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Abstract: Traditionally, cyber risk assessment considers system-level risk separately from individual
component-level risk, i.e., devices, data, people. This separation prevents effective impact assessment
where attack intelligence for a specific device can be mapped to its impact on the entire system,
leading to cascading failures. Furthermore, risk assessments typically follow a failure or attack
perspective, focusing on potential problems, which means they need to be updated as attacks evolve.
This approach does not scale to modern digital ecosystems. In this paper, we present a Data Science
approach, which involves using machine learning algorithms and statistical models to analyse and
predict the impact of cyber attacks. Specifically, this approach integrates automated attack detection
on specific devices with a systems view of risk. By mapping operational goals in a top-down manner,
we transform attack intelligence on individual components into system success probabilities.

Keywords: cyber risk; machine learning; statistical modelling; risk management; industrial control
systems

1. Introduction

Industrial Control Systems (ICS) sit at the heart of many Critical National Infrastruc-
ture (CNI) facilities, such as transportation, water, and energy. Significant numbers of
devices within ICS systems are connected to the Internet and are, therefore, vulnerable to
cyber attack. Attacks such as data leakage, spoofing, denial of service (DoS/DDoS), energy
bleeding, insecure gateways, etc., can cause system blackouts and other indiscriminate
and long-lasting damage. The effects of these security issues may cause major interference
to the operation of services (e.g., public transportation networks can be targeted to cause
chaos during peak travel periods, attacks to manufacturing plants can lead to downtime
within the system, etc.) and therefore require appropriate risk management solutions.

The UK Government’s National Cyber Security Centre (NCSC) [1] categorises cyber
risks into: Component-driven risk management, which focuses on the threats and vulner-
abilities that, for example, ICS devices may face; and System-driven risk management,
which takes a whole-system view and focuses more on the systemic risks likely to be faced
in the context of goals and objectives of the digital environment—requiring the definition
of a higher level purpose and subsequent understanding of sub-systems and how various
parts interact. Rasmussen’s work [2] proposes a hierarchy of abstraction that enables us
to consider how both perspectives are complimentary—with the systems view (goals and
objectives) being fundamentally underpinned by the component view of risk (devices, data,
people, etc.).

In this paper, we propose a novel way to link these views by investigating how
Data Science can support the detection of risks to components (with machine learning for
the detection of cyber attacks on devices) and understanding how this risk impacts the
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entire system’s goals and objectives. Jaquith provides a perspective on what constitutes
good and bad risk metrics [3], including the need for consistent measurements that are
collected in an automated way and contextually relevant enough for decision makers to take
action. Previous research has focused on developing systems and methods for measuring
malicious network activity in evolving digital ecosystems (e.g., [4,5]). Although these
methods successfully identify cyber attacks, they do not necessarily produce contextually
relevant information in order to enable decision makers to take action. They focus mostly on
detecting the attack rather than the relationship between the possible attack and its impact
on the wider system. In other words, the research field currently lacks a methodology to
integrate metrics and measurements relating to cyber attacks with systems and component
views of risk assessment. Tools such as Symantec and Metasploit (metasploit.com) have
developed a severity scale to rate the ‘impact’ of various attacks. However, this rating is a
general score, which refers only to the attack and does not consider its risk in the context
of a specific digital ecosystem. Advancing the domain and enabling the measurement
of impact of cyber attacks in rapidly evolving environments, for instance, converged IoT
and industrial control systems, is crucial in order to be able to plan countermeasures
and understand the hardware/system implications and financial impact of cyber attacks.
Context is everything.

This paper introduces a novel methodology that determines the severity of a cyber
attack in a digital environment. While the methodology is exemplified in a converged
IoT/ICS context for the purposes of this paper, it is designed to be broadly applicable to
various digital environments, including, but not limited to, IoT contexts. The approach
can be adapted to different digital ecosystems by considering the specific operational goals
and interdependencies present in those environments. It achieves the above by linking:
(i) measurements automatically collected from machine learning classification methods
to detect attacks on IoT devices; (ii) systems-level goals and their interdependencies with
component-level devices; and (iii) statistical distributions to calculate the reduction in prob-
ability of achieving system-level goals when component-level attacks occur on (IoT) devices.
As far as we are aware, this is the first proposal for an integrated Data Science-based attack
detection system coupled with a harmonised systems-component risk assessment method,
giving ‘real-time’ contextually relevant updates on the cascading impact of cyber attacks on
devices across a digital ecosystem—paving the way for trusted (industrial control) systems.

