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Abstract

We consider singular block operator problems of the type arising in the study of
stability of the Ekman boundary layer. The essential spectrum is located, and an
analysis of the L2 solutions of a related first order system of differential equations
allows the development of a Titchmarsh–Weyl coefficientM (λ). This, in turn, permits
a rigorous analysis of the convergence of approximations to the spectrum arising from
regular problems. Numerical results illustrate the theory.

1. Introduction

Recently, a number of papers have appeared on the spectral analysis of block
operators (cf. [1, 2, 4, 15]). This work has its origin and motivation in the analysis
of stability in fluid mechanics and magnetohydrodynamics (cf. [9, 19, 27]).
In this paper, our first goal is to determine conditions under which a block operator

(whose blocks are ordinary differential operators) can be reduced to a system of first
order ODEs. We give some examples where this is not the case; and Theorem 2·1
gives sufficient conditions for this to be true.
Our main goal is the spectral analysis of the block operator which arises in the

study of stability of the Ekman boundary layer (cf. Faller [12], Lilly [20]):(
(−D2 + α2)2 + iαRV (−D2 + α2) + iαRV ′′ 2D

2D + iαRU ′ (−D2 + α2) + iαRV

)(
y
z

)

= λ

(
−D2 + α2 0

0 I

)(
y
z

)
, (1·1)

with boundary conditions

y(0) = y′(0) = z(0) = 0,
(1·2)

y(∞) = y′′(∞) = z(∞) = 0.

Here, α is the wave number, R is the Reynolds number, and U, V are known smooth
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functions. For the operator theory which we develop later, the conditions at∞ have to
be stated more rigorously. We shall see that the conditions required are y ∈ H4[0,∞)
and z ∈ H2[0,∞), where Hp[0,∞) is the usual Sobolev space of functions whose
(weak) derivatives of orders 0, 1, . . . , p lie in L2[0,∞). Equation (1·1) is equivalent to
a system of first order ODEs.
Throughout this paper we shall assume that the functions U, V satisfy the following
conditions:

(A1·1) U ∈ C1[0,∞), V ∈ C2[0,∞);
(A1·2) limx→∞ U ′(x) = limx→∞ V (x) = limx→∞ V ′′(x) = 0;

(A1·3) U ′, V, V ′′ ∈ L1[0,∞).

The paper is set out as follows. Section 2 deals with general 2×2 block operators, and
conditions are found for the eigenvalue problem to be equivalent to a system of first
order ODEs. In Section 3 we find the essential spectrum for the Ekman problem. Sec-
tion 4 discusses the L2 and non-L2 solutions. In Section 5 we show that all eigenvalues
are located in a certain semi-infinite strip. Section 6 investigates the possible existence
of an open set of eigenvalues. We need to know that such sets do not exist in order
to construct the Titchmarsh–Weyl M (λ) matrices in Section 7. We show that the
truncated problem on a finite interval [0, X] (with additional boundary conditions
at X) has no open sets of eigenvalues. Furthermore, for generic Reynolds numbers,
the Ekman problem on [0,∞) has no open sets of eigenvalues. (More precisely, the
set of Reynolds numbers which admit such sets has no accumulation points.) The
nonexistence of open sets of eigenvalues for all Reynolds numbers remains an open
question. In Section 8, assuming that there are no open sets of eigenvalues, we use
M (λ) to show that the eigenvalues of the truncated problems converge to the eigen-
values of the Ekman problem (and only to those eigenvalues). In Section 9 we discuss
the shooting method that we use to approximate the eigenvalues. We have developed
a package of subroutines SLNSA for solving nonselfadjoint eigenvalue problems. In
Section 10 we calculate the neutral curve and critical Reynolds number (for certain
parameters of the problem), and compare with results of Lilly [20].

2. Transformation of block operator problems to systems of ODEs

We shall consider spectral problems for 2×2 matrix operators of the form(
A B
C D

)(
y
z

)
= λ

(
y
z

)
, (2·1)

or more generally (
A B
C D

) (
y
z

)
= λ

(
M N
P Q

) (
y
z

)
, (2·2)

where the blocks A, B, C, D, M, N, P, Q are ordinary differential operators. Here,
λ is a complex parameter, and for simplicity, we suppose that y(x) and z(x) are
complex, scalar functions defined on a finite interval [a, b]. (The calculations and
results of this section are valid for vector functions as well. Later, finite intervals
will play the role of truncations of the infinite interval [0,∞).) If we set A(λ) =
A − λM , B(λ) = B − λN , C(λ) = C − λP , D(λ) = D − λQ, then (2·2) has the
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form

A(λ)y +B(λ)z = 0, (2·3)
C(λ)y +D(λ)z = 0. (2·4)

The block operator problem consists of these equations, together with 2n independ-
ent, separated boundary conditions for y, and 2m independent, separated boundary
conditions for z of the form:

2n−1∑
β=0

pαβy(β)(a) = 0 =
2n−1∑
β=0

qαβy(β)(b) (1� α � n), (2·5)

2m−1∑
ν=0

rµνz(ν)(a) = 0 =
2m−1∑
ν=0

sµνz(ν)(b) (1�µ� m), (2·6)

where the coefficients pαβ, qαβ, rµν , sµν are complex constants. The differential oper-
ators are assumed to have the form:

A(λ)y = a0(x)y(2n) + a1(x, λ)y(2n−1) + · · · + a2n(x, λ)y,

B(λ)z = b0(x, λ)z(k) + b1(x, λ)z(k−1) + · · · + bk(x, λ)z,
(2·7)

C(λ)y = c0(x, λ)y(h) + c1(x, λ)y(h−1) + · · · + ch(x, λ)y,

D(λ)z = d0(x, λ)z(2m) + d1(x, λ)z(2m−1) + · · · + d2m(x, λ)z,

and to satisfy the following assumptions:

(A2·1) h < 2n, h + k � 2(m + n);
(A2·2) the coefficients ai, bj , cp, dq, which are complex functions, are analytic in λ
for each x and are at least |k − 2m| times differentiable with respect to x;

(A2·3) a0(x)� 0; and if m > 0, then d0(x, λ) = d0(x)� 0;
(A2·4) if h+k = 2(m+n), then a0(x)d0(x, λ)− b0(x, λ)c0(x, λ) has only isolated zeros
for each value of λ. In particular, it is not identically zero.

Under these assumptions, we shall show that the problem (2·3–2·6) is equivalent
to a system of first order ODEs with separated boundary conditions. However the
coefficients of this first order system may have singularities.

Example 1. To illustrate the nature of the singularities in the coefficients of the
ODEs, consider the problem:(

−D2 1
q(x) u(x)

)(
y
z

)
= λ

(
y
z

)
,

where D = d/dx, and with boundary conditions y(0) = 0 = y(1). This is equivalent
to the problem 


y′
1 = y2,

y′
2 =

(
u(x)

λ − q(x)
− λ

)
y1,

with boundary conditions y1(0) = 0 = y1(1).

Remark 1. Assumption (A2·4) implies that A(λ)y + B(λ)z cannot be a lin-
ear combination of C(λ)y + D(λ)z and its derivatives. For if it were, and if
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f (x)dj/dxj (C(λ)y +D(λ)z) is the highest derivative in the linear combination, then
2n = h+j and k = 2m+j, so that h+k = h+2m+j = 2m+2n. Furthermore, a0 = fc0
and b0 = fd0, which implies that a0d0 − b0c0 is identically zero. If A(λ)y +B(λ)z is a
linear combination of C(λ)y +D(λ)z and its derivatives, then the system is determ-
ined by C(λ)y+D(λ)z, and can be expected to have strange behaviour, as illustrated
by the following two examples.

Example 2. This is an example where A(λ)y +B(λ)z is a derivative of C(λ)y +
D(λ)z. Consider the problem(

D4 D5

D D2

) (
y
z

)
= λ

(
D3 D4

1 D

)(
y
z

)
,

with boundary conditions y(0) = y′(0) = 0 = y(1) = y′(1), z(0) = 0 = z(1). Here,

A(λ)y +B(λ)z = y(4) − λy′′′ + z(5) − λz(4) = 0,

C(λ)y +D(λ)z = y′ − λy + z′′ − λz′ = 0.

If we choose any z ∈ C∞[0, 1], such that z(j)(0) = 0 = z(j)(1) for 0� j � 2, and set
y = −z′, then (y, z)T is an eigenfunction for all λ ∈ C. Thus every λ is an eigenvalue
with infinite multiplicity.

Example 3. In this example, assumption (A4) is violated, but A(λ)y +B(λ)z is not
a linear combination of C(λ)y +D(λ)z and its derivatives. Consider the problem(

D2 D
D 1

)(
y
z

)
= λ

(
2D 2
1 0

)(
y
z

)
,

with boundary conditions y(0) = 0 = y(1). Here,

A(λ)y +B(λ)z = y′′ − 2λy′ + z′ − 2λz = 0,

C(λ)y +D(λ)z = y′ − λy + z = 0. (2·8)
For λ = 0, these equations are:

y′′ + z′ = 0,

y′ + z = 0. (2·9)
If we choose any function y ∈ C∞[0, 1] such that y(0) = 0 = y(1), and set z = −y′,
then (2·9) is satisfied, so (y, z)T is an eigenfunction for λ = 0. Thus λ = 0 is an
eigenvalue with infinite multiplicity. If λ� 0, then the first equation of (2·8) together
with the derivative of the second equation imply that z = −12y′. Substituting this
into the second equation of (2·8), we obtain y′ = 2λy. Therefore y = c exp(2λx), and
we see that the only solution is (y, z) = (0, 0). Thus the only eigenvalue is λ = 0.

Since Examples 2 and 3 have eigenvalues with infinite multiplicity, neither prob-
lem can be equivalent to a system of first order ODEs with separated boundary
conditions.
In the following, we assume that conditions (A2·1)–(A2·4) are satisfied.
Lemma 2·1. If k � 2m, then equations (2·3), (2·4) can be transformed to an equivalent

system:

Â(λ)y + B̂(λ)z = 0,

C(λ)y + D(λ)z = 0.
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Where

Â(λ)y = a0(x)y(2n) + â1(x, λ)y(2n−1) + · · · + â2n(x, λ)y,

B̂(λ)z = b̂0(x, λ)z(k̂) + b̂1(x, λ)z(2m−1) + · · · + b̂k̂(x, λ)z

and k̂ < m if m > 0; moreover, B̂(λ)z = 0 (i.e. z does not appear in the first equation) if
m = 0. The coefficients of Â(λ) and B̂(λ) may have singularities. However, if m > 0 and
h + k < 2(m + n), then there are no singularities.

Proof. The equations (2·3), (2·4) have the form:
a0y

(2n) + a1y
(2n−1) + · · · a2ny + b0z

(k) + · · · + bkz = 0, (2·10)
c0y

(h) + c1y
(h−1) + · · · chy + d0z

(2m) + · · · + d2mz = 0. (2·11)
Dividing (2·11) by d0 and differentiating p times, which wemay do for any p � |k−2m|
by Assumption (A2·2), we obtain a sequence of equations:
γ0y(h) + γ0,1y(h−1) + · · · + γ0,hy + z(2m) + δ0,1z(2m−1) + · · · + δ0,2mz = 0,

γ0y(h+1) + γ1,0y(h) + · · · + γ1,hy + z(2m+1) + δ1,1z(2m−1) + · · · + δ1,2mz = 0,

γ0y(h+2) + γ̃2,1y(h+1) + γ2,0y(h) + · · · + γ2,hy + z(2m+2) + δ2,1z(2m−1) + · · · + δ2,2mz = 0,
...
γ0y(h+p) + γ̃p,1y(h+p−1) + · · · + γ̃p,p−1y(h+1) + γp,0y(h) + · · · + γp,hy + z(2m+p) + δp,1z(2m−1) + · · · + δp,2mz= 0.

(2·12)

The coefficient γ0 = c0/d0. By Assumption (A2·3), if m > 0, then d0 = d0(x)� 0, and
γ0 is non-singular. The term z(2m) has been eliminated in the succeeding equations by
using the first equation. We obtain an equivalent system by using these equations,
since (2·11) is retained. Taking 2m + p = k, we obtain h + p = h + k − 2m � 2n. The
matrix of coefficients of (2·10) and (2·12) is


a0 a1 .. a2n−h−1 a2n−h .. a2n b0 b1 .. bk−2m−1 bk−2m bk−2m+1 .. bk

0 0 .. 0 γ0 .. γ0h 0 0 .. 0 1 δ01 .. δ0 2m
0 0 .. γ0 γ10 .. γ1h 0 0 .. 1 0 δ11 .. δ1 2m
...

...
...

Γ0 γ̃p1 .. γ̃p p−1 γp0 .. γph 1 0 .. 0 0 δp1 .. δp 2m


,

where Γ0 (the term in the last row and first column) is defined as follows: if h +
k < 2(m+ n), then Γ0 = 0; if h+ k = 2(m+ n), then Γ0 = γ0. If h+ k < 2(m+ n), then
the terms b0, b1, . . . , bk−2m in the top row can be changed to zeros by subtracting
multiples of the lower rows. The leading coefficient is unchanged in this process. If
h + k = 2(n + m), then the term Γ0 = γ0 is first converted to zero by subtracting
γ0/a0× (top row) from the last row. In this process, the 1 in the last row is converted
to (a0d0 − b0c0)/a0d0. By assumption (A2·4) this coefficient can have only isolated
zeros for each value of λ. The term b0 in the top row is now converted to zero by
subtracting a0d0b0/(a0d0 − b0c0) × (bottom row) from the top row. In this process,
singularities may be introduced into some coefficients in the top row. Finally, the
(new) terms b1, b2, . . . , bk−2m in the top row are converted to zeros by subtracting
multiples of the lower rows (above the last row). The new top row now corresponds
to an equation of the form:

a0(x)y(2n) + â1(x, λ)y(2n−1) + · · · + â2n(x, λ)y + b̂0(x, λ)z(k̂) + · · · + b̂k̂(x, λ)z = 0,

where k̂ � 2m−1. Ifm = 0, then z and its derivatives do not appear in this equation.
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Theorem 2·1. Suppose that the conditions (A2·1)–(A2·4) are satisfied. Then the sys-
tem (2·3–2·6) can be transformed to an equivalent system of first order ODEs with separ-
ated boundary conditions. The system of ODEs has the form:(

Y ′

Z ′

)
= G

(
Y
Z

)
,

where

Y =




y0
y1
...

y2n−1


 , Z =




z0
z1
...

z2m−1


 ,

and G is a 2(m + n) × 2(m + n) matrix whose coefficients are functions of (x, λ) which
may have singularities. If k < 2m, or ifm > 0 and h+k < 2(m+n), then these coefficients
are non-singular. The boundary conditions corresponding to (2·5) and (2·6) are:

2n−1∑
β=0

pαβyβ(a) = 0 =
2n−1∑
β=0

qαβyβ(b) (1�α �n),

2m−1∑
ν=0

rµνzν(a) = 0 =
2m−1∑
ν=0

sµνzν(b) (1�µ� m).

If m = 0, then Z does not appear in the ODEs or the boundary conditions. However, in
this case, the system must be supplemented by an equation of the form z = f (Y ).

Proof. By Lemma 2·1, we may assume that either m = 0 or k < 2m. Set
Y = (y0 y1 · · · y2n−1)T = (y y′ · · · y(2n−1))T , and if m > 0, set Z = (z0 z1 · · · z2m−1)T =
(z z′ · · · z(2m−1))T . Then

y′
j = yj+1 (for 0� j � 2n − 2),

y′
2n−1 = a0(x)−1(a1y2m−1 + · · · + a2my0 + b0zk + · · · bkz0),

z′
j = zj+1 (for 0� j � 2m − 2),

z′
2m−1 = d0(x)−1(c0yk + · · · + cky0 + d1z2m−1 + · · · d2mz0).

