumann initial values.
These solutions are single-valued entire functions. In order to agree with the accepted
notation for self-adjoint Hamiltonian systems (see Hinton and Shaw [16]) we now
let @ and ©® denote the 6 x 3 solution matrices of (4-1) uniquely determined by the
initial conditions

0 0 0 1 0 0
0 0 0 01 0
1 00 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0

The columns of @ span the set of all solutions of (4-1) which satisfy the boundary
conditions at = 0, while the columns of ® span the remainder of the solution space.
Thus the L? solution matrix Yj,,,s of Theorem 4-1 must be a linear combination of
® and O:

}/bouml(x; >\) = @(.T, )\)CI(A) + (I)(.’E, A)CZ()‘)v (72)

for some 3 x 3 matrices C; and Cs. Now A is an eigenvalue of the Ekman problem
if and only if it has an associated eigenfunction. In order to lie in L?*[0,00) this
eigenfunction must be a linear combination of the columns of Yj,,,.«(x, A); in order to
satisfy the boundary conditions at = 0, it must be a linear combination of columns
of ®. Thus X is an eigenvalue if and only if there exists a linear combination of
columns of Yj,,q(z, A) which is a linear combination of columns of ®(z, ). Since @
is a full rank matrix this will happen if and only if C()) has a non-trivial null space,
proving the following:

LEMMA 7-1. X is an eigenvalue of the Ekman problem if and only if det (Cy(\)) = 0.

When A is not an eigenvalue, then, C(\) will be invertible, and so the matrix
\P(J:7 )\) = Yzmund(mv A)Cl()\)_l = @(l’, /\) + (D(*Tz )\)M(/\)ﬂ M(A) = OQ()‘)CI(A)_lv (73)

will be a well-defined solution matrix of (4-1) whose columns span the set of all L?
solutions of (4-1).
Equation (7-2) can be written in the form

N Ci(A)
Ybomul('? )‘> - (®(7 >\) (D(7 A)) C)()\) . (74)

The columns of (®(:, A) @(-, A)) are linearly independent, and so (7-4) can be solved
for C((A) and Cy(A) by Cramer’s rule. Since Yj,u4(-, A) is locally analytic from the
results in Section 4, and (-, A), ®(-, \) are entire functions, it follows from the local
analyticity of Yy, that C((\) and Cy(A) are locally analytic. Thus the matrix M (\)
appearing in (7-3) is locally analytic wherever C(A) is invertible. By assumption
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(A7-1), det (C{(N)) cannot be zero on an open set. Therefore M () is meromorphic on
any disc D C Q(M, N). In fact, M(A) and (-, \) are single-valued.

THEOREM 7-1. M(X) and ¥(-, A) are well-defined, single-valued meromorphic matrix
SJunctions on Q(M, N).

Proof. Suppose that Y,,,,..(x, A) and )A/}mmd(:r, A) are 6 X 3 analytic solution matrices
defined on some disc D C Q(M, N), such that the columns of each matrix span the
space of L?-solutions of (4-1). Then there is a 3 X 3 invertible, analytic matrix B())
such that Yiou.(z, \) = Yigua(z, ) B(A). We now have:

Y;)ozmtl(xa /\) = @({E, /\)Cl ()\) + (I)(.CU, /\)07(>\)7

Viound (2, A) = Oz, N)Ci (A) + @(z, A)Ca(N)
and
Yiound(, A) = Yiguna(, NB(A) = Oz, \)CH(N)B(A) + ®(z, )C2(A) B(A).
Therefore C; = C,B and Cy = (3B, so that

~

¥ = VuniCi " = YoounaB(C1B) ™' = YiguuaCi' = ¥
and

M =CC17' = C,B(C,B)™' = C,C ' = M.
This proves the Theorem.

Definition 7-1. We call the matrix M(A) appearing in (7-3) the Titchmarsh-Weyl
matrix for the system (4-1).