2. Related Work

A considerable amount of work has been reported on cyber security risk assessment
methodologies in various domains: traditional IT, industrial control systems (ICS), IoT,
etc. The majority of cyber risk assessment methods and frameworks fall under two main
high-level measurement methodologies—qualitative and quantitative. The former refers to
methods that rate the risk as low, medium, or high, and the latter attempts to measure the
severity of the risk numerically.

Risk Assessment Methods for Traditional IT

Dantu, Loper, and Prakash [6] designed attack graphs (which represent all the possible
attacker actions on a specific system) based on attacker behaviour and used Bayesian
methodology to identify vulnerabilities and estimate the risk level of a critical resource
in a given network. Similarly, Kotenko and Chechulin [7] proposed a risk assessment
framework that employs attack graphs and monitors the timeline of events in order to
measure the risk of a cyber attack in real-time. Hariri et al. [8] designed a tool that moni-
tors various network vulnerability metrics and measures the impact of faults and attacks.
Ryan and Ryan [9] propose a quantitative approach for risk management, which suggests
calculating expected losses and other failure-related metrics. Wang et al. [10,11] developed
probabilistic methodologies based on attack resistance metrics to measure the security risk
in networks. Asosheh et al. [12] implemented a quantitative approach based on the popular
Microsoft and Callio Secura methodologies in an attempt to measure the the security risk in
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a business environment. Factor Analysis of Information Risk (FAIR) [13] is a model that pro-
motes a quantitative, risk-based, acceptable level of loss exposure. RiskLens [14] is another
quantitative assessment method based on FAIR and provides a model for understanding,
analysing, and quantifying cyber risk in financial terms. Tsakalidis et al. [15] presented a
decision support system that qualitatively evaluates the severity of cyber security threats
regarding frequency of appearances/references and number of incidents. Wynn et al. [16]
developed a Threat Assessment and Remediation Analysis (TARA) methodology, which
identifies and assesses cyber vulnerabilities and further suggests appropriate countermea-
sures. Common Vulnerability Scoring System (CVSS) [17] is a framework that captures the
principal characteristics of software vulnerabilities and produces a numerical score that
reflects their severity.

Although extensive work in this area exists, it is largely based on pre-defined or known
attack paths and failure modes, which means new attacks require the updating of large and
often complex models. Also, existing work often treats risk on an asset-by-asset basis, not
capturing the interdependencies between them, and is thus not able to model cascading
failure. The methodology proposed in this paper aims to capture system goals (as opposed
to possible failure modes or attack paths) and measure the impact of attacks in the context
of inter-dependencies between goals. Thus, as intelligence emerges of new attacks we
need only map these to operational goals, where interdependencies are already captured,
enabling risk managers to be able to determine the impact of unknown or unexpected
attacks as they occur. This overcomes existing limitations of needing to update risk models
when new attacks occur and providing impact metrics based on the context in which the
attack is occurring.

In an industrial control systems context, various approaches of qualitative and quanti-
tative risk management have been proposed from an attack-oriented security and safety
perspective that exhibit the same limitations (detail omitted for brevity) [18–25].

3. Proposed Method

The overarching aim in this paper is to advance the way we link automated alerts
and detection of cyber attacks with systems and component-level risk assessment methods
in a contextually relevant manner. We aim to measure the direct impact on a component,
alongside the broader impact of a successful attack on the processes and operational goals
that depend on it (a systems view). The methods in the paper are established to propose
a defensible approach of mapping the outputs of an automated (e.g., rule or machine
learning-based) component-view attack detection tool, to probabilities that system-level or
organisational goals will be achieved. To achieve this, we first set out a range of statistical
distributions, then take input relating to the confidence that an attack is occurring (in this
case, the output from a machine learning classifier of the range 0 to 1), and map this to a
goal success probability score (of the range 0 to 1). As an example of a machine learning
attack detection tool, [26] developed an approach that was highly accurate at detecting
attacks on popular commercially available IoT devices, while deploying 12 attacks from 4
main network-based attack categories, such as: Denial of Service (DoS), Man-In-The-Middle
(MITM)/Spoofing, Reconnaissance, and Replay. Each output from the classifier includes
the attack type and a confidence of the network features it has analysed that relates to
attacks of this type (between 0 and 1).

