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Ship Landmark: An Informative Ship Image
Annotation and Its Applications

Mingxin Zhang†, Qian Zhang†, Ran Song*, Paul L. Rosin, and Wei Zhang

Abstract—Visual perception of ships has been attracting in-
creasing attention in the fields of computer vision and ocean
engineering. Despite the extensive work related to landmark
detection of common objects, the role of landmarks in ship
perception has been overlooked. In this paper, we aim to fill
this gap by focusing on ship landmarks. Specifically, we give
a comprehensive analysis of both the physical structure and
deep features of ships, which finds that highlighted areas in
feature maps correspond with structurally significant parts of
ships. By summarizing the locations of such areas in ships, we
define 20 ship landmarks and build the Ship Landmark Dataset
(SLAD), the first ship dataset with landmark annotations. We also
provide a benchmark for ship landmark detection by evaluating
state-of-the-art landmark detection methods on the newly built
SLAD. Moreover, we showcased several applications of ship
landmarks, including ship recognition, ship image generation,
key area detection for ships, and ship detection. Project web
page: https://vsislab.github.io/Ships VSIS/.

Index Terms—Ship Images, Landmark Detection, Maritime
Transportation, Computer Vision

I. INTRODUCTION

SHIPS play an irreplaceable role in transportation by carry-
ing over 80% of the world’s trade [1]. It is thus important

to monitor ship positions and navigation status for safety and
economic reasons. For a considerable period of time in the
past, ship monitoring was mainly done by full-time maritime
staff, who may be fatigued after working for a long time, re-
sulting in the inability to achieve sustainable monitoring. Over
the past decade, the burst of artificial intelligence techniques
has led to the rapid development of unmanned means of ship
monitoring, where ship perception usually takes an important
role [2]–[5].

Nowadays, intelligent ship perception systems involve mul-
tiple sensors to capture as much information about ships as
possible, including but not limited to the Automatic Identifi-
cation System (AIS), synthetic aperture radar (SAR) systems,
land-based radars, and cameras. Among these means of ship
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perception, researchers have given most attention to the vision-
based techniques due mainly to the rapid development of
computer vision and deep learning techniques, which have
spawned a range of innovative algorithms, large-scale datasets,
and influential academic competitions.

Researchers have invested much effort in brain-like neu-
ral networks to endow deep models with human-like visual
perception capabilities [6]–[8], leading to great success in
classifying and detecting visual objects primarily using texture
information [9]–[11]. However, different from other common
objects, visual textures of different ships share a rather high
similarity due to the shared requirements imposed by the
specific nature of marine navigation, while visual textures of
the same ship vary significantly when the states of cargo,
the viewpoints of observation, or the painting colours change.
Therefore, texture-based methods [12], [13] cannot produce
satisfactory results in some challenging ship perception tasks
such as fine-grained ship recognition and ship key area de-
tection, as they acquired the status of ships based mainly
on instance-level or pixel-level texture information of ship
images. In this case, exploring additional forms of information
can provide a solution to achieve accurate ship perception.

As listed in Table I, there already exists a number of public
ship datasets [14]–[39] that can be used for ship analysis.
Most of them [14]–[31] were constructed for ship detection
in the remote sensing scenario, where the bounding boxes
of ships are annotated in optical or SAR satellite images.
Although bounding box annotations in remote sensing datasets
allow deep models to learn to locate ships from a bird’s-eye
view, they do not provide detailed information about ships. In
contrast, ship images in RGB datasets [32]–[39] are usually
captured from a horizontal perspective using cameras installed
onshore or onboard, and thus they contain more visual clues
about the ships.

In the field of visual perception, a landmark refers to a
specific location or region in an image considered visually
distinctive and semantically meaningful. In multiple computer
vision tasks, localization and recognition of interest points
have shown great potential in contributing to building a high-
level semantic understanding of objects. For instance, facial
interest points, also known as facial landmarks, play a crucial
role in expression analysis [45] and computer-aided facial
disease diagnosis [46]. With the skeleton defined by landmarks
that correspond to the major joints of the human body, deep
models perform well in human pose estimation, which has
been successfully applied in action recognition [47], gesture
analysis [48], [49], and human-computer interaction [50].
Moreover, some researchers utilized landmarks in the visual

https://vsislab.github.io/Ships_VSIS/
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TABLE I
COMPARISON OF PUBLICLY SHIP DATASETS.

Name Acquisition Method Images Source Images Instances Categoreies Years
WHU-RS19 [14] Optical Radar Open Source 1,005 50 1 2011
ImageNet 2012 [40] Cameras Open Source 16,114 — 12 2012
PASCAL VOC 2012 [41] Cameras Open Source 353 791 1 2012
NWPU VHR-10 [16] Optical Radar Open Source 800 302 1 2014
MARVEL [32] Cameras Open Source 400,000 — 26 2016
SMD [33] Cameras Shipboard cameras 157,547 (frame) 157,547 6 2016
HRSC2016 [17] Optical Radar Open Source 1,070 2,976 25 2016
RSC11 [18] Optical Radar Open Source 232 100 1 2016
MS COCO [42] Cameras Open Source 3,164 11,189 1 2017
SSDD [15], [43] SAR Open Source 1,160 2,456 7 2017
OpenSARShip [19] SAR Open Source 41 11,346 17 2017
NWPU-RESISC45 [20] Optical Radar Open Source 31,500 700 1 2017
DOTA [21] Optical Radar Open Source 2,806 2,702 1 2017
SeaShip [34] Cameras Shore-based cameras 31,455 (7,000) 40077 (9221) 6 2018
DIOR [16] Optical Radar Open Source 23,463 64,000 1 2018
HRRSD [22] Optical Radar Open Source 21,761 3,886 1 2018
Boat Re-ID [35] Cameras Shore-based cameras 5,523 5523 - 2019
AR-Ship-Dataset [23] SAR Open Source 210 43,819 - 2019
Airbus ship [26] Optical Radar Open Source 1,925,560 231,723 1 2019
MASATI [27] Optical Radar Open Source 6,212 3,313 1 2019
xView [28] Optical Radar Open Source 1,413 5,672 9 2019
McShips [36] Cameras Open Source 14,709 26,529 13 2020
HRSID [24] SAR Open Source 136 16,951 - 2020
LS-SSDD-v1.0 [25] SAR Open Source 15 9,000 - 2020
FGSD [29] Optical Radar Open Source 2,612 5,634 43 2020
ABOships [37] Cameras Shipboard cameras 9,880 41,967 9 2021
ShipRSImageNet [30] Optical Radar Open Source 3,435 17,573 50 2021
SeaSAw [44] Cameras Shipboard cameras 1.9M 14.6M 12 2022
LEVIR-Ship [31] Optical Radar Open Source 3,896 3,219 1 2022
VesselReID [38] Cameras Open Source 30,589 30,589 - 2023
SmartShip-HEU [39] Cameras Open Source 12,300 23,542 6 2023