There is a well developed theory of Titchmarsh—Weyl matrices for selfadjoint
Hamiltonian systems: see [16]. In particular it is known that M ()) is analytic in
the whole of C\R and that it has a pole at any isolated eigenvalue, with an essential
singularity at any point of the essential spectrum. For non-selfadjoint systems none
of this theory exists, in general: we rely heavily on the Levinson asymptotics, and
in particular on Theorem 4-1, to guarantee existence and analyticity of M(A) here.
However the following remains true.

THEOREM 7-2. 4 point p € Q(M, N) is an eigenvalue of the Ekman problem if and
only if pis a pole of M ().

Proof. Suppose that A = p is an eigenvalue of the problem. Then the matrix Cy(\)
is rank deficient at A = p. This means that its determinant has a zero at p. If this zero
were not of finite multiplicity then, since det C{ () is analytic at p, det Cy(A) would
be identically zero, contradicting assumption (A7-1). Thus det C;()) has a zero of
finite multiplicity at pu, and so M () has (at worst) a pole of finite multiplicity at . We
now show that this pole is non-trivial. Choose a vector w such that Yj,,.q(x, y)w is an
eigenfunction belonging to the eigenvalue 1, and observe that since this eigenfunction
satisfies the boundary conditions at x = 0,

}/bouml(xv H’)w = (D(I‘, /JJ)CQ (M)'U) (75)
in particular, this means that Cs(u)w % 0 and C (u)w = 0. This means that w % 0 and
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Ci(w)w = 0. Define v(A\) = C(A)w so that v(p) = 0; since p is an isolated eigenvalue
of the problem, v(A) % 0 for X in a punctured neighbourhood of pr. Now observe that

Co(Nw = M(A)v(A).

Since Co(p)w % 0 and v(p) = 0 it follows that M has a non-trivial pole at p.
Now suppose that M () has a pole at A = 1. Choose a vector v(A) (not necessarily

as an analytic function of \) such that w(\) = M(A)v(A) has the property [[w(\)|| = 1
(A # p) and such that lim 5_,, v(A) = 0. Observe that
w\) = M) = Co(N)2(\), where z(A):= Cy(A) " "o(N).
Observe also that
Yiouna (T, A)2(A) = O(x, N)v(A) + Oz, A)w(A). (7-6)

Since the vector w(\) lies on the unit sphere, by compactness we can choose a sequence
(AP))pen with limit g such that wy, := lim,_, . w(A?)) exists and is of unit length. We
already know that lim »_,, v(A) = 0. Hence from (7-6), as the matrix Y,,,,«(x, 1) is of
full rank, the limit z, := lim ,_,o, 2(A®) exists and is non-zero. Moreover,

3/1101”/(1(%7 M)Z,u = (D(:Uﬂ ,LL)U)#

Thus g is an eigenvalue with eigenfunction Yjg,.q(-, it)2,.

Consider now a problem for (4-1) posed on an interval [0, X], with some regular
boundary conditions at x = X which do not depend on A. Writing a solution vector

Y = (Y4,...,Y)T, the boundary conditions might be, for example, the same as the
boundary conditions imposed at x = 0,
Yi(X) = Ya(X) = Y3(X) = 0. (1)

There will exist a 6 x 3 solution matrix Yx(z, A\) whose columns span the space of
solutions satisfying the boundary condition at x = X. This time, standard theory
of regular initial value problems guarantees that Yx can be chosen as an entire
function of A. Just as we obtained a matrix W given in (7-3) from the matrix Y4
of L? solutions in the infinite interval case, so now it will be possible to obtain from
Yx (2, ) a matrix Wx(x, A) of the form

Px(x,A) = Oz, A) + Oz, \)Mx (A) (7-8)

whose columns will span the space of all solutions satisfying the boundary conditions
at £ = X, provided X is not an eigenvalue of the problem on [0, X]. We shall call
the matrix Mx(A) the Titchmarsh—Weyl matrix for the problem on the truncated
interval [0, X]. The proof of the following result is very similar to the proof of
Theorem 7-2.

THEOREM 7-3. A point p € C is an eigenvalue of the finite interval problem over
[0, X | if and only if i is a pole of Mx ().