If m = 0, then Z does not appear in the above equations.

The Ekman boundary layer

The analysis of stability for the Ekman boundary layer leads to the block operator
problem (1·1)–(1·2). In this case, 2n = 4, 2m = 2 and h = k = 1. Thus we are in
the case where h + k < 2(m + n). Following the procedure of Theorem 2·1, we can
transform (1·1) to an equivalent system of first order ODEs. Set

u =




u1
u2
u3
u4


 =




y
y′

y′′

y′′′


, v =

(
v1
v2

)
=

(
z
z′

)
. (2·13)

Then (1·1) is equivalent to (
u′

v′

)
= G

(
u
v

)
, (2·14)
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where

G =




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

a41 0 a43 0 0 −2
0 0 0 0 0 1

a61 2 0 0 a65 0




, (2·15)

with

a41 = −(α4 + iα3RV + iαRV ′′ − α2λ),

a43 = 2α2 + iαRV − λ,

a61 = iαRU ′,

a65 = α2 + iαRV − λ.

The boundary conditions are:

u1(0) = u2(0) = v1(0) = 0, (2·16)

and

u ∈ (L2[0,∞))4, v ∈ (L2[0,∞))2.

3. The essential spectrum of the Ekman problem

Throughout this section, we make extensive use of assumptions (A1·1–A1·3).
Let the matrix operator on the left-hand side of (1·1) be denoted by M , and on

the right-hand side by N . Thus (1·1) has the form

Mζ = λNζ, where ζ = (y, z)T .

We are also interested in the operator

L = M − λN.

The domains of the operators L,M and N will now be defined. Let X1 = H2[0,∞)�
H1
0 [0,∞) (with H2-norm), X2 = Y1 = Y2 = L2[0,∞) and X = X1 × X2, Y = Y1 × Y2.

Let D1 = H4[0,∞)� H2
0 [0,∞) (with H2-norm), and D2 = H2[0,∞)� H1

0 [0,∞) (with
L2-norm).

Define the domains: D(N ) = X, D(M ) = D1 × D2 ⊂ X,D(L) = D(M).

Then N: X → Y, M: D(M ) ⊂ X → Y, L: D(L) ⊂ X → Y.

The construction of the operators used here closely follows that to be found for the
Orr–Sommerfeld case in Langer and Tretter [18] and for a more general abstract
case in Shkalikov [24].
We shall say that λ is an eigenvalue for (M, N ) if the operator L = M − λN is not

injective.
As indicated in [11], several different definitions of essential spectrum have ap-

peared in the literature. The definition we shall use here is:

σess(T ) = {λ ∈ C : T − λI is not Fredholm},
σess(M, N ) = {λ ∈ C : M − λN is not Fredholm}.
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N is bounded because the differential operator −D2 +α2 is a bounded operator from
H2[0,∞) to L2[0,∞). It is also straightforward to show that N is injective, with
bounded inverse. Therefore (see, e.g., [11, theorem 3·16]) the operator L = M − λN
is Fredholm if and only if N−1L = N−1M − λI is Fredholm (and the two operators
have the same nullity, deficiency and index). Thus

σess(M, N ) = σess(N−1M ).

Another useful characterization is:

σess(M, N ) = {λ ∈ C : 0 ∈ σess(M − λN )}.

Our aim is to calculate σess(M, N ). We shall begin by showing:

Theorem 3·1. The operators L and M are closed.

Proof. SinceN: X → Y is an isomorphism of Hilbert spaces, L = M −λN is closed
if M is closed. To show that M is closed, let

P (y, z) = (−D2 + α2)2y + iαRV (−D2 + α2)y + iαRV ′′y + 2z′,

Q(y, z) = (−D2 + α2)z + iαRV z + 2y′ + iαRU ′y.

Then

M

(
y
z

)
=

(
P (y, z)
Q(y, z)

)
.

To show that the graph ofM is closed, suppose there is a sequence (yn, zn)T ∈ D(M ),
such that (yn, zn)T → (y0, z0)T in X, and (P (yn, zn), Q(yn, zn))T → (P0, Q0)T in Y .
Hence yn → y0 in H2-norm, and zn → z0, P (yn, zn) → P0, Q(yn, zn) → Q0 in L2-
norm. We must show that P (y0, z0) = P0 and Q(y0, z0) = Q0. Since Q(yn, zn)→ Q0 in
L2 norm, it follows that

lim
n→∞

(−D2 + α2)zn = lim
n→∞

(Q(yn, zn)− 2y′
n − iαRU ′yn − iαRV zn)

= Q0 − 2y′
0 − iαRU ′y0 − iαRV z0

in L2-norm, because hypotheses (A1·1–A1·3) imply that U ′ and V are bounded. But
the operator −D2 + α2 with domain H2[0,∞) � H1

0 [0,∞) is closed (cf. [11, theorem
XI·9·5]). Therefore limn→∞(−D2 + α2)zn = (−D2 + α2)z0, and this implies that
Q(y0, z0) =Q0. Thus zn → z0 inH2-norm, therefore z′

n → z′
0 in L2-norm. Furthermore,

lim
n→∞

(−D2 + α2)2yn = lim
n→∞

(P (yn, zn)− iαRV (−D2 + α2)yn − iαRV ′′yn − 2z′
n)

= P0 − iαRV (−D2 + α2)y0 − iαRV ′′y0 − 2z′
0

in L2-norm. But [11, theorem IX·9·5] implies that the operator (−D2 + α2)2 with
domain H4[0,∞) � H2

0 [0,∞) is closed. Therefore limn→∞(−D2 + α2)2yn = (−D2 +
α2)2y0, and so P (y0, z0) = P0.

Define perturbations of M and L as follows. Let

M0 =

(
(−D2 + α2)2 2D

2D −D2 + α2

)
, D(M0) = D(M ),
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K =

(
iαRV (−D2 + α2) + iαRV ′′ 0

iαRU ′ iαRV

)
, D(K) = D(M ),

L0 = M0 − λN, D(L0) = D(L) = D(M ).

Then M = M0 +K and L = L0 +K.

Theorem 3·2. K is L0-compact.

Proof. Suppose there is a sequence (yn, zn)T ∈ D(L0) such that

‖(yn, zn)T ‖2L0
:= ‖(yn, zn)T‖2X + ‖L0(yn, zn)T‖2Y � C

for some constant C > 0. We must show that there is a subsequence (which we shall
simply denote by (yn, zn)T again) such that K(yn, zn)T converges in Y . We shall use
the notations: H2 = H2[0,∞), L2 = L2[0,∞) and ‖u‖2 = ‖u‖H2 , ‖u‖ = ‖u‖L2 . Then
‖(yn, zn)T‖2X = ‖yn‖22 + ‖zn‖2. Therefore yn is bounded inH2 and zn is bounded in L2.
Let P1: Y → Y1 and P2: Y → Y2 be the orthogonal projections, and let

L1 = P1L0, L2 = P2L0, K1 = P1K, K2 = P2K.

Since ‖y‖2Y = ‖P1y‖2 + ‖P2y‖2 for y ∈ Y , we see that L1(yn, zn)T and L2(yn, zn)T are
bounded in L2, and we must show that there is a subsequence such that K1(yn, zn)T

and K2(yn, zn)T converge in L2.
A calculation shows that:

L1(yn, zn)T = (−D2 + α2)2yn − λ(−D2 + α2)yn + 2z′
n,

L2(yn, zn)T = 2y′
n + (−D2 + α2)zn − λzn,

K1(yn, zn)T = iαRV (−D2 + α2)yn + iαRV ′′yn,

K2(yn, zn)T = iαRU ′yn + iαRV zn.

Since yn is bounded inH2, y′
n is bounded inL2. Now y′

n, zn andL2(yn, zn)T bounded in
L2 imply that (−D2+α2)zn is bounded inL2. LetA(z) = (−D2+α2)z, withD(A) = D2,
and B(z) = iαRV z, with D(B) = {z : z, B(z) ∈ L2}. Since limx→∞ V (x) = 0 and B
has lower order that A, [11, theorem IX·8·2] implies that B is A-compact. Therefore
there is a subsequence so that iαRV zn converges in L2. Similarly, since (−D2 +α2)yn

is bounded in L2, there is a subsequence such that iαRU ′yn converges in L2. This
shows that there is a subsequence such that K2(yn, zn)T converges in L2.
Now we must show that there is a subsequence so that K1(yn, zn)T converges in

L2. Since zn and (−D2 + α2)zn are bounded in L2, zn is bounded in H2. This implies
that z′

n is bounded in L2. This together with the boundedness of L1(yn, zn)T in L2

implies that (−D2 + α2)2yn − λ(−D2 + α2)yn is bounded in L2. [11, theorem IX·8·2]
now implies the existence of a subsequence so that K1(yn, zn)T converges in L2.

Corollary 3·1. σess(M, N ) = σess(M0, N ).

Proof. Since K is L0-compact, and L = L0 +K, it follows that σess(L) = σess(L0).
(cf. [11, theorem XI·2·1]). Furthermore,

σess(M, N ) = {λ ∈ C : 0 ∈ σess(L)} and σess(M0, N ) = {λ ∈ C : 0 ∈ σess(L0)}.

Therefore σess(M, N ) = σess(M0, N ).
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Our task is now to calculate σess(M0, N ). For this purpose, we transform the equa-
tion

L0

(
y
z

)
=

(
f
g

)

to an equivalent system of first order ODEs, as in (2·13)–(2·15). We set

u =




u1
u2
u3
u4


 =




y
y′

y′′

y′′′


 , v =

(
v1
v2

)
=

(
z
z′

)
,

and obtain (
u′

v′

)
− A

(
u
v

)
= h, (3·1)

where

A =




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

a41 0 a43 0 0 −2
0 0 0 0 0 1
0 2 0 0 a65 0




, h =




0
0
0
f
0
−g




, (3·2)

with

a41 = −α4 + α2λ,

a43 = 2α2 − λ,

a65 = α2 − λ.

The boundary conditions are:

u1(0) = u2(0) = v1(0) = 0 (3·3)

and

u ∈ (L2[0,∞))4, v ∈ (L2[0,∞))2.

The characteristic polynomial of A is

p(µ) = p(µ;λ) = det (µI − A) = (µ2 − α2 + λ)2(µ2 − α2) + 4µ2

= µ6 + (2λ − 3α2)µ4 + (λ2 − 4α2λ + 3α4 + 4)µ2 − α2(λ − α2)2.

The roots of p(µ) are the values of an algebraic function µ = µ(λ). They live on
a Riemann surface which is a 6-sheeted branched covering of C. There are finitely
many points λ ∈ C over which the Riemann surface is branched. These are the roots
of the discriminant of p(µ), and will be called the branch points. They are the values of
λ such that p(µ) has multiple roots. Thus, with the exception of finitely many points
λ, p(µ) has 6 different roots. Since p(µ) is an even polynomial, the roots occur in ±
pairs. The roots +µ and −µ are different, except for the root µ = 0, which occurs for
λ = α2. When no root is purely imaginary, they can be ordered: µ1, µ2, µ3, µ4, µ5, µ6,
such that Re (µk)< 0 for 1� k � 3 and Re (µk)> 0 for 4� k � 6. This is important
because the function eµk x ∈ L2[0,∞) for 1� k � 3, and eµk x � L2[0,∞) for 4� k � 6.
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We will show that σess(M0, N ) = S(M0, N ), where

S(M0, N ) = {λ ∈ C : p(µ) has a purely imaginary root}. (3·4)

We shall now identify this set explicitly.

Theorem 3·3. The following are equivalent.

(1) λ ∈ S(M0, N ).
(2) (λ − α2 − ξ2)2(α2 + ξ2) + 4ξ2 = 0 for some ξ ∈ R.

(This equation is satisfied if and only if µ(λ) = iξ is a root of p(µ;λ).)
(3) λ = ν + iη, where η2 = 4(1− α2/ν), ν � α2.

Proof. (1) and (2) are equivalent, since (2) is is the result of setting µ = iξ in the
characteristic equation of A: (µ2 − α2 + λ)2(µ2 − α2) + 4µ2 = 0.
Solving for λ in (2), we obtain:

λ = (α2 + ξ2)± 2iξ√
α2 + ξ2

.

Thus

ν = α2 + ξ2 and η = ±2
√

ν − α2√
ν

= ±2
√
1− α2

ν
.

This shows that (2) is equivalent to (3).

Recall the following definition of “singular sequence” for a linear map T : D(T ) ⊂
X → X. (cf. [11, definition IX·1·2].) A sequence {xn : n ∈ N} ⊂ D(T ) is called a
singular sequence for T − λI if the following conditions are satisfied:

(1) it has no convergent subsequence;
(2) ‖xn‖X = 1 for n ∈ N;
(3) limn→∞(T − λI)xn = 0.

Condition (2) may be relaxed to:

(2’) 0< a < ‖xn‖X <b for n � N0.

Theorem IX·1·3 in [11] implies that if T is a closed, densely defined operator such
that T − λI has a singular sequence, then λ ∈ σess(T ).
Similarly, we shall define “singular sequence” forM0−λN as a sequence {xn : n ∈

N} satisfying (1) and (2’) above, and
(3’) limn→∞(M0 − λN )xn = 0.

Clearly, a singular sequence forM0−λN is also a singular sequence for N−1M0−λI.
Since σess(M0, N ) = σess(N−1M0), we see that if M0 − λN has a singular sequence,
then λ ∈ σess(M0, N ).

Theorem 3·4. S(M0, N ) ⊂ σess(M, N ).

Proof. Using an idea from the proof of [11, theorem IX·7·3], we shall construct a
singular sequence for M0 − λN , when λ ∈ S(M0, N ). Note that µ(λ) = 0 is a root of
p(µ;λ) only when λ = α2. We shall first consider the case λ�α2.
Let η ∈ C∞(−∞,∞) be a function satisfying the following conditions:

η(x) = 1, for |x|� 1/2; η(x) = 0, for |x|� 1; and 0� η(x)� 1 on (−∞,∞). Let
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In = {x : |x − xn|� 
n}(n ∈ N) be mutually disjoint intervals in (0,∞), with
limn→∞ 
n =∞. Suppose that λ ∈ S(M0, N ). Then there is a root µ(λ) = iξ of p(µ, λ),
where ξ ∈ R; ξ � 0, since we have assumed that λ�α2. We define:

yn(x) = 
−1/2n (−D2 + α2 − λ)
(
η
[
(x − xn)
−1n

]
exp[iξ(x − xn)]

)
,

zn(x) = −2
−1/2D
(
η
[
(x − xn)
−1n

]
exp[iξ(x − xn)]

)
,

ζn(x) = (yn(x), zn(x))T ,

where D = d/dx. We claim that {ζn : n ∈ N} is a singular sequence for M0 − λN .
Since Supp (ζn) ⊂ In, and the intervals In are disjoint, the functions ζn are ortho-

gonal to each other. Therefore condition (2’) (0< a < ‖ζn‖X < b, for n �N0) implies
(1) (there is no convergent subsequence). It remains to prove (2’) and (3′).

Proof of (2’). We start with the observation

‖ζn‖2X = ‖yn‖22 + ‖zn‖2 = ‖D2yn‖2 + ‖Dyn‖2 + ‖yn‖2 + ‖zn‖2.