Not all attacks are equal. For instance, a spoofing attack is much less likely to achieve
a massive impact on goals immediately than a DDoS attack that has an immediate and
significant impact on a set of goals. Thus, the rationale behind the statistical distributions
is to capture this variance. The paper is intended as a first step towards using cyber
attack intelligence in a contextually relevant model to produce actionable risk management
information relating to its impact. To help develop the framework, we ground the work
in cyber attacks on IoT devices. The reason for this is because widespread adoption of
IoT (for example, in the manufacturing sector) provides an excellent example to highlight
the limitations we presented in related work—that new attacks require a rethink of an
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entire risk model when considering attack/failure modes and interdependence between
assets. The addition of IoT (proposed as 50 billion new devices by 2050 in some cases [27])
highlights the scale at which such adaptation would need to be undertaken. This is not
feasible—hence the need for our proposed method.

There are several dependency modelling techniques available, each with its own
strengths. Bayesian networks are graphical models that represent probabilistic relation-
ships among variables and are particularly useful for modelling uncertainty and updating
probabilities based on new evidence. Fault Tree Analysis (FTA) is a top-down, deduc-
tive failure analysis technique that uses Boolean logic to combine a series of lower-level
events to analyse an undesired state of a system. Markov chains are stochastic models that
represent systems with states and transitions, useful for modelling randomly changing
systems where future states depend only on the current state. However, to make use of the
proposed statistical distributions, we integrate the Dependency Modelling methodology
proposed in the Open Dependency Modelling (O-DM) standard, published by the Open
Group [28]. The concept of Dependency Modelling is explained and contrasted with stan-
dard failure-oriented, asset-based risk modelling in [29]. The advantages of this include
its flexibility, which allows for modelling complex interdependencies within a system.
This is crucial for accurately assessing cyber risks in converged IoT/ICS environments; it
supports dynamic updates to the dependency model as new attack intelligence is gathered,
making it highly adaptable to evolving cyber threats. It employs a Bayesian framework to
propagate probability changes through the dependency tree, enabling a comprehensive
understanding of how individual component risks impact overall system goals. These
features make ODM particularly well-suited for our objective of linking automated attack
detection to system-level risk assessments, thereby providing actionable insights into the
cascading impacts of cyber attacks on digital ecosystems.

Furthermore, the Dependency Modelling method develops a top-down model of a
system from an overall goal to its first-level dependencies by asking the question ‘what
does this goal depend on?’; and then to next-level dependencies, and so on, until a tree of
dependencies is built. ‘Leaf’ nodes sit at the bottom of the tree and do not have explicit
dependencies in the model. These are ‘uncontrollables’ and require only a probability
to be added (a value between 0 and 1 representing the probability of success—where 0
is guaranteed failure and 1 is guaranteed success). The tree can be treated as a directed
graph, meaning changes in probability at the leaf nodes are used (in a Bayesian model) to
propagate probability changes back up the tree. Thus, by assuming certain dependencies
can be underpinned by cyber-physical components (e.g., IoT devices) to partially fulfil goals
(e.g., in converged IoT/OT system), it is possible to suggest that intelligence about attacks
detected on such components could be mapped onto the dependency model to adjust the
probability value for leaf nodes and therefore update the whole model to show the impact
the attack could have on the system, in real-time and in the context of all other operational
goals. We demonstrate examples of this in action later in this paper. The open research
question is how to turn cyber attack intelligence into a probability; a goal underpinned by
a cyber-physical component will succeed or fail.

This is our proposed contribution. There are two major step-changes in cyber risk
modelling in this achievement. First, we move away from attack- or failure-based models
that are vulnerable to incomplete and ever-changing knowledge about ‘what could go
wrong?’. Coming at the problem from the perspective of ‘what needs to go right?’ is more
intuitive and likely to be readily accessible through individuals responsible for managing
risk to these systems. As we move towards more intelligent ways of detecting cyber
attacks, this information can be utilised, regardless of the attacker methodology. Second,
the impact of a changing probability shows the impact on other operational goals in the
context of a systems view. Previous approaches may use financial or qualitative (low,
medium, high) measure for impact. But where does this information come from? Without a
clear understanding of the impact on interdependent component parts of the system, these
figures often relate only to the failure of a single asset (e.g., what if this server goes down?).
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The reality is, this failure will likely have a knock-on effect. Our proposed method captures
this to provide more context for financial and qualitative decisions to be made.