Note that Theorem 5-3 says that the eigenvalues of the truncated problem have
no accumulation points in C. Thus Mx () is a meromorphic matrix function on C.
The obvious question is whether or not we have

Jim My () = M(N),
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at least for those A where M ()\) is analytic. To examine this question we proceed as
follows.

Firstly, assume that the boundary condition at = X is indeed (7-7). This means
that Wx (X, A) has the form

0O 0 0
0O 0 0
® % %
Px(X,A) = * % ok
0O 0 0
* % %

Introduce the 6 x 6 permutation matrix Ps; given by
P;5 = matrix obtained by swapping rows 3 and 5 of the identity. (7-9)

(For different boundary conditions at z = X, a different matrix from Ps; will be
required, but the arguments below are otherwise unchanged.) Thus P3;W x (X, A) has
the form

0O 0 0

0O 0 0

0O 0 0
iD:E:’)\PX (Xy )‘) = % ok % ’

sk sk %k

sk sk %k

in which the lower 3 x 3 block is invertible. However, we also know from (7-8) that
PysWx (X, A) = Pi;O(X, A) + Py O(X, A) Mx (A).

Taking the top 3 X 3 blocks on both sides of this equation yields zero on the left hand
side and thus gives

(P @(X, A)ropMx (N) = —(P30(X, A)rop, (7-10)
in which the subscript “TOP” attached to a 6 X 3 matrix denotes the top 3 x 3 block
of that matrix.

LummaA 7-2. Suppose that Ay € Q(M, N) is not an eigenvalue of the Ekman problem.
Then there exists a disc D C Q(M, N) centered at Ny and Xy > 0 such that (P ®(x, X)) rop
is invertible for all A € D and x > X.

Proof. First assume that the real parts of 11;(\y) are distinct, and the u; are ordered
so that
Re (114(Xo)) < Re (p5(Xo)) < Re (16(Mo))-

Then Ay has a neighbourhood D C Q(M, N) which contains no eigenvalues and such
that

Re (1(\) < Re (15(\)) < Re (16(N)) for A € D.

Let Y.,.00una be the 6 x 3 full rank solution matrix whose columns are the solutions
whose existence is guaranteed by Theorem 4-2. We can express ®@(x, A) in the form

q)(x7 >\) = }/}J()I/,ﬂ(l(x7 A)Bl()\) + Kmlmuml(fﬁy A)BQ(/\)7
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for some 3 x 3 locally analytic matrices By(A) and Ba(A). If By()) has a non-trivial
null-space then A is clearly an eigenvalue. Thus when X is not an eigenvalue, Ba(\)
is invertible. The asymptotics of Theorems 4-1 and 4-2 then make it clear that for
large x,

(D<.'17, )‘) ~ Y;mb()un(l(m; /\)BZ()\) (711)

It now follows from Theorem 4-2 that

Vg V15 Vie
(P ®(x, N)ror ~ (PssYunpouna)rorB2(A) ~ | Vay a5 g | Ba(A)
Us4  Uss  Use
tiy tis tis
= | tas tos tos | Ba(A) =111 Ba(N),
tsn 55 156
uniformly for A € D as x — oo. Here, v; = (v1j,02j,*,05;)7, 4<j<6 are the

vectors in Theorem 4-2, and the elements ¢;; in the matrices T, T; and T" are given
in (6-3).

By (6-3)—(6-4) we see that det (1) is obtained from det (T})) by replacing (i, 2, ft3)
by (pta, t5, t46). Thus, by Lemma 6-1

det (T7) = 2(A — &) (s — pi5) (s — f16) (115 — 116)g (),
where

gA) =t pyt+ps +pe = —(—a+ py+ps +opg) for A€ Qu(M,N),  (7-12)
gA) = —a+ g+ s+ s = —(at+ g+ e+ opg) for Xe Q_ (M, N), (7-13)

g(A) has no zeros in Q. (M, N). since Re (g(\)) > 0 there. By following the proof of
Theorem 6-1 we find that (7-13) leads to one possible zero in Q_(M, N), namely
A = +4a72, but this lies in Q. (M, N). Therefore det (T} (\)) % 0 for A € Q(M, N).
This proves the Lemma in case the real parts of the u;(Ay) are distinct.