Let

wn = 
−1/2n g(D)
(
η
[
(x − xn)
−1n

]
exp[iξ(x − xn)]

)
,

where g(t) =
∑k

j=0 ajt
j , (aj ∈ C, 0� j � k). There are constants bj = bj(ξ) so that

wn(x) = 
−1/2n

(
k∑

j=1

bj

−j
n η(j)

[
(x − xn)
−1n

]
+ g(iξ) η

[
(x − xn)
−1n

])
exp[(iξ(x − xn)],

∫
|x−xn |��n /2

|wn|2 dx � ‖wn‖2 =
∫
|x−xn |��n

|wn(x)|2 dx,

∫
|x−xn |��n

|wn(x)|2 dx =
∫
|x|�1

∣∣∣∣∣
k∑

j=1

bj

−j
n η(j)(x) + g(iξ) η(x)

∣∣∣∣∣
2

dx.

Given ε > 0, there exists N = N (g), such that for n �N , (and for all x)∣∣∣∣∣
k∑

j=1

bj

−j
n η(j)(x)

∣∣∣∣∣ � ε.

Using the inequality |p + q|2 � 2(|p|2 + |q|2) (for p, q ∈ C), we obtain (for n �N )

‖wn‖2 � 2
∫ 1

−1
(ε2 + |g(iξ)|2η(x)2) dx,

and since 0� η(x)� 1,

‖wn‖2 � 4 (ε2 + |g(iξ)|2), for n �N. (3·5)

Using the inequality |p + q|2 � 1/2 |p|2 − |q|2 (from 2|pq|� 1/2|p|2 + 2|q|2), we find

‖wn‖2 �
∫ 1/2

−1/2
(1/2 |g(iξ)|2η(x)2 − ε2) dx = 1/2 |g(iξ)|2 − ε2.

Thus we have

1/2 |g(iξ)|2 − ε2 � ‖wn‖2 � 4 (ε2 + |g(iξ)|2), for n �N (g). (3·6)
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Applying (3·6) to yn, Dyn, D2yn and zn, we obtain (for any given ε > 0 and sufficiently
large n):

1/2 |ξ2 + α2 − λ|2 − ε2 � ‖yn‖2 � 4 (|ξ2 + α2 − λ|2 + ε2)

1/2 ξ2|ξ2 + α2 − λ|2 − ε2 � ‖Dyn‖2 � 4 (ξ2|ξ2 + α2 − λ|2 + ε2)

1/2 ξ4|ξ2 + α2 − λ|2 − ε2 � ‖D2yn‖2 � 4 (ξ4|ξ2 + α2 − λ|2 + ε2).

This proves condition (2’).

Proof of (3’). We start with the equation

(M0 − λN )
(

y
z

)
=

(
P (y, z)
Q(y, z)

)
,

where

P (y, z) = (−D2 + α2)2y − λ(−D2 + α2)y + 2Dz,

Q(y, z) = 2Dy + (−D2 + α2)z − λz.

Applying this to ζn = (yn, zn)T , we obtain

P (yn, zn) = 
−1/2n {[(−D2 + α2)2 − λ(−D2 + α2)](−D2 + α2 − λ)

− 4D2}η
[
(x − xn)
−1n

]
exp[iξ(x − xn)].

By (3·5), for any ε > 0, there is an integer N0 so that

‖P (yn, zn)‖2 � 4 (ε2 + |g(iξ)|2), for n �N0,

where

g(iξ) = [(ξ2 + α2)2 − λ(ξ2 + α2)](ξ2 + α2 − λ) + 4ξ2 = (ξ2 + α2 − λ)2)(ξ2 + α2) + 4ξ2.

By Theorem 3·3(2) g(iξ) = 0, and so ‖P (yn, zn)‖� 2ε for n �N0. Therefore
limn→∞ P (yn, zn) = 0.

Q(yn, zn) = 
−1/2n [2D(−D2 + α2 − λ)− 2(−D2 + α2)D

+2λD]η
[
(x − xn)
−1n

]
exp[iξ(x − xn)] = 0.

This proves condition (3’) when λ�α2.

We must still consider the case λ = α2, ξ = 0. Define

yn(x) = 
−1/2n η
[
(x − xn)
−1n

]
, zn(x) = 0, ζn(x) = (yn(x), zn(x))T .

Then

‖ζn‖2X = ‖yn‖2 + ‖Dyn‖2 + ‖D2yn‖2,∫
|x−xn |��n /2


−1n η
[
(x − xn)
−1n

]2
dx � ‖yn‖2 =

∫
|x−xn |��n


−1n η
[
(x − xn)
−1n

]2
dx,

1 =
∫ 1/2

−1/2
η(x)2 dx � ‖yn‖2 �

∫ 1

−1
η(x)2 dx � 2.

By (3·5), with ξ = 0,

‖Dyn‖2 � 4ε2, 0� ‖D2yn‖2 � 4ε2.
Therefore condition (2’) is satisfied, and this implies condition (1).
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Using the fact that λ = α2, we have

P (yn, zn) = 
−1/2n [(−D2 + α2)2 − α2(−D2 + α2)]η
[
(x − xn)
−1n

]
.

By (3·5), for any ε > 0 there exists an integer N1, such that for n �N1

‖P (yn, zn)‖2 � 4 (ε2 + |g(0)|2),

where g(t) = (−t2 + α2)2 − α2(−t2 + α2). Thus g(0) = 0, and

‖P (yn, zn)‖� 2ε for n � N1.

We also have

Q(yn, zn) = 2
−1/2n Dη
[
(x − xn)
−1n

]
.

By (3·5) for ε > 0 there is an integer N2 such that for n �N2

‖Q(yn, zn)‖2 � 4 (ε2 + |h(0)|2),

where h(t) = 2t. Thus h(0) = 0 and ‖Q(yn, zn)‖� 2ε for n �N1. Hence limn→∞(M0 −
α2N )ζn = 0.

Lemma 3·1. Let f, g, h ∈ L2[0,∞), and let

F (x) =
∫ x

0
eµ(x−t)f (t) dt + aeµx,

G(x) =
∫ x

0
eµ(x−t)g(t) dt +

∫ x

0
eµ(x−t)

( ∫ t

0
eµ(t−s)f (s) ds

)
dt + axeµx + beµx,

H(x) =
∫ x

0
eµ(x−t)h(t) dt +

∫ x

0
eµ(x−t)

(∫ t

0
eµ(t−s)g(s) ds

)
dt

+
∫ x

0
eµ(x−t)

[ ∫ t

0
eµ(t−s)

(∫ s

0
eµ(s−t)f (r) dr

)
ds

]
dt +

a

2
x2eµx + bxeµx + ceµx.

(1) If Re (µ)< 0, then F, G, H ∈ L2[0,∞) for any values of a, b, and c.
(2) IfRe (µ)> 0, then there are unique values of a, b, c such thatF, G, H ∈ L2[0,∞).

These values are:

a = F (0) = −
∫ ∞

0
e−µtf (t) dt,

b = G(0) = −
∫ ∞

0
e−µtg(t) dt −

∫ ∞

0
e−µtF (t) dt,

c = H(0) = −
∫ ∞

0
e−µth(t) dt −

∫ ∞

0
e−µtG(t) dt.

When a, b, and c have these values, F, G and H have the following alternative
formulas:

F (x) = −
∫ ∞

x

eµ(x−t)f (t) dt,

G(x) = −
∫ ∞

x

eµ(x−t)g(t) dt −
∫ ∞

x

eµ(x−t)F (t) dt,

H(x) = −
∫ ∞

x

eµ(x−t)h(t) dt −
∫ ∞

x

eµ(x−t)G(t) dt.
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Proof. (1) Suppose Re (µ)< 0. Note that if we prove that F ∈ L2[0,∞) (for arbit-
rary f ∈ L2[0,∞)), then it follows that G, H ∈ L2[0,∞). To show that F ∈ L2[0,∞),
extend f to (−∞,∞) by defining f (x) = 0, for x < 0, and consider the Fourier trans-
form f̂ (ω) =

∫ ∞
−∞ e−2πiωtf (t) dt. Then∫ x

0
eµ(x−t)f (t) dt =

∫ x

0
eµ(x−t)

(∫ ∞

−∞
e2πiωtf̂ (ω) dω

)
dt

=
∫ ∞

−∞
dω

∫ x

0
eµxe(2πiω−µ)tf̂ (ω) dt

=
∫ ∞

−∞
eµx(2πiω − µ)−1

[
e(2πiω−µ)x − 1

]
f̂ (ω) dω

=
∫ ∞

−∞
e2πiωx(2πiω − µ)−1f̂ (ω) dω − eµx

∫ ∞

−∞
(2πiω − µ)−1f̂ (ω) dω.

The first term on the last line ∈ L2[0,∞) because it is the inverse Fourier transform
of an L2-function. The second term ∈ L2[0,∞) because the exponential is an L2-
function, and the integral converges since it is the inner product of two L2-functions.
Changing the order of integration is justified by the definition of the Fourier trans-
form on L2(−∞,∞) (as the L2-limit of Fourier transforms on L1(−∞,∞)).
(2) Suppose Re (µ)> 0. Let a = −

∫ ∞
0 e−µt)f (t) dt. Then

F (x) =
∫ x

0
eµ(x−t)f (t) dt + aeµx

=
∫ x

0
eµ(x−t)f (t) dt −

∫ ∞

0
eµ(x−t)f (t) dt = −

∫ ∞

x

eµ(x−t)f (t) dt.

Thus

F (x) = −
∫ ∞

x

eµ(x−t)f (t) dt =−
∫ ∞

x

eµ(x−t)

(∫ ∞

−∞
e2πiωtf̂ (ω) dω

)
dt

=−
∫ ∞

−∞
dω

∫ ∞

x

eµxe(2πiω−µ)tf̂ (ω) dt =−
∫ ∞

−∞
eµx(2πiω−µ)−1

[
−e(2πiω−µ)x)

]
f̂ (ω) dω

=
∫ ∞

−∞
e2πiωx(2πiω − µ)−1f̂ (ω) dω,

and so F ∈ L2[0,∞).
To show that G ∈ L2[0,∞), we note that since

∫ t

0 eµ(t−s)f (s) = F (t)− aeµt, it follows
that ∫ x

0
eµ(x−t)

( ∫ t

0
eµ(t−s)f (s) ds

)
dt =

∫ x

0
eµ(x−t)F (t) dt − axeµx

and

G(x) =
∫ x

0
eµ(x−t)g(t) dt +

∫ x

0
eµ(x−t)F (t) dt + beµx.

If we put

b = −
∫ ∞

x

eµ(x−t)g(t) dt −
∫ ∞

x

eµ(x−t)F (t) dt,
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then

G(x) = −
∫ ∞

0
e−µtg(t) dt −

∫ ∞

0
e−µtF (t) dt.

Therefore G ∈ L2[0,∞) by the same argument as for F .

We use a similar argument to show that H ∈ L2[0,∞). Since∫ t

0
eµ(t−s)

(∫ s

0
eµ(s−r)f (r) dr

)
ds = G(t)−

∫ t

0
eµ(t−s)g(s) ds − ateµt − beµt,

it follows that∫ x

0
eµ(x−t)

[ ∫ t

0
eµ(t−s)

( ∫ s

0
eµ(s−r)f (r) dr

)
ds

]
dt

=
∫ x

0
eµ(x−t)G(t) dt −

∫ x

0
eµ(x−t)

( ∫ t

0
eµ(t−s)g(s) ds

)
dt − a

2
x2eµx − bxeµx

and

H(x) =
∫ x

0
eµ(x−t)h(t) dt +

∫ x

0
eµ(x−t)G(t) dt + ceµx.

If we put

c = −
∫ ∞

0
e−µth(t) dt −

∫ ∞

0
e−µtG(t) dt,

then

H(x) = −
∫ ∞

x

eµ(x−t)h(t) dt −
∫ ∞

x

eµ(x−t)G(t) dt

and therefore H ∈ L2[0,∞).
Finally we will show that the triple (a, b, c) given in (2) is unique. Let (a1, b1, c1)�

(a, b, c), and let F1, G1, H1 be the functions corresponding to (a1, b1, c1). If a1 � a,
then F1(x) = F (x) + (a1 − a)eµx. Thus F1 � L2[0,∞), since F ∈ L2[0,∞) and eµx �
L2[0,∞). If a1 = a and b1 � b, then G1(x) = G(x) + (b1 − b)eµx, so G1 � L2[0,∞).
Similarly, if a1 = a, b1 = b and c1� c, then H1 � L2[0,∞).

Recall that the characteristic polynomial for the matrix A (given in (3·2)) is p(µ) =
p(µ;λ) = det (µI−A) = (µ2−α2 +λ)2(µ2−α2)+4µ2. If, for a given λ, no eigenvalue of
A is purely imaginary, then λ � S(M0, N ). In this case, the eigenvalues can be ordered:
µ1, µ2, µ3, −µ1, −µ2, −µ3, where Re (µj)< 0 for 1� j � 3. There is a nonsingular
matrix S = S(λ) such that SAS−1 = D is in Jordan canonical form. It is not hard
to check that if λ � α2, then the A-annihilator of the vector e1 = (1, 0, 0, 0, 0, 0)T

coincides with p(A). Therefore p(µ) is the minimal polynomial of A. This means
that if p(µ) has multiple roots, then the matrix D is not diagonal. There are three
possibilities for the matrix D (apart from permutation of the roots):

D1 = diag (µ1, µ2, µ3, µ4, µ5, µ6), where Re (µj)< 0 for 1� j � 3,
µ4 = −µ1, µ5 = −µ2, µ6 = −µ3,

and µi �µj for i� j, (3·7)
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D2 =




µ 1 0 0 0 0
0 µ 0 0 0 0
0 0 ν 0 0 0
0 0 0 −µ 1 0
0 0 0 0 −µ 0
0 0 0 0 0 −ν




, where Re(µ), Re (ν)< 0, and µ� ν, (3·8)

D3 =




µ 1 0 0 0 0
0 µ 1 0 0 0
0 0 µ 0 0 0
0 0 0 −µ 1 0
0 0 0 0 −µ 1
0 0 0 0 0 −µ




, where Re(µ)< 0. (3·9)

Lemma 3·2. Let D be one of the matrices (3·7)–(3·9). (We have assumed that no eigen-
value of D is purely imaginary.) Consider the initial value problem:

w′ − Dw = f, w(0) = w0,

where

w(x) = (w1(x), w2(x), w3(x), w4(x), w5(x), w6(x))T , w0 =
(
w0
1, w

0
2, w

0
3, w

0
4, w

0
5, w

0
6

)T
,

f (x) = (f1(x), f2(x), f3(x), f4(x), f5(x), f6(x))T and fk ∈ L2[0,∞) for 1� k � 6.

The solution w(x) has the following properties:
(1) for 1� j � 3, wj ∈ L2[0,∞) for all initial values w0

1, w
0
2, w

0
3 ∈ C;

(2) for 4� k � 6, there are unique initial values w0
4, w

0
5, w

0
6 ∈ C so that wk ∈ L2[0,∞)

for 4� k � 6. These values are the following:
(i) if D = D1, then w0

k = −
∫ ∞
0 e−µk tfk(t) dt;

(ii) if D = D2 then w0
6 = −

∫ ∞
0 eνtf6(t) dt, w0

5 = −
∫ ∞
0 eµtf5(t) dt and

w0
4 = −

∫ ∞
0 eµtf4(t) dt +

∫ ∞
0 eµt(

∫ ∞
t

eµ(s−t)f5(s) ds) dt;
(iii) if D = D3 then w0

6 = −
∫ ∞
0 eµtf6(t) dt,

w0
5 = −

∫ ∞
0 eµtf5(t) dt+

∫ ∞
0 eµt(

∫ ∞
t

eµ(s−t)f6(s) ds) dt, and
w0
4 = −

∫ ∞
0 eµtf4(t) dt+

∫ ∞
0 eµt(

∫ ∞
t

eµ(s−t)f5(s) ds) dt

+
∫ ∞
0 eµt[

∫ ∞
t

eµ(s−t)(
∫ ∞

s
eµ(r−s)f6(r) dr) ds] dt.