3.1. Mapping Attack Types to Distributions

Figure 1 represents a sample distribution, which demonstrates how the probability
of the attacked device being operational drops as the confidence of the occurring attack
increases over time.

Identifying the correct type of distribution that fits different attack types can be
challenging, as there are many parameters that may need to be taken into consideration.
DREAD [30] and CVSS [17] take a qualitative approach to assessing the severity of vulnera-
bilities. We include two qualitative metrics (see Table 1): (i) the difficulty in detecting the
attack—this may be based on the attack itself being a known surreptitious attack (hard) or
something more obvious, such as DoS (easy); and (ii) the damage potential—this is based
on the device itself, not the wider damage potential. We need to make a decision on whether
the specific attack on a specific device will completely prevent the device from fulfilling
its task (high) or just have a minor impact (low). Context is required here and therefore
requires input from the process owner. For instance, interfering with input/output data
flow on a safety critical device may have high damage potential, while a printer i/o may
be low. Note the focus of damage is on the device itself (component), not the wider system.

Table 1. Elements and evaluation in the proposed model.

Damage Potential
Low = attack has minor impact on the device;
Medium = attack could lead to significant disruption on the device;
High = attack completely prevents the device from fulfilling its task.

Detection Difficulty

Easy = attack is detected at an early stage or can be predicted;
Medium = attack can be detected but requires well-curated and
managed methods for detection;
Hard = attack is only likely to be detected once it begins to impose
a major impact.

3.2. Classification of Distributions

We use the qualitative damage potential and detection difficulty labels to select goal
probability–attack confidence distributions using three models: Exponential Correlation,
Logarithmic Correlation, and Perfect Negative Correlation.

3.2.1. Exponential Correlation

We propose exponential distributions to be used when the detection of an attack has
an easy or medium difficulty. This choice is grounded in the properties of exponential
distributions, which are suitable for modelling time-to-failure due to their ‘memory-less’ na-
ture [31], making them appropriate for certain IoT devices that do not accumulate damage
over time. However, we acknowledge that different types of cyber attacks and operational
contexts might benefit from alternative distributions. For instance, Weibull [32] distribu-
tions could model scenarios with varying failure rates, and Gaussian [33] distributions
might be suitable for modelling normally distributed operational abilities. The exponential
distribution was selected because it effectively captures the rapid changes in operational
status under attack scenarios.

As Figure 1 (Equation (1)) and Figure 2 (Equation (2)) show, the curve remains high on
the probability of being operational until we are highly confident that the attack is occurring.
That is, the machine classification algorithms used to detect these attacks are confident in
their output. Given the attack is likely to be detected early, we can wait until we are highly
confident before reducing the probability that the goal will succeed. Notice that there
are three lines on the chart. These relate to decay rates based on damage potential. Slow
decay (top line) is for low-damage attacks, rapid decay (bottom line) is for high-damage
attacks. The decay variance captures the increased reduction in probability in correlation
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with increased confidence that the attack is happening and the extent of damage potential.
Also notice that there are two ways to map the change in probability. Figure 1 reduces the
probability to zero for the high-damage decay line when the confidence is 100%, while the
slow-decay line only ever reaches around 60%. This indicates that some attacks may not
ever reduce the probability of success to zero—for instance, low-damage probing attacks.
Figure 2 is used for cases when all forms of decay will eventually reduce the probability of
device success to zero.

Figure 1. Exponential correlation by different Damage damage potential—not to zero (low-damage
attacks (top line (green)) to high-damage attacks (bottom line (blue)).

Figure 2. Exponential correlation by different damage potential—to zero (low-damage attacks (top
line (green)) to high-damage attacks (bottom line (blue)).

f (x) = −kx2 + 0.99, x ∈ [0, 1], f (x) ∈ [0, 1], k = 1, 0.8, 0.6 (1)



J. Cybersecur. Priv. 2024, 4 346

f (x) = −xk + 0.99, x ∈ [0, 1], f (x) ∈ [0, 1], k = 2, 4, 8 (2)

3.2.2. Logarithmic Correlation

For hard-to-detect attacks, we propose a logarithmic distribution. As Figure 3 (Equation (4))
and Figure 4 (Equation (5)) show, the probability of being operational decreases much
more quickly, even when we are less confident in an attack. This is because indicators of
compromise for more difficult-to-detect attacks may have to be taken as early warning
signs of significant impact, and we need to be able to respond to these. The same principles
as exponential correlation apply, regarding decay speed and damage potential (three lines)
and whether the attack reduces the probability to zero or a number greater than zero.