Let v;(Ag) = Re (4j(Ao)). and suppose, for example, that vy (Ag) = v5(Xg) < vs(Ng).
Then let D be a neighbourhood of Ay containing no eigenvalues, and such that
vi(A) <v(A) and vs(A\) <wvg(A). Let Dy = {X € D : vu(\)<ws5(N)}, and Dy = {\ €
D : vy(N) = v5(N)}. Apply Theorem 4-2 separately to Dy and Dy. If vy(Ag) = v5(Ao) =
V5(Ao), then choose a neighbourhood D of Ay containing no eigenvalues, and divide
it into six subsets, corresponding to the six order relations among v,v» and v;.
Theorem 4-2 can be applied to each of these subsets.

Now (for sufficiently large X)) we can solve for Mx () in (7-10):
Mx(A) = —(Pss®(X, ) 70 ( PO (X, A)) rop- (7-14)

The expression (7-14) is valid whenever X is not an eigenvalue of the problem on the
finite interval [0, X|. Next, we introduce M (\) by using (7-3) in the form

O(X, ) = Y(X, ) — DX, \)M(A).
Substituting this expression for @(X, \) into (7-14) yields
Mx(N) = M(A) = (P®(X, A)) o (Pos ¥ (X, A) rop- (7-15)
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LemMA 7-3. If Ay € Q(M, N) is not a pole of M(X), then there is a neighbourhood D
of Ao and Xy > 0 such that Mx (\) has no pole in D for X > X,,.

Proof. By Theorem 7-2, Ay is not an eigenvalue of the Ekman problem. By
Lemma 7-2 there is a neighbourhood D of Ay and X, > 0 such that (P3;®(x, A))rop
is invertible for all A € D and = > X,,. We may suppose that D contains no poles of
M(N). Equation (7-15) is valid at all points A € D, where Mx(A) does not have a
pole. Since the right-hand side of (7-15) is analytic in D, Mx(\) does not have any
poles there.

LeEMMA 7-4. Suppose that Ay € Q(M, N) is not a pole of M (N). Then there exists a
disc D C Q(M, N) centered at Ny such that

)}im Mx(A) = M(\)
uniformly for A € D.

Proof. Theorem 7-2 implies that )y is not an eigenvalue of the Ekman problem.
Using the same strategy as in the proof of Lemma 7-2, we first consider the case
where

Re (114(M) < Re (115(2) < Re (16(o)-
Substituting (7-11) into (7-15), we obtain

MX()\) - M()‘) ~ (R%ﬁKmbound(Xv )\)BQ)';(I),U(P%’)‘P(X7 >\)) (716)

ToP"
The right-hand side of (7-16) tends to zero uniformly in D as X — oo. This proves
the Theorem in case the p;(\y) have distinct real parts. If any of the real parts are
equal, we subdivide D into two or six subsets, as in the proof of Lemma 7-2. The
convergence is uniform on each of these (finitely many) subsets, and therefore it is
uniform on D.

THEOREM 7-4. Let X C Q(M, N) be a compact set containing no poles of M (X). Then
)}im Mx () = M(N) (7-17)
uniformly for A € XK.

Proof. By Lemma 7-4 each point ¢ € X has a neigborhood D, such that
lim x_,0o Mx(A) = M(A) uniformly for A € D,,. Since X is compact, it is covered
by finitely many of these neighbourhoods, and so the convergence is uniform in X.

8. Spectral inclusion and spectral exactness

Assumption (A7-1) will continue to be in force in this section. Thus the Ekman
problem does not have an open set of eigenvalues. Consequently, the Titchmarsh—
Weyl matrix M (A) is meromorphic on Q(M, N), while Mx(A) is meromorphic on C.

We now examine the effects on the spectrum of replacing the infinite interval [0, oo)
by a finite interval [0, X|. To this end it is convenient to introduce some notation
and terminology concerning eigenvalues.