Proof.
(i) If D = D1, then the system of ODEs has the following form:

w′
j − µjwj = fj (for 1� j � 3), w′

k + µkwk = fk (for 4� k � 6).

The solution has the form:

wj(x) =
∫ x

0
eµj (x−t)fj(t) dt + w0

je
µj x (for 1� j � 3),

wk(x) =
∫ x

0
e−µk (x−t)fk(t) dt + w0

ke
−µk x (for 4� k � 6).
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(ii) If D = D2, then the system of ODEs has the following form:

w′
1 − µw1 − w2 = f1, w′

2 − µw2 = f2, w′
3 − νw3 = f3,

w′
4 + µw4 − w5 = f4, w′

5 + µw5 = f5, w′
6 + νw6 = f6.

The solution has the form:

w3(x) =
∫ x

0
eν(x−t)f3(t) dt + w0

3e
νx, w2(x) =

∫ x

0
eµ(x−t)f2(t) dt + w0

2e
µx,

w1(x) =
∫ x

0
eµ(x−t)f1(t) dt +

∫ x

0
eµ(x−t)

(∫ t

0
eµ(t−s)f2(s) ds

)
dt + w0

2xeµx + w0
1e

µx,

w6(x) =
∫ x

0
e−ν(x−t)f6(t) dt + w0

6e
−νx, w5(x) =

∫ x

0
e−µ(x−t)f5(t) dt + w0

5e
−µx,

w4(x) =
∫ x

0
e−µ(x−t)f4(t) dt +

∫ x

0
e−µ(x−t)

( ∫ t

0
e−µ(t−s)f5(s) ds

)
dt + w0

5xe−µx + w0
4e

−µx.

(iii) If D = D3, then the system of ODEs has the following form:

w′
1 − µw1 − w2 = f1, w′

2 − µw2 − w3 = f2, w′
3 − µw3 = f3,

w′
4 + µw4 − w5 = f4, w′

5 + µw5 − w6 = f5, w′
6 + µw6 = f6.

The solution has the form

w3(x) =
∫ x

0
eν(x−t)f3(t) dt + w0

3e
µx,

w2(x) =
∫ x

0
eµ(x−t)f2(t) dt +

∫ x

0
eµ(x−t)

(∫ t

0
eµ(t−s)f3(s) ds

)
dt + w0

3xeµx + w0
2e

µx,

w1(x) =
∫ x

0
eµ(x−t)f1(t) dt +

∫ x

0
eµ(x−t)

(∫ t

0
eµ(t−s)f2(s) ds

)
dt

+
∫ x

0
eµ(x−t)

[∫ t

0
eµ(t−s)

(∫ s

0
eµ(s−r)f3(r) dr

)
ds

]
dt+

w0
3

2
x2eµx+w0

2xeµx + w0
1e

µx,

w6(x) =
∫ x

0
e−ν(x−t)f6(t) dt + w0

6e
−νx,

w5(x) =
∫ x

0
e−µ(x−t)f5(t) dt +

∫ x

0
e−µ(x−t)

(∫ t

0
e−µ(t−s)f6(s) ds

)
dt + w0

6xe−µx + w0
5e

−µx,

w4(x) =
∫ x

0
e−µ(x−t)f4(t) dt +

∫ x

0
e−µ(x−t)

(∫ t

0
e−µ(t−s)f5(s) ds

)
dt

+
∫ x

0
e−µ(x−t)

[ ∫ t

0
e−µ(t−s)

(∫ s

0
e−µ(s−r)f6(r) dr

)
ds

]
dt

+
w0
6

2
x2e−µx + w0

5xe−µx + w0
4e

−µx.

The statements (1) and (2) follow from Lemma 3·1.

Recall that the equation L0(y, z)T = (f, g)T is equivalent to the system of ODEs
(3·1) with boundary conditions (3·3). Let S = S(λ) = (sij) (1� i, j � 6) be a matrix
such that SAS−1 = D, where D is one of the matrices D1, D2, D3 displayed in
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(3·7)–(3·9). If we put

w = S

(
u
v

)
,

then (3·1) is equivalent to the system:

w′ − Dw =




s14f − s16g
s24f − s26g
s34f − s36g
s44f − s46g
s54f − s56g
s64f − s66g




. (3·10)

The following notation will be needed below. Let

T = S−1 = (tij) (1� i, j � 6), (3·11)

T0 =


t11 t12 t13

t21 t22 t23
t51 t52 t53


 , T1 =


t14 t15 t16

t24 t25 t26
t54 t55 t56


 . (3·12)

Corresponding to Lemma 3·2(2), we define three continuous linear maps φk:
L2[0,∞) → C (4� k � 6). If we set fk = f (4� k � 6), then φk(f ) = w0

k in Lemma
3·2(2). Thus:
(i) if D = D1, then φk(f ) = −

∫ ∞
0 eµk tf (t) dt;

(ii) if D = D2 then φ6(f ) = −
∫ ∞
0 eνtf (t) dt, φ5(f ) = −

∫ ∞
0 eµtf (t) dt, and

φ4(f ) = −
∫ ∞
0 eµtf (t) dt +

∫ ∞
0 eµt(

∫ ∞
t

eµ(s−tf (s) ds) dt;
(iii) if D = D3 then φ6(f ) = −

∫ ∞
0 eµtf (t) dt,

φ5(f ) = −
∫ ∞
0 eµtf (t) dt+

∫ ∞
0 eµt(

∫ ∞
t

eµ(s−tf (s) ds) dt and
φ4(f ) = −

∫ ∞
0 eµtf (t) dt+

∫ ∞
0 eµt(

∫ ∞
t

eµ(s−tf (s) ds) dt

+
∫ ∞
0 eµt[

∫ ∞
t

eµ(s−t)
∫ ∞

s
eµ(r−s)f (r) dr) ds] dt.

We define a continuous linear map ψ: Y → C
3 as follows:

ψ(f, g) = T1




s44φ4(f )− s46φ4(g)
s54φ5(f )− s56φ5(g)
s64φ6(f )− s66φ6(g)


 . (3·13)

Observe that the sets U and V defined by

U = ψ(Y ) and V = Range (T0) (3·14)
are subspaces of C

3. Recall that λ is an eigenvalue for (M0, N ) if the operator L0 =
M0 − λN is not injective.

Theorem 3·5. Suppose that λ � S(M0, N ). Then:
(1) (f, g) ∈ Range (L0) if and only if ψ(f, g) ∈ U � V;
(2) def (L0) = dim(U/(U � V));
(3) λ is an eigenvalue for (M0, N ) if and only if detT0(λ) = 0;

(Here T0 is the 3× 3 matrix defined in (3·12).)
(4) null (L0) = null(T0);
(5) L0 is Fredholm.
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Proof. Since w = S(u
v
), (u

v
) = T (w), and so


u1(0)
u2(0)
v1(0)


 = T0




w1(0)
w2(0)
w3(0)


 + T1




w4(0)
w5(0)
w6(0)


 .

Thus the boundary conditions for (3·10) are:

T0




w1(0)
w2(0)
w3(0)


 + T1




w4(0)
w5(0)
w6(0)


 = 0, (3·15)

and wk ∈ L2[0,∞) for 1� k � 6.
For 1� j � 3, Lemma 3·2(1) says that wj ∈ L2[0,∞) for any choice of wj(0). By

(3·10) and Lemma 3·2(2), wk ∈ L2[0,∞) for 4� k � 6 if and only if

wk(0) = sk4φk(f )− sk6φk(g), for 4� k � 6.

Therefore, by (3·13)–(3·15), (f, g) ∈ Range (L0) if and only if ψ(f, g) ∈ U � V. This
proves (1). Since ψ: Y → U is a continuous linear map, and dim(U � V)<∞, it also
follows that Range(L0) is closed.
Since ψ(Y ) = U, and ψ(Range(L0)) = U � V, we see that

def (L0) = dim(U/(U � V)).

This proves (2).
λ is an eigenvalue for (M0, N ) if and only if the system w′−Dw = 0 has a nontrivial

solution w ∈ (L2[0,∞))6 satisfying the boundary conditions (3·15). By Lemma 3·2(2)
wk(0) = 0 for 4� k � 6. Thus the boundary conditions in this case are:

T0




w1(0)
w2(0)
w3(0)


 = 0.

This proves (3) and (4). We have shown that Range (L0) is closed, null (L0)<∞ and
def (L0)<∞. Therefore L0 is Fredholm.

The following theorem follows from Corollary 3·1 and Theorems 3·3–3·5. This is the
first main result in this paper.

Theorem 3·6. σess(M, N ) = S(M0, N ) = {ν + iη : η2 = 4(1 − α2/ν), ν � α2} (see
equation (3·4)).

The following important sets will often occur in the ensuing sections.

Definition 3·1.

Ω(M, N ) = C \ (B � σess(M, N )),

where B is the set of branch points of the characteristic polynomial p(µ). (i.e. This is
the set where p(µ) has multiple roots.) Ω(M, N ) has two connected components:

Ω(M, N ) = Ω+(M, N ) � Ω−(M, N ),
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where Ω+(M, N ) is the component containing the interval (α2,∞) ⊂ R, andΩ−(M, N )
contains the interval (−∞, α2).

4. L2 and non-L2 solutions as analytic functions

In Section 7 below, we develop the Titchmarsh–Weyl coefficients. These provide a
further characterization of isolated eigenvalues, and allow us to examine the effects of
regularizing the Ekman problem by replacing it by a problem on a finite interval. In
order to develop the Titchmarsh–Weyl coefficients we examine here the L2 solutions
of the system of differential equations (2·14), which we now write as a perturbation
of the constant coefficient system of Section 3:

Y ′ = (A(λ) +Q(x))Y, x ∈ [0,∞), (4·1)

where A(λ) is given in (3·2). We shall assume that λ ∈ Ω(M, N ) (see Definition 3·1).
Then thematrixA(λ) possesses 6 distinct eigenvaluesµ1(λ), . . . , µ6(λ), with associated
eigenvectors v1(λ), . . ., v6(λ). The µj are ordered so that

Re (µ1),Re (µ2),Re (µ3)< 0, Re (µ4),Re (µ5),Re (µ6)> 0. (4·2)

The µj(λ) are values of a multivalued algebraic function. However, they are single-
valued analytic functions in any disc D ⊂ Ω(M, N ). We shall sometimes express this
by saying that the µj(λ) are “locally analytic” in Ω(M, N ). By assumption (A1·3)
the matrix Q lies in L1[0,∞).
We denote by T (λ) the invertible (locally) analytic 6 × 6 matrix with columns
v1, . . . , v6. This is the same as the matrix given in (3·11). Making the transforma-
tion

Y = T (λ)Z (4·3)

reduces (4·1) to the form
Z ′ = (D(λ) + Q̂(x, λ))Z, (4·4)

in which D(λ) = diag(µ1(λ), . . . , µ6(λ)) and Q̂(x, λ) = T (λ)−1Q(x)T (λ). We define

Φ1(x, λ) = diag
(
eµ1(λ)x, eµ2(λ)x, eµ3(λ)x, 0, 0, 0

)
,

Φ2(x, λ) = diag
(
0, 0, 0, eµ4(λ)x, eµ5(λ)x, eµ6(λ)x

)
(4·5)

and

Φ(x, λ) = Φ1(x) + Φ2(x). (4·6)

It is easy to check that Φ is a fundamental matrix for the differential system

Z ′ = D(λ)Z. (4·7)

Define

Φ6×3(x, λ) =




eµ1(λ)x 0 0
0 eµ2(λ)x 0
0 0 eµ3(λ)x

0 0 0
0 0 0
0 0 0




. (4·8)
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Using the variation of parameters formula, it may be verified that for any a � 0, any
matrix function Z which satisfies an equation of the form

Z(x, λ) = Φ1(x, λ)
∫ x

a

Φ(t, λ)−1Q̂(t, λ)Z(t, λ) dt

−Φ2(x, λ)
∫ ∞

x

Φ(t, λ)−1Q̂(t, λ)Z(t, λ) dt + Φ6×3(x, λ), (4·9)

will be a solution of (4·4). We use this fact to construct a 6 × 3 solution matrix of
(4·4) which is (locally) analytic in λ and whose columns span the space of L2[0,∞)
solutions of (4·4). Note that from the Levinson Theorem [10, theorem 1·3] we already
know that the space of L2[0,∞) solutions of (4·4) is three-dimensional and contains
solutions with the asymptotic behaviour

Zk(x) = (ek + o(1)) exp(µkx), x −→ ∞, k = 1, 2, 3, (4·10)
where the ek are the standard basis vectors of C

6.
Let a � 0 be fixed, and let BC6×3[a,∞) denote the space of all continuous 6 × 3

matrix functions Z on [a,∞) with
sup

x∈[a,∞)
‖Z(x)‖<+∞.

We define a map Σλ : BC6×3[a,∞)→ BC6×3[a,∞) by

Σλ(Z)(x) = Φ1(x, λ)
∫ x

a

Φ(t, λ)−1Q̂(t, λ)Z(t) dt

−Φ2(x, λ)
∫ ∞

x

Φ(t, λ)−1Q̂(t, λ)Z(t) dt + Φ6×3(x, λ). (4·11)

It is not immediately obvious that Σλ maps into BC6×3[a,∞). To see this we observe
that

Φ1(x)Φ(t)−1 = diag
(
eµ1(λ)(x−t), eµ2(λ)(x−t), eµ3(λ)(x−t), 0, 0, 0

)
,

Φ2(x)Φ(t)−1 = diag
(
0, 0, 0, eµ4(λ)(x−t), eµ5(λ)(x−t), eµ6(λ)(x−t)

)
.

(4·12)

These expressions, together with the assumptions Re (µ1, µ2, µ3)< 0, Re (µ4, µ5, µ6)>
0, give

‖Φ1(x)Φ(t)−1‖ � 1, x � t,

‖Φ2(x)Φ(t)−1‖ � 1, t � x.

}
(4·13)

Furthermore, since Q ∈ L1[0,∞) it follows that∫ ∞

0
‖Q̂(t, λ)‖ dt <+∞. (4·14)

Equations (4·13) and (4·14) together with the fact that
lim
x→∞

‖Φ6×3(x, λ)‖ = 0

ensure that Σλ does indeed map into BC6×3[a,∞).
Now suppose that λ lies in some compact setK (which we assume is a closed disc⊂

Ω(M, N )). Exploiting (4·14), choose a such that∫ ∞

a

‖Q̂(t, λ)‖ dt < 1 ∀λ ∈ K. (4·15)
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Given any two maps Z1 and Z2 in BC6×3[a,∞), the triangle inequality applied to
(4·11), together with (4·13), yields

‖Σλ(Z1)(x)− Σλ(Z2)(x)‖ �
(∫ x

a

‖Q̂(t, λ)‖ dt

)
sup

t∈[a,x]
‖Z1(t)− Z2(t)‖

+
(∫ ∞

x

‖Q̂(t, λ)‖ dt

)
sup

t∈[x,∞]
‖Z1(t)− Z2(t)‖,

which simplifies to

‖Σλ(Z1)(x)− Σλ(Z2)(x)‖ �
(∫ ∞

a

‖Q̂(t, λ)‖ dt

)
sup

t∈[a,∞]
‖Z1(t)− Z2(t)‖. (4·16)

As the right-hand side in (4·16) does not depend on x, this inequality, together with
(4·15), shows that for λ ∈ K the map Σλ is a contraction on BC6×3[a,∞). Thus Σλ

possesses a unique fixed point in BC6×3[a,∞), which is the bounded 6 × 3 matrix
solution of (4·9). We denote this solution by Zbound.
The columns of Zbound are L2 solutions of the differential equation (4·4). This

is because non-L2 solutions of (4·4) blow up at infinity. In fact, by the Levinson
Theorem [10, theorem 1·3] three linearly independent non-L2 solutions of (4·1) can
be constructed containing elements with the asymptotic behaviour

Zk(x) = (ek + o(1)) exp(µkx), x −→ ∞, k = 4, 5, 6.