Figure 3. Logarithmic correlation by different damage potential—not to zero (low-damage attacks
(bottom line (green)) to high-damage attacks (top line (blue)).

Figure 4. Logarithmic correlation by different damage potential—to zero (low-damage attacks
(bottom line (green)) to high-damage attacks (top line (blue)).
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0.5 = logx(0.99 − y)/k, y ∈ [0, 0.99]

=> f (x) = −k
√

x + 0.99, x ∈ (0, 1],

f (x) ∈ [0, 1], k = 0.5, 0.7, 1

(3)

k = logx 0.99 − y, y ∈ [0, 0.99]

=> f (x) = −xk + 0.99,

x ∈ (0, 1], f (x) ∈ [0, 1], k = 0.7, 0.5, 0.3

(4)

3.2.3. Perfect Negative Correlation

f (x) = −kx + 0.99, x ∈ [0, 1], f (x) ∈ [0, 1], k = 1, 0.7, 0.5, 0 (5)

Finally, there will be cases where we may not be able to detect the attack at all. For
this, we propose a Perfect Negative distribution (Equation (5)), where x ranges from 0 to
1, and f (x) also lies within the interval [0,1]. The parameter k can take on the values 1,
0.7, 0.5, or 0, influencing the slope of the linear function. As Figure 5 shows, these take
the form of a skewed linear decay where the range of gradients can have no effect (top
line) or a complete failure effect (bottom diagonal line), and ranges in between depending
on damage potential. Figure 6 provides a logical flowchart to support the mapping of
attack detection difficulty and damage potential to the choice of probability–confidence
distribution, as well as the decay speed distribution.

Figure 5. Perfect negative correlation by different damage potential (gradients range from no effect
(top line (red)) to a complete failure effect (bottom diagonal line (blue)).
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Figure 6. Procedure of mapping attacks to distributions.

4. Mapping Cyber Attacks to Statistical Distributions

In this section, we use IoT device attacks to walk through examples of selecting the
different distributions presented in the previous section. While IoT provides a useful
case for evolving technology and associated risk of attack, the distributions could be used
for any digital environment within which the difficulty of detecting attacks and damage
potential for components can be reliably assessed. Studies [34–36] have shown that IoT
devices are vulnerable to a range of cyber attacks that fall under four main categories:
physical, network, software, and encryption attacks [36]. In this section, we provide attack
examples for each type of distribution presented in the previous section.

4.1. Network Attacks
4.1.1. DoS Attack

DoS attacks aim to disrupt services of IoT devices temporarily or indefinitely [36].
As Figure 7 shows, and as explained in Table 2, the distribution belongs to a logarithmic
distribution because the attack is hard to detect prior to its impact (it is fast-acting). It
could be effective even when the confidence is small, so it may impose an impact on the
probability of an affected device being operational. The attack has high damage potential, so
it is mapped to a fast-decay logarithmic distribution. A DoS attack may severely disable the
device, so the distribution takes the probability of being operational to 0% when confidence
in the attack is 100%.
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Table 2. Denial of Service Attack (DoS)—qualitative summary.

Attack Denial of Service (DoS)

Damage Potential

High—DoS attack can severely impact the internet of things
devices [37];
can completely interrupt the communications in the network [38];
and can severely disable the device by blocking communication.

Detection
Hard—DoS attack is very hard to detect before the network is
unavailable [39].

Figure 7. Denial of Service attack (DoS).

4.1.2. Remote Control/Packet Alteration

This kind of attack targets devices that lack authentication mechanisms (e.g., TP-Link
Smart Plug). As a result, the IoT devices accept a range of commands that can either change
their state or provide sensitive information. Examples of such commands include: turning
the device on/off, returning device information, returning cloud connectivity information,
scanning for nearby access points, resetting the device to factory settings, returning real-
time voltage/current/power, and returning system time [40]. Evidently, this attack can
directly impact the IoT device and make it behave in an irregular manner, whilst it can also
provide the attacker with crucial system and device information.