Definition 8-1. Let Lo (\) denote the operator L = M —AN on |0, co) with boundary
conditions at = 0; and let Lx(\) denote the operator L on the interval [0, X]
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with boundary conditions at z = 0, X. We shall say that A is an eigenvalue for
(M, N;o0) (resp. (M, N; X)) if Loo(A) (resp. Lx(A)) is not injective. Let o,(M, N; 00)
(resp. op(M, N; X)) denote the set of eigenvalues for (M, N;oo) (resp. (M, N; X)) in
Q(M, N) (resp. C).
Assumption (A7-1) implies that o,(M,N,o00) has no accumulation points in
Q(M, N), while o,(M, N, X) has no accumulation points in C.
Definition 8-2. Let {X,, : n € N} be a sequence in (0, 00) such that lim,,_,., X,, = co.
(i) The sequence {(M,N;X,) : n € N} is spectrally inclusive for (M, N;o0) if
for every Ay € o,(M,N;00) there is a sequence {\, : n € N} such that
An € 0p(M, N; X)) and lim ,_,oc Ay, = Ao.
(ii) The sequence {(M,N;X,) : n € N} is spectrally exact for (M, N;o0) if it is
spectrally inclusive and if whenever {), : n € N} is a sequence such that
An € 0p(M,N; X)) and lim,, 00 Ay, = Ay € Q(M, N), then Ay € 0,(M, N; 00).

Remark 4. The above definition is a modification of the standard definition, which
includes the entire spectrum, not just the point spectrum. (cf. |5, 6, 23, 25, 26].)

THEOREM 8-1. For any sequence {X,, : n € N} in (0,00) such that lim,,_, ., X, = oo,
{(M,N;X,) :n € N} is spectrally exact for (M, N; o).

Proof. We first show that {(M,N;X,) : n € N} is spectrally inclusive for
(M,N;00). Let \y € 0,(M,N:;00). Then M()X) = (m;;(\)) has a pole at \y. There-
fore some coefticient m;;(\) has a pole of order k> 1 at Ay. Let € >0 be small enough
so that m;;(A) is analytic in the punctured disc U. = {A € C: 0 <|X — X[ <€} and
has no zeros there. Then, by the argument principle,

me(A
(A D=k
o, Mij(A)
where Cc = {X 1 |[A=Xg| = €}. Let Mx () = (m;;(A; X)). By Theorem 7-4, m;;(\; X,) —
m;;(A) uniformly on the circle C.. Therefore, for sufficiently large n,
mi; (A X)
c. mij(A: X)

d\ = —k,

and so there is an eigenvalue \,, for (M, N; X) in U.. This shows that the sequence is
spectrally inclusive.
The spectral exactness is an immediate consequence of Lemma 7-3.

9. Compound matrices and shooting
9-1. Transformation to compound matrices

We have already seen in Section 2 that there is a class of block operator problems
which can be reduced to systems of ordinary differential equations with (usually)
A-rational coefficients. In the case of the Ekman problem the system is A-linear.

The Ekman problem involves first-order derivatives and so it is not possible to
reduce it to a system of the form Y” = A(z, \)Y for which, as we showed in [14], a
particularly efficient numerical approach is available. Fortunately it can be reduced
to a system of the form Y’ = A(z,\)Y in which A is only 6 x 6, as we showed in
Section 2. Thus the use of compound matrices is still feasible.
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The compound matrix method can be traced back at least as far as the 1966
paper of Gilbert and Backus [13] and has been developed by a number of authors
including Davies |8] and Ng and Reid [22]. For a recent description and analysis of
the compound matrix method in terms of exterior algebras see Allen and Bridges
[3]. In this very short section, included for completeness, we describe the compound
matrix system which arises for the Ekman problem. The numerical results which
follow from using this formulation are presented in Section 10.