Moreover, the columns of Zbound form a basis for the space of L2 solutions. To see
this it is sufficient to show that Zbound is of full rank. If there were some 3-vector c
such that Zboundc = 0 then multiplying both sides of (4·9) on the right by c would
give

Φ6×3(x, λ)c = 0.

However since Φ6×3 is of full rank, this implies c = 0. Thus Zbound is also of full rank.
Finally, since Σλ is an analytic contraction for λ ∈ K, it follows that Zbound is also
analytic for λ ∈ K. (The fixed point is the limit of a Σλ-orbit: Zn+1 = Σλ(Zn). This
is a uniformly convergent sequence of analytic functions.) Transforming back to the
original variables via (4·3), we have proved the following result.

Theorem 4·1. Let K ⊂ Ω(M, N ) be a closed disc. Then the differential equation (4·1)
possesses a 6 × 3 solution matrix Ybound(x, λ) which is analytic in λ ∈ K and whose
columns span the space of L2 solutions of (4·1).

Remark 2. While we require x ∈ [a,∞) for the contraction argument, the solution
for x ∈ [0,∞) is given by the same formula (4·9).

In addition to the analytic matrix Ybound it will be necessary in our development
of the Titchmarsh–Weyl coefficients in Section 7 to have an analytic basis for the
remainder of the solution space of (4·1). This part of the solution space contains
functions which are not bounded, so the argument used above fails. Nevertheless one
can still use the method of Eastham [10] to obtain a result similar to Theorem 4·1.

Theorem 4·2. Let K be a compact subset of a disc D ⊂ Ω(M, N ), such that
Reµ4(λ)�Reµ5(λ)�Reµ6(λ) for λ ∈ K. Then the equation (4·1) possesses solutions
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Y4, Y5 and Y6 which are continuous on K, analytic in the interior of K, and which have
the asymptotic expansions

Yj(x, λ) = exp(µj(λ)x) {vj + o(1)}, j = 4, 5, 6,

uniformly for λ ∈ K as x → ∞.

Proof. It is sufficient to show that (4·4) has solutions Z4, Z5 and Z6 which have the
asymptotic behaviour

Zj(x, λ) = exp(µj(λ)x) {ej + o(1)}, j = 4, 5, 6, (4·17)

for large positive x. To do this, fix j (4 � j � 6), and for a solution Z of (4·4) define
a new variable Z̃ by

Z̃(x, λ) = Z(x, λ) exp(−µj(λ)x). (4·18)

Then Z̃ satisfies the differential equation

Z̃ ′ = (D̃(λ) + Q̂(x, λ))Z̃, (4·19)

in which

D̃ = diag(µ1 − µj , . . . , µ6 − µj).

Following Eastham [10, p. 11], define

Φ1(x, λ) = diag(exp((µ1 − µj)x), . . . , exp((µj−1 − µj)x), 0, · · · , 0),
Φ2(x, λ) = diag(0, . . . , 0, 1, exp((µj+1 − µj)x), . . . , exp((µ6 − µj)x)),

Φ = Φ1 + Φ2.

Following the approach which we used for Theorem 4·1 it can be shown that (4·19)
possesses a solution Z̃j which satisfies

Z̃j(x, λ) −→ ej uniformly for λ ∈ K as x −→ ∞, (4·20)

and is a fixed point of the mapping

Z �−→ ej + Φ1(x, λ)
∫ x

a

Φ−1(t)Q̂(t, λ)Z(t) dt − Φ2(x, λ)
∫ ∞

x

Φ−1(t)Q̂(t, λ)Z(t) dt.

Provided a is chosen to satisfy (4·15) for λ ∈ K, this map is an analytic contraction,
and so its fixed point, which we denote Z̃j(x, λ), is continuous on K and analytic in
the interior of K (where Reµ4(λ)<Reµ5(λ)<Reµ6(λ)). The corresponding solution
of (4·4) we denote by Zj(x, λ) and is given, according to (4·18), by

Zj(x, λ) = exp(µj(λ)x)Z̃j(x, λ),

and, from (4·20), this solution Zj must have the property (4·17). This completes the
proof.

Remark 3. The vectors v4, v5, v6 in Theorem 4·2 are the last three columns of the
matrix T (λ) in (4·3).

5. A-priori information about the spectrum

Both for theoretical and for computational purposes, it is very useful to have a-
priori information about the spectrum. In this section we show that all points of the



The Ekman spectrum 743
spectrum of an Ekman problem lie in a right half-plane, whether the problem be
posed on a finite or a semi-infinite interval. The methods used are essentially those
used by Lahmann and Plum [17] for the Orr–Sommerfeld equation. Assumptions
(A1·1–A1·3) are needed to make these methods work.
We start as in Section 3 by writing the Ekman problem as

(Mζ)(x) = λ(Nζ)(x), x ∈ [0,∞),
with ζ = (y, z)T and boundary conditions y(0) = y′(0) = z(0) = 0. We wish to
compute the quadratric forms associated withM and N . Integration by parts using
the boundary condition y(0) = 0 shows that the quadratic form associated with N
satisfies

N (ζ, ζ) =
∫ ∞

0
ζ∗Nζ dx = ‖y′‖2L2 + α2‖y‖2L2 + ‖z‖2L2 − lim

x→∞
y(x)y′(x).

We now establish that limx→∞ y(x)y′(x) = 0. Because y ∈ H2[0,∞), we know that
both y and y′ lie in L2[0,∞), and hence yy′ ∈ L1[0,∞). Moreover,

lim
x→∞

y(x)y′(x) = y(0)y′(0) +
∫ ∞

0
(yy′)′ =

∫ ∞

0
{|y′|2 + yy′′},

and the integral converges because y ∈ H2[0,∞). Thus yy′ has a finite limit at infinity
and lies in L1[0,∞). Necessarily, therefore,

lim
x→∞

y(x)y′(x) = 0,

and we obtain

N (ζ, ζ) =
∫ ∞

0
ζ∗Nζ dx = ‖y′‖2L2 + α2‖y‖2L2 + ‖z‖2L2 . (5·1)

Integration by parts also allows us to show that the quadratic form associated with
M is

M (ζ, ζ) =
∫ ∞

0
ζ∗Mζ dx = ‖y′′‖2L2 + 2α2‖y′‖2L2 + α4‖y‖2L2 + ‖z′‖2L2 + α2‖z‖2L2

+
∫ ∞

0

{
2(y′z + z′y) + iαRV (α2|y|2 + |z|2) + iαRV ′′|y|2 − iαRV y′′y

+ iαRU ′yz} dx. (5·2)
This time, the boundary terms involve the limits

lim
x→∞

y′′′(x)y(x), lim
x→∞

y′′(x)y′(x).

Since y ∈ H4[0,∞), we know that y′′′ ∈ L2[0,∞) and y ∈ L2[0,∞), and so y′′′y ∈
L1[0,∞). Moreover,

lim
x→∞

y′′′(x)y(x) = y′′′(0)y(0) +
∫ ∞

0
(y′′′y)′ =

∫ ∞

0
{y(iv)y + y′′′y′},

and the integral converges because y(iv), y′′′, y′ and y all lie in L2[0,∞). Thus y′′′y
lies in L1[0,∞) and has finite limit at infinity, so necessarily

lim
x→∞

y′′′(x)y(x) = 0.

Other boundary terms can be treated similarly.
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We now bound various terms on the right-hand side of (5·2) in terms of the
quadratic form associated with N . The bounds which we require are as follows:∣∣∣∣αR

∫ ∞

0
V (α2|y|2 + |z|2) dx

∣∣∣∣ � αR‖V ‖L∞N (ζ, ζ);

∣∣∣∣αR

∫ ∞

0
V ′′|y|2 dx

∣∣∣∣ � R‖V ′′‖L∞

α
N (ζ, ζ);

αR

∣∣∣∣
∫ ∞

0
V y′′y dx

∣∣∣∣ = αR

∣∣∣∣
∫ ∞

0
y′(V y)′ dx

∣∣∣∣
= αR

∣∣∣∣
∫ ∞

0
(V ′y′y + V |y′|2) dx

∣∣∣∣
� αR

‖V ′‖L∞

2

(
‖y′‖2L2 + ‖y‖2L2

)
+ αR‖V ‖L∞‖y′‖2L2

� R

{
‖V ′‖L∞

2
(α + 1/α) + α‖V ‖L∞

}
N (ζ, ζ);

αR

∣∣∣∣
∫ ∞

0
U ′yz dx

∣∣∣∣ � R‖U ′‖L∞

2
(α + 1/α)N (ζ, ζ);

and finally∣∣∣∣
∫ ∞

0
(y′z + y′z) dx

∣∣∣∣ =
∣∣∣∣
∫ ∞

0
(y′z − yz′) dx

∣∣∣∣ =
∣∣∣∣2iIm

(∫ ∞

0
y′z

)∣∣∣∣ � N (ζ, ζ).

In these inequalities, we use the shorthand ‖·‖L∞ for ‖·‖L∞[0,∞). Now if λ is an
eigenvalue then

λ = M (ζ, ζ)/N (ζ, ζ),

where ζ = (y, z)T is the associated eigenfunction. Using the above inequalities and
the expression for M (ζ, ζ) in (5·2) we obtain the following result.

Theorem 5·1. Any eigenvalue λ = ν + iµ satisfies

ν � α2 − R

2
(‖U ′‖L∞ + ‖V ′‖L∞)(α + 1/α)− αR‖V ‖L∞ , (5·3)

|η| � 2 + 2αR‖V ‖L∞ +
R

2
(‖U ′‖L∞ + ‖V ′‖L∞)(α + 1/α) +

R

α
‖V ′′‖L∞ . (5·4)

Theorem 5·1 locates the eigenvalues of the Ekman problem on [0,∞) within a semi-
infinite strip. It is easy to check that the essential spectrum found in Section 3 also
lies within this region, which therefore encloses the whole spectrum since the residual
spectrum is empty.
If we consider the Ekman problem on any finite interval [0, X] with boundary

conditions

y(0) = y′(0) = z(0) = 0, y(X) = y′(X) = z(X) = 0, (5·5)

then similar bounds are obtained by precisely the same methods.
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Theorem 5·2. The eigenvalues of the Ekman problem on any finite interval [0, X]

with boundary conditions (5·5) satisfy bounds of the form (5·3), (5·4), in which ‖·‖L∞ is
now to be interpreted as ‖·‖L∞[0,X].

What about the essential spectrum for a problem on [0, X]? Not surprisingly,
the essential spectrum of such a problem is empty. In fact, we now show that the
resolvent is the whole of C minus a set of isolated points.

Theorem 5·3. The spectrum of the Ekman problem on [0, X] with the boundary con-
ditions (5·5) consists of a discrete set of isolated eigenvalues having no finite limit points.
In particular, there are no open sets of eigenvalues and there is no essential spectrum.

Proof. For a differential equation problem on a finite interval the points of the
resolvent are those values of λ for which the characteristic determinant is nonzero.
The characteristic determinant is an entire function of λ; if its zeros had a finite limit
point then the characteristic determinant would be identically zero throughout C.
Every λ ∈ C would then be an eigenvalue of the problem, contradicting the bounds
in Theorem 5·2.

We remark that the positivity of the quadratic form associated with N is very
important for these results. If boundary conditions were chosen so that N had a
non-trivial kernel, and if the flow profiles U and V were then chosen so that an
element y of that kernel also lay in the kernel of M , one would have My = Ny = 0
and hence My = λNy for any λ ∈ C. Thus every λ ∈ C would be an eigenvalue.

6. Open sets of eigenvalues

The possible existence of open sets of eigenvalues will be encountered in our con-
struction of the Titchmarsh–Weyl matrix M (λ). It will also play an important role
in the discussion of spectral inclusion and exactness. In the present section we shall
show, at least for generic Reynolds numbers R, that the Ekman problem does not
have an open set of eigenvalues. We have already shown (Theorem 5·3) that there is
no open set of eigenvalues for the corresponding truncated problem. We begin with
some examples of similar problems which do have open sets of eigenvalues.

Example 4. Consider the problem

w′ = λDw, 0< x <∞,

where w(x) ∈ C
6, λ ∈ C, D = diag (−1,−2,−3, 1, 2, 3), and with boundary condi-

tions

w4(0) = w5(0) = w6(0) = 0.

A value λ is an eigenvalue if there exists a nontrivial solution w(x, λ) = (w1(x, λ),
w2(x, λ), . . . , w6(x, λ))T with components wk(x, λ) ∈ L2[0,∞). The essential spectrum
for this problem is the imaginary axis σess = {λ ∈ C : Re (λ) = 0}. The set of eigen-
values consists of all points in the right half-plane {λ ∈ C : Re (λ)> 0}, and they all
have multiplicity 3. On the other hand, if we change the boundary conditions to

w1(0)− w4(0) = w2(0)− w5(0) = w3(0)− w6(0) = 0,

then there are no eigenvalues.
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Example 5. Consider the corresponding truncated problem

w′ = λDw, 0< x < 1,

with boundary conditions

w1(0) = w2(0) = w3(0) = 0 = w1(1) = w2(1) = w3(1).

Then every λ ∈ C is a triple eigenvalue. On the other hand, if we change the boundary
conditions to

w1(0) = w2(0) = w3(0) = 0 = w4(1) = w5(1) = w6(1),

then there are no eigenvalues.
We will now show that the perturbed Ekman problem does not have an open set

of eigenvalues. Recall that this problem is(
u′

v′

)
= A

(
u
v

)
(6·1)

with boundary conditions

u1(0) = u2(0) = v1(0) = 0, (6·2)

where A = A(λ) is given in (3·2). When A has distinct eigenvalues, it can be diag-
onalized: T−1AT = D, where D = diag (µ1, µ2, . . . , µ6). If λ � σess(M, N ), then no
eigenvalue of A is purely imaginary. We shall always assume that these eigenvalues
are ordered so that

Re (µ1), Re (µ2), Re (µ3)< 0 and Re (µ4), Re (µ5), Re (µ6)> 0.

The column vector tj = (t1j , t2j , . . . , t6j)T of T is an eigenvector of A corresponding
to µj .
Representative eigenvectors of A can be found from the block operator equation

(1·1) by setting y = eµx, z = beµx and solving for b. The result is

tij = pi(µj), (6·3)

where

p1(µ) = µ2 − α2 + λ, p2(µ) = µ(µ2 − α2 + λ),

p3(µ) = µ2(µ2 − α2 + λ), p4(µ) = µ3(µ2 − α2 + λ), (6·4)
p5(µ) = 2µ, p6(µ) = 2µ2.