As Figure 8 shows, and as explained in Table 3, the attack is of medium difficulty
to detect, as control packets will stand out in the netflow traffic, so we map this to an
exponential distribution. The attack has high damage potential, possibly completely
disabling the device, so it is mapped to a rapid decay.

Table 3. Remote Control attack—qualitative summary.

Attack Remote Control

Damage Potential
High—The attack can change the state of the device, making it
behave abnormally, and can also provide the attacker with
sensitive information [41].

Detection
Medium—The probability of detecting the attack is higher if the
attacker sends more than one request and gets lower if the attacker
sends one request.
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Figure 8. Distribution of Remote Control.

4.2. Encryption Based Attacks

A key feature in the majority of IoT devices is their ability to communicate using
wireless technology. This introduces several risks, including data leakage, as an attacker
could potentially eavesdrop on information sent and received from the IoT. Specifically, if
the Secure Sockets Layer (SSL)/Transport Layer Security (TLS) protocol is not employed,
data transmitted from across the IoT are not encrypted. As a result, an unauthorised party
could intercept it by performing passive network sniffing on the operating channel [2,19].
This can have serious consequences, as an attacker can compromise sensitive personal and
identifying information, such as passwords, location, name, etc. Therefore, the damage
potential in this scenario is high. On the other hand, if the SSL/TLS protocol is employed,
the transmitted data are encrypted. Thus, an eavesdropping attacker will not be able to
intercept information in clear-text, in which case the damage is low.

For wireless communications, an attacker can attempt to perform a MITM attack. Via
this attack, the original connection between the two parties gets split into two new ones: one
connection between the first party/device and the attacker and another one between the
attacker and the second party/device. When the original connection is finally compromised,
the attacker is able to act as a proxy and therefore read, insert, and modify data in the
intercepted communication. Given the varying damage potential based on system design
choices (SSL vs No SSL), a mixed probabilistic distribution has been allocated to each one.
Table 4 captures the damage potential and detection summary, and Figure 9 visualises how
the risk of these attacks changes over time, as the confidence in an MITM attack increases.
This example shows that our proposed methodology can take into account specific system
design aspects in this way. MITM attacks are easy to be detected using traffic flow analysis,
so they are mapped to an exponential distribution. The probability of a device being
operationally impacted is medium damage (as the instructions/actuation may change
based on changing payloads), so they follow a medium-decay exponential distribution.
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Table 4. Encryption attack—qualitative summary.

Attack Passive Sniffing
(SSL/TLS Not Employed)

MITM
(SSL/TLS Is Employed)

Damage Potential

High—If SSL/TLS is not
employed, the attacker
can intercept the channel
and perform the attack [42,43].

Low—If SSL/TLS is
employed, the attacker
would sniff traffic and
gain only encrypted
information [42,43].

Detection
Easy—Using timestamps of TCP packet headers,
finding unusually long delays, the attack can be
detected accurately once the attack happens.

Figure 9. MITM attack.

4.3. Physical Attack

Table 5 provides a qualitative summary of the risk potential for the physical attack
applied to the sensor. As Figure 10 shows, the distribution for a physical attack belongs
to a perfect negative distribution because the attack is out of the range of detection until
it becomes damaged and network monitoring tools flag it as offline. Once the attack is
flagged, a linear line connects the probability of being operational to confidence in the
attack, such that a direct relationship from confidence = 1 to probability = 0 exists.

Table 5. Physical attack-qualitative summary.

Attack Physical Damage

Damage Potential
High—The attack can harm hardware and components in an
IoT system physically, making them completely unavailable [41].

Detection
Impossible—The attack is implemented by physical approaches,
so it is undetectable until the device fails.
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Figure 10. Distribution of physical damage.

5. Mapping Probabilities to System-Level Failure

As we now have a methodology for mapping attacks on devices at a component level
to a probability that these devices will be operational, we can now utilise this information
to understand the impact at a system-level view. Burnap et al. [29] present Dependency
Modelling (DM) as a method of determining the risk to an enterprise through system-level
analysis. A top-down model of the system is built from an overall goal to its first-level
dependencies, and then to next-level dependencies, and so on. Dependencies are assigned a
number of possible states (failure or success being the simplest) and a conditional probabil-
ity of being in those states. Repeating this for sub-processes produces a tree or graph-based
model. This model can be interpreted both as a Bayesian network and as a failure-mode
model (see the paper for more detail). The probabilities are used by a Bayesian analysis
engine to determine a range of sensitivities or vulnerabilities, illustrating which elements in
the model are most pivotal to its success, while a mode-analyser intuitively illustrates the
most likely cause of failure in a model, given that a hypothetical (for simulation purposes)
or actual (for response purposes) failure has occurred. We propose this modelling method
can be enhanced by incorporating real-time contextually relevant information produced
through the methodology proposed in this paper. For instance, Table 6 captures the metrics
from the examples in the previous section where IoT devices were under cyber attack. As
confidence in the attack grows, the probability that the device is operational decreases.
If these devices were underpinning a goal in a dependency model, we could use this
information to translate the outcome of an automated attack detection method (such as
machine learning methods for attack detection in IoT networks) into useful input for the
dependency model.