Let Y, be a ‘minimal fundamental’ matrix spanning the space of all solutions of
Y’ = A(z,\)Y which satisfy the boundary conditions at (say) = a. Since A is
6 x 6 and since there are 3 boundary conditions at x = a, Y, will be a 6 x 3 matrix.
We partition Y, as Y, = (g) The fundamental matrix variable z is a vector-valued
function of (z, \) with values in C*. The order of its entries is arbitrary, but we chose
the ordering
2= (21,22, P11, P12, Prs, P21, Pazy Pas, P31, Pazy Py Yins Yz, iz, Yar, Yoz, Yos, U, e, wg:z)T

(9-1)
in which

¢;j = the determinant obtained by replacing row j in U by row i in V/, (9-2)
1;; = the determinant obtained by replacing row j in V' by row 7 in U. (9-3)
For example, in an obvious notation,
Urp Uz Uy
$i2 = |vi1 Viz Uiz,
U3y Uz2 Uss
zi =det U, 2z;=detV.

The compound matrix equations can be derived by a number of different procedures;
the authors used the systematic procedure in [3]. The resulting differential equations

are listed here for completeness. We denote the 20 components of z by zy, ..., 2s.
2y = z5, 2y = Ay 212 + agzzis + a2z + 224
Zi/E = Q4121 — 2297 Zi = —Z3 — 22107
2L = =24 +agz — 2244, 25 = 2y + 217,
2= =25+ 210 — 21, 25 = =27 + 211,
2y = ag1z1 + Q526 — 216, 2l = 221 — 2y + agzz7 T 213,
2y = =210 T Q6528, 24y = 215 — 223, (9-4)
21y = QuzZio + gz + 216 + 2247, 20y = —Quzzy 220 — 213 + 247,
215 = ag128 T 213, 2 = —Qg125 — QuzZy T Qg1 211 — Q3217 T 219,
27 = QuzZe — Quizs T 2215 — 216 + 20, 21y = 2o + 226 — 127
219 = =223 + QG124 — QuiZ10 — AesZa0,  Zey = QuiZ7 T 2213 — 2.

9-2. Initial conditions and shooting

In addition to transforming the block operator matrix into a system of differential
equations, thence into the compound matrix system, one must also transform the
boundary conditions associated with the block operator problem into initial con-
ditions for shooting with the compound matrix method. The boundary conditions,
which, in the original Ekman block operator form, are

y(a) = y'(a) = z(a) = 0,
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transform firstly to the condition that the 6 x 3 matrix solution Y, of the 6 x 6 system
Y’ = A(z, A)Y, has the form

0 0 0
00 0
1 0 0
Ya(()’ )\) = 0O 1 0
0 0 0
0 0 1

up to post-multiplication by an invertible 6 X 6 matrix which we may choose to be
the identity. It is now clear from the definitions of the ¢;; and ;; in (9-2) and (9-3)
that only 932 = 219 is nonzero at = a. The precise non-zero value which we assign
to z19(a) is unimportant, so the initial condition we use for forward shooting with the
compound matrix system is

0, j+19,
&(a) = {1 j = 19. (8-5)

Similar considerations hold for backward shooting. Following the results of
Section 8 we can assume that the singular problem on [a,c0) has been replaced
by a regular one on [a, b] for some b>a. There will be regular boundary conditions
at x = b, which will transform into boundary conditions on the solutions of the
6 x 6 system Y’ = A(z, \)Y. There will be a 6 x 3 matrix solution Y}, of the system
Y’ = A(z, A\)Y whose columns span the space of solutions of this system satisfying
the boundary condition at = b; and, finally, a compound matrix system associated
with Y}, whose differential equation is precisely (9-4) but whose initial condition is
specified at = b rather than at x = a.

In order to determine whether or not a given A € C is an eigenvalue of the regu-
larized problem over |a, b] one must determine whether or not there exist nontrivial
vectors ¢ and d such that Y,(z, A\)c = Yy(z, A)d for one (and hence all) x € |a,b].
The existence of such vectors guarantees the existence of a nontrivial solution of
Y’ = A(z,\)Y which satisfies the boundary conditions both at a and at b. The
existence of such ¢ and d is equivalent to the requirement that

det (Yo(z, A) Yo (2, X)) = 0. (9-6)