As in (3·12), let

T0 =


t11 t12 t13

t21 t22 t23
t51 t52 t53


 =




p1(µ1) p1(µ2) p1(µ3)
p2(µ1) p2(µ2) p2(µ3)
p5(µ1) p5(µ2) p5(µ3)


 . (6·5)

Recall (Definition 3·1) that

Ω(M, N ) = C \ (σess(M, N ) � B),

where B is the set of branch points of the characteristic polynomial p(µ;λ); and
Ω(M, N ) has two connected components Ω+(M, N ) and Ω−(M, N ), where Ω+(M, N )
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is the component containing the interval (α2,∞) ⊂ R, and Ω−(M, N ) contains the
interval (−∞, α2).
By Theorem 3·5(3), λ is an eigenvalue for the problem (6·1)–(6·2) if and only if

det (T0) = 0. We must show that det (T0) does not have an open set of zeros. In fact,
we shall show that det (T0) has no zeros at all in Ω(M, N ).

Lemma 6·1.
det (T0) = 2(λ − α2)(µ1 − µ2)(µ1 − µ3)(µ2 − µ3)f (λ), (6·6)

where

f (λ) = α + µ1 + µ2 + µ3, for λ ∈ Ω+(M, N ),

f (λ) = −α + µ1 + µ2 + µ3, for λ ∈ Ω−(M, N ). (6·7)
Proof. From (6·3)–(6·5) and elementary manipulations of determinants, we obtain

det (T0) = −2µ1µ2µ3

∣∣∣∣∣∣
µ21 µ22 µ23
µ1 µ2 µ3
1 1 1

∣∣∣∣∣∣ + 2(λ − α2)

∣∣∣∣∣∣
µ31 µ32 µ33
µ1 µ2 µ3
1 1 1

∣∣∣∣∣∣ .

Furthermore, ∣∣∣∣∣∣
µ31 µ32 µ33
µ1 µ2 µ3
1 1 1

∣∣∣∣∣∣ = (µ1 − µ2)(µ1 − µ3)(µ2 − µ3)(µ1 + µ2 + µ3)

and ∣∣∣∣∣∣
µ21 µ22 µ23
µ1 µ2 µ3
1 1 1

∣∣∣∣∣∣ = (µ1 − µ2)(µ1 − µ3)(µ2 − µ3).

This implies that

det (T0) = 2(µ1 − µ2)(µ1 − µ3)(µ2 − µ3)f (λ),

where

f (λ) = −µ1µ2µ3 + (λ − α2)(µ1 + µ2 + µ3). (6·8)
Now recall that µj (1� j � 6) are zeros of

p(µ) = det (A − µI) = (µ2 − α2 + λ)(µ2 − α2) + 4µ2

= µ6 + (2λ − 3α2)µ4 + (λ2 − 4α2λ + 3α4 + 4)µ2 − α2(λ − α2)2

and µ4 = −µ1, µ5 = −µ2, µ6 = −µ3. This implies that

µ21µ
2
2µ
2
3 = α2(λ − α2)2

and so

µ1µ2µ3 = ±α(λ − α2).

Note that µ1µ2µ3 is a single-valued analytic function in each connected component
of Ω(M, N ). For λ ∈ R, p(µ) has real roots ±µ1, and complex conjugate roots µ2, µ3.
Therefore µ1µ2µ3 ∈ R for λ ∈ R. Since µ1 < 0, it follows that µ1µ2µ3 < 0 for λ ∈
R, λ�α2. Therefore µ1µ2µ3 = −α(λ− α2) for λ ∈ Ω+(M, N ) and µ1µ2µ3 = α(λ− α2)
for λ ∈ Ω−(M, N ). Substituting this into (6·8), we obtain formulas (6·6)–(6·7).
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Theorem 6·1. The perturbed Ekman problem (6·1)–(6·2) does not have any eigenval-
ues in Ω(M, N ).

Proof. We must show that det (T0) does not have any zeros in Ω(M, N ). Equival-
ently, we will show that the function f (λ) in (6·7) has no zeros in Ω(M, N ). From
(6·7) it is clear that f (λ) has no zeros in Ω−(M, N ), since Re (f (λ))< 0 there. We now
consider λ ∈ Ω+(M, N ).
Since the characteristic polynomial

p(µ) = µ6 + (2λ − 3α2)µ4 + (λ2 − 4α2λ + 3α4 + 4)µ2 − α2(λ − α2)2

=
(
µ2 − µ21

)(
µ2 − µ22

)(
µ2 − µ23

)
,

it follows that

µ21 + µ22 + µ23 = 3α
2 − λ

µ21µ
2
2 + µ21µ

2
3 + µ22µ

2
3 = λ2 − 4α2λ + 3α4 + 4,

µ21µ
2
2µ
2
3 = α2(λ − α2)2.

Therefore µ1µ2µ3 = ±α(λ − α2). As we noted in the proof of Lemma 6·1, µ1µ2µ3 =
−α(λ − α2) for λ ∈ Ω+(M, N ). Suppose that f (λ) = 0 for some λ ∈ Ω+(M, N ). Then

µ1 + µ2 + µ3 = −α

and

µ1µ2µ3 = −α(λ − α2),

(µ1µ2 + µ1µ3 + µ2µ3)2 =
(
µ21µ

2
2 + µ21µ

2
3 + µ22µ

2
3

)
+2µ1µ2µ3(µ1 + µ2 + µ3)

= λ2 − 4α2λ + 3α4 + 4 + 2α2(λ − α2)

= (λ − α2)2 + 4.

Therefore

µ1µ2 + µ1µ3 + µ2µ3 = [(λ − α2)2 + 4]1/2,

where z1/2 indicates one of the square roots of z. It now follows that

(µ − µ1)(µ − µ2)(µ − µ3) = µ3 + αµ2 + [(λ − α2)2 + 4]1/2µ + α(λ − α2),

and

(µ + µ1)(µ + µ2)(µ + µ3) = µ3 − αµ2 + [(λ − α2)2 + 4]1/2µ − α(λ − α2).

Consequently

p(µ) = µ6 + (2λ − 3α2)µ4 + (λ2 − 4α2λ + 3α4 + 4)µ2 − α2(λ − α2)2

= (µ − µ1)(µ − µ2)(µ − µ3)(µ + µ1)(µ + µ2)(µ + µ3)

= (µ3 + αµ2 + [(λ − α2)2 + 4]1/2µ + α(λ − α2))
(
µ3 − αµ2

+ [(λ − α2)2 + 4]1/2µ − α(λ − α2)
)

= µ6 + {2[(λ − α2)2 + 4]1/2 − α2}µ4 + (λ2 − 4α2λ + 3α4 + 4)µ2 − α2(λ − α2)2.

Equating the coefficients of µ4, we obtain

2[(λ − α2)2 + 4]1/2 − α2 = 2λ − 3α2,
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which implies that [(λ − α2)2 + 4]1/2 = λ − α2, and (λ − α2)2 + 4 = (λ − α2)2. The
Theorem follows from this contradiction. �

We now consider the unperturbed Ekman problem in its guise as a system of first
order ODEs (2·14)–(2·16). For convenience we restate it here:(

u′

v′

)
= G

(
u
v

)
, 0< x <∞, (6·9)

with boundary conditions

u1(0) = u2(0) = v1(0) = 0, (6·10)

where

G(x, λ) = A(λ) +Q(x),

Q(x) =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

q41 0 q43 0 0 0
0 0 0 0 0 0

q61 0 0 0 q65 0




,

q41 = −iR(α3V (x) + αV ′(x)), q43 = iαRV (x),

q61 = iαRU ′(x), q65 = iαRV (x).

Here, R is the Reynolds number, and A(λ) is given in (3·2) (and is the same matrix
that appears in (6·1)).
If D is a disc contained in Ω(M, N ), and R0 > 0, Theorem 4·1 implies that there

is a 6 × 3 matrix Ybound(x, λ, R) (defined for 0�x <∞, λ ∈ D, 0�R �R0) with the
following properties:

(1) the columns of Ybound span the space of L2-solutions of (6·9);
(2) Ybound is an analytic function of λ ∈ D;

(3) Ybound is an analytic function of R ∈ [0, R0].

Note that property (3) follows from the proof of Theorem 4·1 for the same reason as
(2), namely the contraction map Σ is analytic in R.
Suppose that the columns of Ybound are yi(x, λ, R) = (y1i(x, λ, R), . . . , y6i(x, λ, R))T ,

for 1� i� 3. A value λ ∈ D is an eigenvalue for the Ekman problem if and only if
there exists (c1, c2, c3)� (0, 0, 0) such that c1y1 + c2y2 + c3y3 satisfies the boundary
conditions (6·10), and this is equivalent to

detY0(λ, R) = 0, (6·11)

where

Y0(λ, R) =




y11(0, λ, R) y12(0, λ, R) y13(0, λ, R)
y21(0, λ, R) y22(0, λ, R) y23(0, λ, R)
y51(0, λ, R) y52(0, λ, R) y53(0, λ, R)


 . (6·12)
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Suppose that D1 and D2 are discs in Ω, such that D1 � D2 � �. Let Y01(λ, R)
(resp. Y02(λ, R)) denote Y0(λ, R) in D1 (resp. D2). Then there is a 3 × 3 ana-
lytic matrix C(λ, R) (defined for λ ∈ D1 � D2) such that det C(λ, R) � 0 and
Y02(λ, R) = Y01(λ, R)C(λ, R) for λ ∈ D1 � D2. Thus det Y01(λ, R) = 0 if and only
if det Y02(λ, R) = 0 (for λ ∈ D1 � D2). If det Y01(λ, R) = 0 for all λ ∈ D1 (and some
fixed R), then det Y02(λ, R) = 0 for all λ ∈ D2. By applying this fact to chains of
intersecting discs, we see that if (for some given R) the Ekman problem has an open
set of eigenvalues, then at least one of the connected components of Ω(M, N ) con-
sists entirely of eigenvalues. We can immediately show that this cannot happen in
Ω−(M, N ).

Theorem 6·2. Ω−(M, N ) does not contain an open set of eigenvalues for the Ekman
problem (6·9)–(6·10).

Proof. As noted above, if there is an open set of eigenvalues in Ω−(M, N ), then this
component consists entirely of eigenvalues. But by Theorem 5·1 the eigenvalues are
located in a right half-plane.

Unfortunately, we are unable to prove this for the other component Ω+(M, N ). But
we can show that for generic Reynolds numbers, Ω+(M, N ) does not have an open
set of eigenvalues.

Theorem 6·3. Let ROE be the set of Reynolds numbers {R ∈ R : R � 0} such that the
Ekman problem (6·9)–(6·10) has a (nonempty) open set of eigenvalues.
(1) There exists R0 > 0 such that [0, R0] � ROE = �.
(2) ROE has no accumulation points.

Proof. (1) The case R = 0 corresponds to the perturbed Ekman problem (6·1)–
(6·2). For R = 0, Y0(λ, R) = T0(λ) (which was displayed in (6·5)). By Theorem 6·1
det Y0(λ, 0) = det T0(λ)� 0, for all λ ∈ Ω(M, N ). Let λ0 ∈ Ω+(M, N ). Since Y0(λ, R)
is analytic (and hence continuous) in R, it follows that det Y0(λ0, R)� 0 for small R.
(2) Suppose that there is a sequence Rn ∈ ROE such that limn→∞ Rn = R0.

Then for each Rn, the component Ω+(M, N ) consists entirely of eigenvalues. Let
λ0 ∈ Ω+(M, N ); then det T0(λ0)� 0. The function f (R) = det Y0(λ0, R) is an analytic
function whose zeros accumulate. Therefore f (R) ≡ 0. But this contradicts our
assumption that f (0) = det T0(λ0)� 0.

7. The Titchmarsh–Weyl coefficients

We now know that Ω−(M, N ) contains no open set of eigenvalues for the Ekman
problem, but theremay be a sparse setROE of Reynolds numbers for which Ω+(M, N )
consists entirely of eigenvalues. In this section we shall assume that the Reynolds
number does not belong to this sparse set, which may exist.

(A7·1) We assume that the Reynolds number R � ROE. Consequently, the Ekman
problem does not have a (nonempty) open set of eigenvalues.

Since the eigenvalues are the zeros of a locally analytic function (the characteristic
determinant (6·11)–(6·12)), assumption (A7·1) implies that the eigenvalues have no
accumulation point in Ω(M, N ).
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In Theorem 4·1 we proved that equation (4·1) has a 6×3 solutionmatrix Ybound(x, λ)

in L2[0,∞) with respect to x, and locally analytic in λ. In general, the analytic
continuations of this matrix around branch points do not coincide with it. Thus
Ybound(·, λ) is really a multivalued function. We now consider the representation of
this solution matrix in terms of solutions with Dirichlet or Neumann initial values.
These solutions are single-valued entire functions. In order to agree with the accepted
notation for self-adjoint Hamiltonian systems (see Hinton and Shaw [16]) we now
let Φ and Θ denote the 6 × 3 solution matrices of (4·1) uniquely determined by the
initial conditions

Φ(0, λ) =




0 0 0
0 0 0
1 0 0
0 1 0
0 0 0
0 0 1




, Θ(0, λ) =




1 0 0
0 1 0
0 0 0
0 0 0
0 0 1
0 0 0




. (7·1)

The columns of Φ span the set of all solutions of (4·1) which satisfy the boundary
conditions at x = 0, while the columns of Θ span the remainder of the solution space.
Thus the L2 solution matrix Ybound of Theorem 4·1 must be a linear combination of
Θ and Φ:

Ybound(x, λ) = Θ(x, λ)C1(λ) + Φ(x, λ)C2(λ), (7·2)

for some 3 × 3 matrices C1 and C2. Now λ is an eigenvalue of the Ekman problem
if and only if it has an associated eigenfunction. In order to lie in L2[0,∞) this
eigenfunction must be a linear combination of the columns of Ybound(x, λ); in order to
satisfy the boundary conditions at x = 0, it must be a linear combination of columns
of Φ. Thus λ is an eigenvalue if and only if there exists a linear combination of
columns of Ybound(x, λ) which is a linear combination of columns of Φ(x, λ). Since Θ
is a full rank matrix this will happen if and only if C1(λ) has a non-trivial null space,
proving the following:

Lemma 7·1. λ is an eigenvalue of the Ekman problem if and only if det (C1(λ)) = 0.

When λ is not an eigenvalue, then, C1(λ) will be invertible, and so the matrix

Ψ(x, λ) :=Ybound(x, λ)C1(λ)−1 = Θ(x, λ) + Φ(x, λ)M (λ), M (λ) :=C2(λ)C1(λ)−1, (7·3)

will be a well-defined solution matrix of (4·1) whose columns span the set of all L2

solutions of (4·1).
Equation (7·2) can be written in the form

Ybound(·, λ) = (Θ(·, λ) Φ(·, λ))
(

C1(λ)

C2(λ)

)
. (7·4)

The columns of (Θ(·, λ) Φ(·, λ)) are linearly independent, and so (7·4) can be solved
for C1(λ) and C2(λ) by Cramer’s rule. Since Ybound(·, λ) is locally analytic from the
results in Section 4, and Θ(·, λ), Φ(·, λ) are entire functions, it follows from the local
analyticity of Ybound that C1(λ) and C2(λ) are locally analytic. Thus the matrixM (λ)
appearing in (7·3) is locally analytic wherever C1(λ) is invertible. By assumption
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(A7·1), det (C1(λ)) cannot be zero on an open set. ThereforeM (λ) is meromorphic on
any disc D ⊂ Ω(M, N ). In fact, M (λ) and Ψ(·, λ) are single-valued.