As an example, Figures 11 and 12 present two dependency models, representing
hypothetical system-level dependencies in a water treatment plant. The plant contains
a system-level goal (monitoring pH of water) that depends on a specific IoT device (a
sensor). If the device fails, the goal fails. Using the methodology proposed in [29] for top-
down Dependency Modeling, we show how intelligence mapped to probabilities of device
success or failure changes the likely success of this system-level goal. In this scenario, an
automated attack detection tool has identified a remote control attack with 80% confidence
as an early warning alert. We push this information in the distribution, as suggested in
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Section 4.2 and Figure 11. The resulting output from the mapping of confidence in this
attack to the probability of this goal being successful is 35% (as shown in Table 6). Figure 12
shows the probability of this goal being successful being reduced from 99% (normal state)
to 35% (under attack state). As a result, the Bayesian probabilistic calculations demonstrate
the cascading impact across the whole model. This shows a context-specific impact as
opposed to a pre-defined impact based on attacking a device. The context is provided by
the dependencies that depend on this device. The same attack on the same device may
have a completely different impact when the device is deployed in a different scenario.

Table 6. Mapping of different attack confidence levels to changes in goal probability.

Confidence

0 0.2 0.4 0.6 0.8 1.0

DoS attack 0.99 0.46 0.30 0.17 0.08 0.00

Remote control attack 0.99 0.95 0.83 0.63 0.35 0.00

MITM (no SSL/TLS) 0.99 0.98 0.97 0.88 0.66 0.18

MITM (with SSL/TLS) 0.99 0.98 0.98 096 0.89 0.75

Physical Damage 0.99 0.79 0.59 0.39 0.19 0.00

Figure 11. Dependency model pre-attack (red = probability of a cyber attack occurring, green =
probability of a healthy system).
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Figure 12. Dependency model after attack (red = probability of a cyber attack occurring, green =
probability of a healthy system).

6. Conclusions

In this paper, we have presented a novel methodology to map intelligence gathered
automatically about cyber attacks on digital environments—in this case IoT devices—to
changes in success probabilities of goals required to maintain system-level operations.
The rationale behind this was two-fold. First, by enacting Jaquith’s call for consistent
measurements that are collected in an automated way and contextually relevant enough
for decision-makers to take action [3]. We have proposed a consistent mapping from attack
intelligence to probability change while providing flexibility depending on contextual
damage caused by the attack on a specific device and difficulty in detecting the attack
in an automated way. Second, by enhancing the capability to deal with complex and/or
unknown attacks impacting digital components, and determining the impact of this in
the context of a system-level dependency model, realising the vision presented in [29].
Previous work focused mostly on detecting attacks and judging their impact on components
in isolation, rather than the relationship between the possible attack and the component’s
impact on the wider system. We provided the first steps towards a methodology to integrate
metrics and measurements relating to cyber attacks with systems and component views of
risk assessment. In doing so, we can now consider risk in the context of a specific digital
ecosystem, such as converged IoT and safety critical systems. This is crucial in order to
be able to plan countermeasures and understand the hardware/system implications and
financial impact of cyber attacks.
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By linking (i) measurements automatically collected from machine learning classifi-
cation methods to detect attacks on digital components; (ii) systems-level goals and their
interdependencies with component-level devices; and (iii) statistical distributions to cal-
culate the reduction in probability of achieving system-level goals when component-level
attacks occur on devices, this is the first proposal for an integrated AI-based attack detection
system coupled with a harmonised systems-component risk assessment method, giving
‘real-time’ contextually relevant updates on the cascading impact of cyber attacks on IoT
devices across a digital ecosystem—paving the way for trusted digital ecosystems.
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