Let 2@ denote the solution of (9-4) subject to the boundary condition (9-5) and
let 2 denote the solution subject to the corresponding condition at z = b. The
determinant on the left-hand side of (9-6) can be expressed in terms of z(¥(z) and
2®(z) by Laplace expansion. It turns out that

det (Ya(z, N) Yo(2, V) = 272" — 272" + 202" — 202" + 21902 — 212 + 470210

(b) (a) (a) (b) (b) (a) (a) (b) (b) (a) (a) (b) (b) (a)
— 202 TR52 —Zi54 TRge — 2k T Eir 2o T i1 2o
+29 2 — 20247 + 2402 — 202" + 2920 - 2720, (97)

Thus if we integrate the differential equations for the compound matrix variables z(®
and z® from their known initial values at a and at b respectively, we can compute
the function det (Y, (x, A) Yi(z, A)) for any fixed x € [a, b]. The zeros of this function
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in the A plane are the eigenvalues and can be located using any reliable process for
finding the zeros of an analytic function.

In practice, certain implementational precautions are needed. The value of
det (Yo (x, A) Yy(z, ) can be large (we encountered values of the order of 10! during
numerical experiments). A procedure for dealing with this problem is described in
[14]: instead of computing det (Y, (z, A) Yy(z, A)) one must compute I' € Rand w € C,
|w| & 1, such that

det (Yo(z, A) Yo (z, A)) = exp (I')w.

10. Examples

Numerics on the Ekman boundary layer problem have usually been executed
using simple finite difference schemes [20] which give satisfactory results on regular
problems where only modest precision is required. In this section we compare results
from the compound matrix method described in Section 9 with results obtained by
Lilly [20] on a simple regular problem, then pass to a singular problem for which
the results on spectral inclusion and spectral exactness in Section 8 are important.
In particular, we examine how well the essential spectrum of a singular problem is
approximated in practice by eigenvalues of a regular problem.

10-1. Example 1: approximation of eigenvalues in the left half-plane

We have already seen in Section 3 that the essential spectrum of the Ekman prob-
lem lies entirely in the right half-plane. For linear stability analysis the important
question is whether or not there are any eigenvalues in the left half-plane.

Rather than reproduce all the results of Lilly [20] we consider just one example
from his paper: the classical problem of determining the critical Reynolds number.
Figure 10 in |20, p. 486] shows, for the flow profiles

U(x)= cos e — exp (—x) cos(z +€), V(x) = —sin e + exp (—x)sin(x + €), x € [0, 00),
(10-1)

the dependence of the eigenvalues on € and upon the Reynolds number R for a = 0.5.
In particular, this figure indicates that there should be no eigenvalues in the left half-
plane for R < R.,;;, where it appears that R.,.;; = 120. We repeated the computations
of Lilly to obtain the neutral curve shown in Figure 1. The critical Reynolds number
we obtained was approximately 114. Considering that we were using a 6th order
method where Lilly used order 4, that we used a truncated interval [0, 50] where
he used intervals of between [0, 17] and [0, 35], and that our method had automatic
stepsize control with a tolerance of 10™* where Lilly used fixed stepsize with at most
35 steps, the agreement is remarkably good. To make it easier for others to reproduce
these results we quote in Table 1 the numerical data behind the plot in Figure 1.

10-2. Example 2: approximation of the essential spectrum

We consider the Ekman boundary layer problem on [0,00). As described in
Section 3, the essential spectrum of this problem consists of the curve given para-
metrically by
24t

VE2+a?

At) =t +ao* + t e R,
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Table 1. Imaginary parts of eigenvalues for (10-1) for various parameter values.
Real parts are all approximately zero