Theorem 7·1. M (λ) and Ψ(·, λ) are well-defined, single-valued meromorphic matrix
functions on Ω(M, N ).

Proof. Suppose that Ybound(x, λ) and Ŷbound(x, λ) are 6×3 analytic solution matrices
defined on some disc D ⊂ Ω(M, N ), such that the columns of each matrix span the
space of L2-solutions of (4·1). Then there is a 3 × 3 invertible, analytic matrix B(λ)
such that Ŷbound(x, λ) = Ybound(x, λ)B(λ). We now have:

Ybound(x, λ) = Θ(x, λ)C1(λ) + Φ(x, λ)C2(λ),

Ŷbound(x, λ) = Θ(x, λ)Ĉ1(λ) + Φ(x, λ)Ĉ2(λ)

and

Ŷbound(x, λ) = Ybound(x, λ)B(λ) = Θ(x, λ)C1(λ)B(λ) + Φ(x, λ)C2(λ)B(λ).

Therefore Ĉ1 = C1B and Ĉ2 = C2B, so that

Ψ̂ = ŶboundĈ
−1
1 = YboundB(C1B)−1 = YboundC

−1
1 = Ψ

and

M̂ = Ĉ2Ĉ1−1 = C2B(C1B)−1 = C2C
−1
1 = M.

This proves the Theorem.

Definition 7·1. We call the matrix M (λ) appearing in (7·3) the Titchmarsh–Weyl
matrix for the system (4·1).

There is a well developed theory of Titchmarsh–Weyl matrices for selfadjoint
Hamiltonian systems: see [16]. In particular it is known that M (λ) is analytic in
the whole of C\R and that it has a pole at any isolated eigenvalue, with an essential
singularity at any point of the essential spectrum. For non-selfadjoint systems none
of this theory exists, in general: we rely heavily on the Levinson asymptotics, and
in particular on Theorem 4·1, to guarantee existence and analyticity of M (λ) here.
However the following remains true.

Theorem 7·2. A point µ ∈ Ω(M, N ) is an eigenvalue of the Ekman problem if and
only if µ is a pole of M (λ).

Proof. Suppose that λ = µ is an eigenvalue of the problem. Then the matrix C1(λ)
is rank deficient at λ = µ. This means that its determinant has a zero at µ. If this zero
were not of finite multiplicity then, since det C1(λ) is analytic at µ, det C1(λ) would
be identically zero, contradicting assumption (A7·1). Thus det C1(λ) has a zero of
finite multiplicity at µ, and soM (λ) has (at worst) a pole of finite multiplicity at µ. We
now show that this pole is non-trivial. Choose a vector w such that Ybound(x, µ)w is an
eigenfunction belonging to the eigenvalue µ, and observe that since this eigenfunction
satisfies the boundary conditions at x = 0,

Ybound(x, µ)w = Φ(x, µ)C2(µ)w; (7·5)

in particular, this means thatC2(µ)w � 0 andC1(µ)w = 0. This means thatw � 0 and
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C1(µ)w = 0. Define v(λ) = C1(λ)w so that v(µ) = 0; since µ is an isolated eigenvalue
of the problem, v(λ)� 0 for λ in a punctured neighbourhood of µ. Now observe that

C2(λ)w = M (λ)v(λ).

Since C2(µ)w � 0 and v(µ) = 0 it follows that M has a non-trivial pole at µ.
Now suppose that M (λ) has a pole at λ = µ. Choose a vector v(λ) (not necessarily

as an analytic function of λ) such that w(λ) = M (λ)v(λ) has the property ‖w(λ)‖ = 1
(λ�µ) and such that limλ→µ v(λ) = 0. Observe that

w(λ) = M (λ)v(λ) = C2(λ)z(λ), where z(λ) :=C1(λ)−1v(λ).

Observe also that

Ybound(x, λ)z(λ) = Θ(x, λ)v(λ) + Φ(x, λ)w(λ). (7·6)
Since the vectorw(λ) lies on the unit sphere, by compactness we can choose a sequence
(λ(p))p∈N with limit µ such that wµ := lim p→∞ w(λ(p)) exists and is of unit length. We
already know that limλ→µ v(λ) = 0. Hence from (7·6), as the matrix Ybound(x, µ) is of
full rank, the limit zµ := lim p→∞ z(λ(p)) exists and is non-zero. Moreover,

Ybound(x, µ)zµ = Φ(x, µ)wµ.

Thus µ is an eigenvalue with eigenfunction Ybound(·, µ)zµ.

Consider now a problem for (4·1) posed on an interval [0, X], with some regular
boundary conditions at x = X which do not depend on λ. Writing a solution vector
Y = (Y1, . . . , Y6)T , the boundary conditions might be, for example, the same as the
boundary conditions imposed at x = 0,

Y1(X) = Y2(X) = Y5(X) = 0. (7·7)
There will exist a 6 × 3 solution matrix YX(x, λ) whose columns span the space of
solutions satisfying the boundary condition at x = X. This time, standard theory
of regular initial value problems guarantees that YX can be chosen as an entire
function of λ. Just as we obtained a matrix Ψ given in (7·3) from the matrix Ybound
of L2 solutions in the infinite interval case, so now it will be possible to obtain from
YX(x, λ) a matrix ΨX(x, λ) of the form

ΨX(x, λ) = Θ(x, λ) + Φ(x, λ)MX(λ) (7·8)
whose columns will span the space of all solutions satisfying the boundary conditions
at x = X, provided λ is not an eigenvalue of the problem on [0, X]. We shall call
the matrix MX(λ) the Titchmarsh–Weyl matrix for the problem on the truncated
interval [0, X]. The proof of the following result is very similar to the proof of
Theorem 7·2.
Theorem 7·3. A point µ ∈ C is an eigenvalue of the finite interval problem over

[0, X] if and only if µ is a pole of MX(λ).

Note that Theorem 5·3 says that the eigenvalues of the truncated problem have
no accumulation points in C. Thus MX(λ) is a meromorphic matrix function on C.
The obvious question is whether or not we have

lim
X→∞

MX(λ) = M (λ),
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at least for those λ where M (λ) is analytic. To examine this question we proceed as
follows.
Firstly, assume that the boundary condition at x = X is indeed (7·7). This means

that ΨX(X, λ) has the form

ΨX(X, λ) =




0 0 0
0 0 0
* * *
* * *
0 0 0
* * *




.

Introduce the 6× 6 permutation matrix P35 given by

P35 = matrix obtained by swapping rows 3 and 5 of the identity. (7·9)

(For different boundary conditions at x = X, a different matrix from P35 will be
required, but the arguments below are otherwise unchanged.) Thus P35ΨX(X, λ) has
the form

P35ΨX(X, λ) =




0 0 0
0 0 0
0 0 0
* * *
* * *
* * *




,

in which the lower 3× 3 block is invertible. However, we also know from (7·8) that

P35ΨX(X, λ) = P35Θ(X, λ) + P35Φ(X, λ)MX(λ).

Taking the top 3×3 blocks on both sides of this equation yields zero on the left hand
side and thus gives

(P35Φ(X, λ))TOPMX(λ) = −(P35Θ(X, λ))TOP, (7·10)

in which the subscript ‘TOP’ attached to a 6× 3 matrix denotes the top 3× 3 block
of that matrix.

Lemma 7·2. Suppose that λ0 ∈ Ω(M, N ) is not an eigenvalue of the Ekman problem.
Then there exists a discD ⊂ Ω(M, N ) centered at λ0 andX0 > 0 such that (P35Φ(x, λ))TOP
is invertible for all λ ∈ D and x� X0.

Proof. First assume that the real parts of µj(λ0) are distinct, and the µj are ordered
so that

Re (µ4(λ0))<Re (µ5(λ0))<Re (µ6(λ0)).

Then λ0 has a neighbourhood D ⊂ Ω(M, N ) which contains no eigenvalues and such
that

Re (µ4(λ))<Re (µ5(λ))<Re (µ6(λ)) for λ ∈ D.

Let Yunbound be the 6 × 3 full rank solution matrix whose columns are the solutions
whose existence is guaranteed by Theorem 4·2. We can express Φ(x, λ) in the form

Φ(x, λ) = Ybound(x, λ)B1(λ) + Yunbound(x, λ)B2(λ),
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for some 3 × 3 locally analytic matrices B1(λ) and B2(λ). If B2(λ) has a non-trivial
null-space then λ is clearly an eigenvalue. Thus when λ is not an eigenvalue, B2(λ)
is invertible. The asymptotics of Theorems 4·1 and 4·2 then make it clear that for
large x,

Φ(x, λ) ∼ Yunbound(x, λ)B2(λ). (7·11)

It now follows from Theorem 4·2 that

(P35Φ(x, λ))TOP ∼ (P35Yunbound)TOPB2(λ) ∼


v14 v15 v16

v24 v25 v26
v54 v55 v56


 B2(λ)

=


t14 t15 t16

t24 t25 t26
t54 t55 t56


 B2(λ) =:T1B2(λ),

uniformly for λ ∈ D as x → ∞. Here, vj = (v1j , v2j , · · · , v6j)T , 4� j � 6 are the
vectors in Theorem 4·2, and the elements tij in the matrices T1, T0 and T are given
in (6·3).
By (6·3)–(6·4) we see that det (T1) is obtained from det (T0) by replacing (µ1, µ2, µ3)

by (µ4, µ5, µ6). Thus, by Lemma 6·1

det (T1) = 2(λ − α2)(µ4 − µ5)(µ4 − µ6)(µ5 − µ6)g(λ),

where

g(λ) = α + µ4 + µ5 + µ6 = −(−α + µ1 + µ2 + µ3) for λ ∈ Ω+(M, N ), (7·12)
g(λ) = −α + µ4 + µ5 + µ6 = −(α + µ1 + µ2 + µ3) for λ ∈ Ω−(M, N ), (7·13)

g(λ) has no zeros in Ω+(M, N ). since Re (g(λ))> 0 there. By following the proof of
Theorem 6·1 we find that (7·13) leads to one possible zero in Ω−(M, N ), namely
λ = α2 + 4α−2, but this lies in Ω+(M, N ). Therefore det (T1(λ))� 0 for λ ∈ Ω(M, N ).
This proves the Lemma in case the real parts of the µj(λ0) are distinct.
Let νj(λ0) = Re (µj(λ0)), and suppose, for example, that ν4(λ0) = ν5(λ0)< ν6(λ0).

Then let D be a neighbourhood of λ0 containing no eigenvalues, and such that
ν4(λ)< ν6(λ) and ν5(λ)< ν6(λ). Let D1 = {λ ∈ D : ν4(λ)� ν5(λ)}, and D2 = {λ ∈
D : ν4(λ)� ν5(λ)}. Apply Theorem 4·2 separately to D1 and D2. If ν4(λ0) = ν5(λ0) =
ν6(λ0), then choose a neighbourhood D of λ0 containing no eigenvalues, and divide
it into six subsets, corresponding to the six order relations among ν1, ν2 and ν3.
Theorem 4·2 can be applied to each of these subsets.

Now (for sufficiently large X) we can solve for MX(λ) in (7·10):

MX(λ) = −(P35Φ(X, λ))−1TOP(P35Θ(X, λ))TOP. (7·14)

The expression (7·14) is valid whenever λ is not an eigenvalue of the problem on the
finite interval [0, X]. Next, we introduce M (λ) by using (7·3) in the form

Θ(X, λ) = Ψ(X, λ)− Φ(X, λ)M (λ).

Substituting this expression for Θ(X, λ) into (7·14) yields

MX(λ) = M (λ)− (P35Φ(X, λ))−1TOP(P35Ψ(X, λ))TOP. (7·15)
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Lemma 7·3. If λ0 ∈ Ω(M, N ) is not a pole of M (λ), then there is a neighbourhood D
of λ0 and X0 > 0 such that MX(λ) has no pole in D for X > X0.

Proof. By Theorem 7·2, λ0 is not an eigenvalue of the Ekman problem. By
Lemma 7·2 there is a neighbourhood D of λ0 and X0 > 0 such that (P35Φ(x, λ))TOP
is invertible for all λ ∈ D and x� X0. We may suppose that D contains no poles of
M (λ). Equation (7·15) is valid at all points λ ∈ D0 where MX(λ) does not have a
pole. Since the right-hand side of (7·15) is analytic in D, MX(λ) does not have any
poles there.

Lemma 7·4. Suppose that λ0 ∈ Ω(M, N ) is not a pole of M (λ). Then there exists a
disc D ⊂ Ω(M, N ) centered at λ0 such that

lim
X→∞

MX(λ) = M (λ)

uniformly for λ ∈ D.

Proof. Theorem 7·2 implies that λ0 is not an eigenvalue of the Ekman problem.
Using the same strategy as in the proof of Lemma 7·2, we first consider the case
where

Re (µ4(λ0)<Re (µ5(λ0)<Re (µ6(λ0).

Substituting (7·11) into (7·15), we obtain

MX(λ)− M (λ) ∼ −
(
P35Yunbound(X, λ)B2)−1TOP(P35Ψ(X, λ)

)
TOP

. (7·16)

The right-hand side of (7·16) tends to zero uniformly in D as X → ∞. This proves
the Theorem in case the µj(λ0) have distinct real parts. If any of the real parts are
equal, we subdivide D into two or six subsets, as in the proof of Lemma 7·2. The
convergence is uniform on each of these (finitely many) subsets, and therefore it is
uniform on D.

Theorem 7·4. Let K ⊂ Ω(M, N ) be a compact set containing no poles ofM (λ). Then

lim
X→∞

MX(λ) = M (λ) (7·17)

uniformly for λ ∈ K.

Proof. By Lemma 7·4 each point µ ∈ K has a neigborhood Dµ such that
limX→∞ MX(λ) = M (λ) uniformly for λ ∈ Dµ. Since K is compact, it is covered
by finitely many of these neighbourhoods, and so the convergence is uniform in K.

8. Spectral inclusion and spectral exactness

Assumption (A7·1) will continue to be in force in this section. Thus the Ekman
problem does not have an open set of eigenvalues. Consequently, the Titchmarsh–
Weyl matrix M (λ) is meromorphic on Ω(M, N ), while MX(λ) is meromorphic on C.
We now examine the effects on the spectrum of replacing the infinite interval [0,∞)

by a finite interval [0, X]. To this end it is convenient to introduce some notation
and terminology concerning eigenvalues.

Definition 8·1.LetL∞(λ) denote the operatorL = M−λN on [0,∞) with boundary
conditions at x = 0; and let LX(λ) denote the operator L on the interval [0, X]
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with boundary conditions at x = 0, X. We shall say that λ is an eigenvalue for
(M, N ;∞) (resp. (M, N ;X)) if L∞(λ) (resp. LX(λ)) is not injective. Let σp(M, N ;∞)
(resp. σp(M, N ;X)) denote the set of eigenvalues for (M, N ;∞) (resp. (M, N ;X)) in
Ω(M, N ) (resp. C).
Assumption (A7·1) implies that σp(M, N,∞) has no accumulation points in

Ω(M, N ), while σp(M, N, X) has no accumulation points in C.

Definition 8·2. Let {Xn : n ∈ N} be a sequence in (0,∞) such that limn→∞ Xn =∞.
(i) The sequence {(M, N ;Xn) : n ∈ N} is spectrally inclusive for (M, N ;∞) if
for every λ0 ∈ σp(M, N ;∞) there is a sequence {λn : n ∈ N} such that
λn ∈ σp(M, N ;Xn) and limn→∞ λn = λ0.