€ R Im (M) € R Im ()
0.61 168.7 —18.357 —0.01 117.7 12.291
0.60 166.0 —17.631 —0.05 120.2 14.478
0.55 154.1 —14.273 —0.10 124.0 17.449
0.50 144.2 —11.271 —0.15 128.0 20.639
0.45 136.2 —8.566 —0.20 130.9 23.829
0.40 129.6 —6.074 —0.23 131.6 25.606
0.35 124.3 —3.753 —0.25 131.5 26.687
0.30 120.3 —1.548 —0.27 130.9 27.660
0.25 117.3 0.586 —0.27 130.9 27.660
0.20 115.2 2.688 —0.30 129.7 29.014
0.15 114.2 4.808 —0.32 129.0 29.908
0.10 114.2 6.993 —0.33 128.8 30.380
0.05 115.2 9.296 —0.34 129.0 30.937
0.01 116.7 11.257 —0.35 129.1 31.470
—0.37 130.3 32.773
—0.40 134.6 35.379
—0.42 139.0 37.570
—0.50 161.7 48.514
0'8 T T 1] T Ll
0.6 } 4
0.4 4
=
L 02t 4
z
2
Z 0+ 1
<
02} 4
04} 4
0.6 1 1 1 1 L
110 120 130 140 150 160 170
Reynolds number R

Fig. 1. Neutral curve for Ekman problem with o = 0.5. At the points on this curve, the leftmost
eigenvalue of the Ekman problem lies on the imaginary axis in the complex plane.

provided the flow profiles U and V tend to zero sufficiently rapidly at infinity. If
V approaches some other constant value at infinity then the essential spectrum is
shifted in the imaginary direction.
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3 : . T —r v

25+ 1
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1} _
0'5 L 1 1 1 1 s B
0 2 4 6 8 10 12

Fig. 2. Approximation of the essential spectrum by a regular problems on [0, 10] (plus signs) and
[0,20] (circles), here a = 0.4 and U =0 = V.
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Fig. 3. Approximation of the essential spectrum by a regular problems. The lower branch is
shown, rather than the upper branch which is shown in Fig. 2.

We considered first the case in which U = 0 = V, with a = 0.4. We replaced
the singular problem by two regular ones, one posed on the interval [0, 10] and the
other posed on [0,20]. The results are shown in Figure 2, where the continuous
curve is a section of the exact essential spectrum, the ‘+’ signs denote eigenvalues
for the problem on [0, 10] and the circles denote eigenvalues for the problem posed
over [0,20]. The longer interval has, as one would expect, more eigenvalues, and
one observes by inspection of Figure 2 that they yield better approximations to
the essential spectrum. Note that there are no spurious eigenvalues due to interval
truncation in the region of the complex plane shown in Figure 2.

Secondly, we considered the problem with

U(x) = cos(€) —exp(—x) cos(x +€), V(x)= —sin(e) +exp(—z)sin(z + €),

with o = 0.4, € = 0.27 and R = 10. We compared the results for a problem posed
over x € [0,30] with problems posed over z € [0,40] and = € [20,50], using the
artificial boundary conditions y(X) = ¢'(X) = y”"(X) = 0 and z(X) = 0, where
X =30, z = 40 or X = 60 as appropriate. From the results of Section 8 we know
that these will allow approximation of the spectrum. The results in Figure 3 show,
however, that such naive boundary conditions may result in quite slow convergence
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of approximations to the spectrum. To get better results one must use boundary
conditions based on the easily-computed asymptotics of the solutions y and z at
infinity.

11. Concluding remarks

In this paper we have shown that simple arguments based on linear algebra may be
used to reduce quite general block-operator eigenproblems to systems of differential
equations with A-rational coefliecients. We have also shown that for the case of
the Ekman problem on a half line with flow profiles in L'[0, c0), the location of the
essential spectrum can be obtained analytically in the form of a parametrized smooth
curve. Moreover, for problems which can be reduced to systems of ODEs having some
of the same qualitative properties as the system obtained from the Ekman problem,
results on spectral inclusion and spectral exactness for regular approximations to
the original problem can be obtained in spite of the fact that the problem is non-
selfadjoint. Our approach to these results follows the Levinson asymptotics described
in Hastham [10] and the approach to Sims Case 1 problems in [7] rather than the
more classical approach of, e.g., Markowich [21] (which, although valid here, would
not easily generalize to more complicated problems). Numerical results indicate that
while the results on spectral inclusion guarantee the existence of approximations to
spectral points, the convergence may be quite slow with a naive choice of boundary
conditions.
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