(ii) The sequence {(M, N ;Xn) : n ∈ N} is spectrally exact for (M, N ;∞) if it is
spectrally inclusive and if whenever {λn : n ∈ N} is a sequence such that
λn ∈ σp(M, N ;Xn) and limn→∞ λn = λ0 ∈ Ω(M, N ), then λ0 ∈ σp(M, N ;∞).

Remark 4. The above definition is a modification of the standard definition, which
includes the entire spectrum, not just the point spectrum. (cf. [5, 6, 23, 25, 26].)

Theorem 8·1. For any sequence {Xn : n ∈ N} in (0,∞) such that limn→∞ Xn =∞,
{(M, N ;Xn) : n ∈ N} is spectrally exact for (M, N ;∞).

Proof. We first show that {(M, N ;Xn) : n ∈ N} is spectrally inclusive for
(M, N ;∞). Let λ0 ∈ σp(M, N ;∞). Then M (λ) = (mij(λ)) has a pole at λ0. There-
fore some coefficient mij(λ) has a pole of order k � 1 at λ0. Let ε > 0 be small enough
so that mij(λ) is analytic in the punctured disc Uε = {λ ∈ C : 0< |λ − λ0|� ε} and
has no zeros there. Then, by the argument principle,∫

Cε

m′
ij(λ)

mij(λ)
dλ = −k,

whereCε = {λ : |λ−λ0| = ε}. LetMX(λ) = (mij(λ;X)). By Theorem 7·4,mij(λ;Xn)→
mij(λ) uniformly on the circle Cε. Therefore, for sufficiently large n,∫

Cε

m′
ij(λ;X)

mij(λ;X)
dλ = −k,

and so there is an eigenvalue λn for (M, N ;X) in Uε. This shows that the sequence is
spectrally inclusive.
The spectral exactness is an immediate consequence of Lemma 7·3.

9. Compound matrices and shooting

9·1. Transformation to compound matrices
We have already seen in Section 2 that there is a class of block operator problems

which can be reduced to systems of ordinary differential equations with (usually)
λ-rational coefficients. In the case of the Ekman problem the system is λ-linear.
The Ekman problem involves first-order derivatives and so it is not possible to

reduce it to a system of the form Y ′′ = A(x, λ)Y for which, as we showed in [14], a
particularly efficient numerical approach is available. Fortunately it can be reduced
to a system of the form Y ′ = A(x, λ)Y in which A is only 6 × 6, as we showed in
Section 2. Thus the use of compound matrices is still feasible.
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The compound matrix method can be traced back at least as far as the 1966
paper of Gilbert and Backus [13] and has been developed by a number of authors
including Davies [8] and Ng and Reid [22]. For a recent description and analysis of
the compound matrix method in terms of exterior algebras see Allen and Bridges
[3]. In this very short section, included for completeness, we describe the compound
matrix system which arises for the Ekman problem. The numerical results which
follow from using this formulation are presented in Section 10.
Let Ya be a ‘minimal fundamental’ matrix spanning the space of all solutions of

Y ′ = A(x, λ)Y which satisfy the boundary conditions at (say) x = a. Since A is
6× 6 and since there are 3 boundary conditions at x = a, Ya will be a 6× 3 matrix.
We partition Ya as Ya = (

U
V
). The fundamental matrix variable z is a vector-valued

function of (x, λ) with values in C
20. The order of its entries is arbitrary, but we chose

the ordering

z = (z1, z2, φ11, φ12, φ13, φ21, φ22, φ23, φ31, φ32, φ33,ψ11,ψ12,ψ13,ψ21,ψ22,ψ23,ψ31,ψ32,ψ33)T

(9·1)
in which

φij = the determinant obtained by replacing row j in U by row i in V , (9·2)
ψij = the determinant obtained by replacing row j in V by row i in U . (9·3)

For example, in an obvious notation,

φ12 =

∣∣∣∣∣∣
u11 u12 u13
v11 v12 v13
u31 u32 u33

∣∣∣∣∣∣,
z1 = det U, z2 = det V.

The compound matrix equations can be derived by a number of different procedures;
the authors used the systematic procedure in [3]. The resulting differential equations
are listed here for completeness. We denote the 20 components of z by z1, . . . , z20.

z′
1 = z5, z′

2 = a41z12 + a43z18 + a61z14 + 2z17
z′
3 = a41z1 − 2z9, z′

4 = −z3 − 2z10,
z′
5 = −z4 + a43z1 − 2z11, z′

6 = z9 + z17,
z′
7 = −z6 + z10 − z14, z′

8 = −z7 + z11,
z′
9 = a61z1 + a65z6 − z16, z′

10 = 2z1 − z9 + a65z7 + z13,

z′
11 = −z10 + a65z8, z′

12 = z15 − 2z8,
z′
13 = a43z10 + a61z14 + z16 + 2z17, z′

14 = −a43z7 + 2z12 − z13 + z17,
z′
15 = a61z8 + z18, z′

16 = −a61z5 − a43z9 + a41z11 − a65z17 + z19,
z′
17 = a43z6 − a41z8 + 2z15 − z16 + z20, z′

18 = z2 + 2z6 − a61z7
z′
19 = −2z3 + a61z4 − a41z10 − a65z20, z′

20 = a41z7 + 2z13 − z19.

(9·4)

9·2. Initial conditions and shooting
In addition to transforming the block operator matrix into a system of differential

equations, thence into the compound matrix system, one must also transform the
boundary conditions associated with the block operator problem into initial con-
ditions for shooting with the compound matrix method. The boundary conditions,
which, in the original Ekman block operator form, are

y(a) = y′(a) = z(a) = 0,
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transform firstly to the condition that the 6×3 matrix solution Ya of the 6×6 system
Y ′ = A(x, λ)Y , has the form

Ya(0, λ) =




0 0 0
0 0 0
1 0 0
0 1 0
0 0 0
0 0 1




up to post-multiplication by an invertible 6 × 6 matrix which we may choose to be
the identity. It is now clear from the definitions of the φij and ψij in (9·2) and (9·3)
that only ψ32 = z19 is nonzero at x = a. The precise non-zero value which we assign
to z19(a) is unimportant, so the initial condition we use for forward shooting with the
compound matrix system is

zj(a) =
{
0, j � 19,
1, j = 19.

(9·5)

Similar considerations hold for backward shooting. Following the results of
Section 8 we can assume that the singular problem on [a,∞) has been replaced
by a regular one on [a, b] for some b > a. There will be regular boundary conditions
at x = b, which will transform into boundary conditions on the solutions of the
6 × 6 system Y ′ = A(x, λ)Y . There will be a 6 × 3 matrix solution Yb of the system
Y ′ = A(x, λ)Y whose columns span the space of solutions of this system satisfying
the boundary condition at x = b; and, finally, a compound matrix system associated
with Yb, whose differential equation is precisely (9·4) but whose initial condition is
specified at x = b rather than at x = a.
In order to determine whether or not a given λ ∈ C is an eigenvalue of the regu-

larized problem over [a, b] one must determine whether or not there exist nontrivial
vectors c and d such that Ya(x, λ)c = Yb(x, λ)d for one (and hence all) x ∈ [a, b].
The existence of such vectors guarantees the existence of a nontrivial solution of
Y ′ = A(x, λ)Y which satisfies the boundary conditions both at a and at b. The
existence of such c and d is equivalent to the requirement that

det (Ya(x, λ) Yb(x, λ)) ≡ 0. (9·6)

Let z(a) denote the solution of (9·4) subject to the boundary condition (9·5) and
let z(b) denote the solution subject to the corresponding condition at x = b. The
determinant on the left-hand side of (9·6) can be expressed in terms of z(a)(x) and
z(b)(x) by Laplace expansion. It turns out that

det (Ya(x, λ)Yb(x, λ)) = z(a)1 z(b)2 − z(b)1 z(a)2 + z(a)18 z(b)5 − z(b)18 z
(a)
5 + z(a)19 z(b)8 − z(b)19 z

(a)
8 + z(a)20 z(b)11

− z(b)20 z
(a)
11 + z(a)15 z(b)4 − z(b)15 z

(a)
4 + z(a)16 z(b)7 − z(b)16 z

(a)
7 + z(a)17 z(b)10 − z(b)17 z

(a)
10

+ z(a)12 z(b)3 − z(b)12 z
(a)
3 + z(a)14 z(b)9 − z(b)14 z

(a)
9 + z(a)13 z(b)6 − z(b)13 z

(a)
6 . (9·7)

Thus if we integrate the differential equations for the compound matrix variables z(a)

and z(b) from their known initial values at a and at b respectively, we can compute
the function det (Ya(x, λ) Yb(x, λ)) for any fixed x ∈ [a, b]. The zeros of this function
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in the λ plane are the eigenvalues and can be located using any reliable process for
finding the zeros of an analytic function.
In practice, certain implementational precautions are needed. The value of

det (Ya(x, λ) Yb(x, λ)) can be large (we encountered values of the order of 10170 during
numerical experiments). A procedure for dealing with this problem is described in
[14]: instead of computing det (Ya(x, λ) Yb(x, λ)) one must compute Γ ∈ R and ω ∈ C,
|ω| ≈ 1, such that

det (Ya(x, λ) Yb(x, λ)) = exp(Γ)ω.

10. Examples

Numerics on the Ekman boundary layer problem have usually been executed
using simple finite difference schemes [20] which give satisfactory results on regular
problems where only modest precision is required. In this section we compare results
from the compound matrix method described in Section 9 with results obtained by
Lilly [20] on a simple regular problem, then pass to a singular problem for which
the results on spectral inclusion and spectral exactness in Section 8 are important.
In particular, we examine how well the essential spectrum of a singular problem is
approximated in practice by eigenvalues of a regular problem.

10·1. Example 1: approximation of eigenvalues in the left half-plane
We have already seen in Section 3 that the essential spectrum of the Ekman prob-

lem lies entirely in the right half-plane. For linear stability analysis the important
question is whether or not there are any eigenvalues in the left half-plane.
Rather than reproduce all the results of Lilly [20] we consider just one example

from his paper: the classical problem of determining the critical Reynolds number.
Figure 10 in [20, p. 486] shows, for the flow profiles

U (x) = cos ε− exp(−x) cos (x + ε), V (x) = −sin ε+ exp(−x) sin (x + ε), x ∈ [0,∞),
(10·1)

the dependence of the eigenvalues on ε and upon the Reynolds number R for α = 0.5.
In particular, this figure indicates that there should be no eigenvalues in the left half-
plane forR < Rcrit, where it appears thatRcrit ≈ 120. We repeated the computations
of Lilly to obtain the neutral curve shown in Figure 1. The critical Reynolds number
we obtained was approximately 114. Considering that we were using a 6th order
method where Lilly used order 4, that we used a truncated interval [0, 50] where
he used intervals of between [0, 17] and [0, 35], and that our method had automatic
stepsize control with a tolerance of 10−3 where Lilly used fixed stepsize with at most
35 steps, the agreement is remarkably good. To make it easier for others to reproduce
these results we quote in Table 1 the numerical data behind the plot in Figure 1.

10·2. Example 2: approximation of the essential spectrum
We consider the Ekman boundary layer problem on [0,∞). As described in

Section 3, the essential spectrum of this problem consists of the curve given para-
metrically by

λ(t) = t2 + α2 +
2it√

t2 + α2
, t ∈ R,
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Table 1. Imaginary parts of eigenvalues for (10·1) for various parameter values.
Real parts are all approximately zero

ε R Im (λ) ε R Im (λ)

0.61 168.7 −18.357 −0.01 117.7 12.291
0.60 166.0 −17.631 −0.05 120.2 14.478
0.55 154.1 −14.273 −0.10 124.0 17.449
0.50 144.2 −11.271 −0.15 128.0 20.639
0.45 136.2 −8.566 −0.20 130.9 23.829
0.40 129.6 −6.074 −0.23 131.6 25.606
0.35 124.3 −3.753 −0.25 131.5 26.687
0.30 120.3 −1.548 −0.27 130.9 27.660
0.25 117.3 0.586 −0.27 130.9 27.660
0.20 115.2 2.688 −0.30 129.7 29.014
0.15 114.2 4.808 −0.32 129.0 29.908
0.10 114.2 6.993 −0.33 128.8 30.380
0.05 115.2 9.296 −0.34 129.0 30.937
0.01 116.7 11.257 −0.35 129.1 31.470

−0.37 130.3 32.773
−0.40 134.6 35.379
−0.42 139.0 37.570
−0.50 161.7 48.514
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Fig. 1. Neutral curve for Ekman problem with α = 0.5. At the points on this curve, the leftmost
eigenvalue of the Ekman problem lies on the imaginary axis in the complex plane.

provided the flow profiles U and V tend to zero sufficiently rapidly at infinity. If
V approaches some other constant value at infinity then the essential spectrum is
shifted in the imaginary direction.
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Fig. 2. Approximation of the essential spectrum by a regular problems on [0, 10] (plus signs) and
[0, 20] (circles), here α = 0.4 and U ≡ 0 ≡ V .
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Fig. 3. Approximation of the essential spectrum by a regular problems. The lower branch is
shown, rather than the upper branch which is shown in Fig. 2.

We considered first the case in which U ≡ 0 ≡ V , with α = 0.4. We replaced
the singular problem by two regular ones, one posed on the interval [0, 10] and the
other posed on [0, 20]. The results are shown in Figure 2, where the continuous
curve is a section of the exact essential spectrum, the ‘+’ signs denote eigenvalues
for the problem on [0, 10] and the circles denote eigenvalues for the problem posed
over [0, 20]. The longer interval has, as one would expect, more eigenvalues, and
one observes by inspection of Figure 2 that they yield better approximations to
the essential spectrum. Note that there are no spurious eigenvalues due to interval
truncation in the region of the complex plane shown in Figure 2.
Secondly, we considered the problem with

U (x) = cos (ε)− exp(−x) cos (x + ε), V (x) = −sin (ε) + exp(−x) sin (x + ε),

with α = 0.4, ε = 0.27 and R = 10. We compared the results for a problem posed
over x ∈ [0, 30] with problems posed over x ∈ [0, 40] and x ∈ [20, 50], using the
artificial boundary conditions y(X) = y′(X) = y′′(X) = 0 and z(X) = 0, where
X = 30, x = 40 or X = 60 as appropriate. From the results of Section 8 we know
that these will allow approximation of the spectrum. The results in Figure 3 show,
however, that such naive boundary conditions may result in quite slow convergence
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of approximations to the spectrum. To get better results one must use boundary
conditions based on the easily-computed asymptotics of the solutions y and z at
infinity.

11. Concluding remarks

In this paper we have shown that simple arguments based on linear algebra may be
used to reduce quite general block-operator eigenproblems to systems of differential
equations with λ-rational coeffiecients. We have also shown that for the case of
the Ekman problem on a half line with flow profiles in L1[0,∞), the location of the
essential spectrum can be obtained analytically in the form of a parametrized smooth
curve. Moreover, for problems which can be reduced to systems of ODEs having some
of the same qualitative properties as the system obtained from the Ekman problem,
results on spectral inclusion and spectral exactness for regular approximations to
the original problem can be obtained in spite of the fact that the problem is non-
selfadjoint. Our approach to these results follows the Levinson asymptotics described
in Eastham [10] and the approach to Sims Case 1 problems in [7] rather than the
more classical approach of, e.g., Markowich [21] (which, although valid here, would
not easily generalize to more complicated problems). Numerical results indicate that
while the results on spectral inclusion guarantee the existence of approximations to
spectral points, the convergence may be quite slow with a naı̈ve choice of boundary
conditions.
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