perception of vehicles, where localizing such points helps in
both pose estimation and 3D shape reconstruction of vehicles
[51]. When humans perceive ships, their landmarks often exist
near the corners or the intersections of specific areas including
the bow, stern, and superstructure. These points help humans
quickly grasp the structural characteristics of a ship and form
the corresponding semantic concepts. Based on the successful
application of landmarks in various scenarios and the human
perception of ships, we argue that landmarks of ships are able
to facilitate their visual perception. However, there is no work
that applies landmarks for ship visual perception, due in part
to the absence of ship datasets with landmark annotations.

This paper proposes the first ship dataset with landmark
annotations by exploring the visual structure of ships. The
initial step is to determine the positions and the number of
ship landmarks. To accomplish this, we investigate the visual
structure of ships and discover the presence of key areas on
the ship’s hull that contribute to ship perception. Specifically,
we conduct an in-depth comparative analysis of deep feature
maps for ship images with different views and categories,
allowing us to figure out the locations of key areas. Then,
taking into account both the experimental results and the
expert knowledge of ships, we define a series of landmarks
to annotate the ships for a new dataset named Ship Landmark
Dataset (SLAD). Based on the newly built dataset, we present
a benchmark with state-of-the-art algorithms for landmark
detection to serve as baselines for further research on ship
landmark detection. Furthermore, we discuss the potential
applications of SLAD in the hope that it can provide valuable

insights for researchers in the field of ship perception.
Overall, the contributions of this paper are threefold:
(1) We analyze the distribution of ship features generated

by different recognition models to define 20 landmarks in a
ship image, which provides structural information useful for
various ship perception tasks.

(2) We create SLAD, the first public dataset of ship images
with landmark annotations, and evaluate multiple landmark
detection methods on SLAD to provide a benchmark for
boosting further research in ship perception.

(3) We demonstrate the significance of SLAD by show-
casing several applications of ship landmarks, including ship
recognition, ship image generation, key area detection for
ships, and ship detection.

II. RELATED WORK

This section reviews the related work, which can be
grouped into three categories, including ship datasets, land-
mark datasets, and landmark detection methods.

A. Ship Datasets

In the past decade, the rapid development of computer
vision techniques has spurred a range of research works in
vision-based ship analysis, leading to a number of publicly
available ship image datasets. According to the distance of
image acquisition, these datasets can be divided into remote
sensing datasets and ordinary datasets. The remote sensing
datasets are usually composed of SAR images captured from
SAR satellites, or optical images captured by optical radar. For
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Fig. 1. Examplar ship images with landmark annotations in SLAD. The ship images differ in viewpoints, categories, backgrounds, lighting, and weather.

example, Gallego et al. [27] created the MASATI dataset with
6, 212 optical satellite images collected from Microsoft Bing
maps. Each sample in this dataset was manually labelled with
its category. Li et al. [15] publicly released the first ship SAR
dataset, SSDD, which is further improved by Zhang et al. [43]
for the official release. In order to facilitate deep learning-
based SAR ship detection, Zhang et al. [25] introduced a
large-scale ship SAR dataset named LS-SSDD-v1.0. Huang
et al. [19] presented the OpenSARShip dataset consisting of
11, 346 SAR ship chips from 41 Sentinel-1 SAR images. Such
kinds of images can provide a broad view and global coverage
but lack detailed description of ships.

In contrast, the ordinary datasets include ship images
captured by onshore or onboard cameras, which provide a
close-up perspective of ships with more visual details. Gun-
dogdu et al. [32] collected 2 million in ship images from a
website where the users upload images with ship attributes.
They categorized and annotated these images for building the
large-scale MARVEL dataset. Iancu et al. [37] constructed the
ABOships dataset with 9, 880 images and 41, 967 annotations
to address ship detection in a number of operating scenarios.
Although there have been several ordinary ship datasets that
annotate the ships with their locations and categories, none of
these datasets focus on specific parts to obtain the local visual
details of ships. Therefore, we aim to address this limitation
by annotating each ship with suitable landmarks to facilitate
detailed perception of the ships.

B. Landmark Datasets
In the field of computer vision, landmarks have been

attracting significant attention for a long time, resulting in
numerous datasets for Landmark Detection [42], [52]–[55].
Most of these datasets [42], [52], [53] are designed for human
pose estimation, which provide annotated images or videos
specifically focused on landmarks of the human body. For
example, in the MS COCO dataset [42], the persons in the
images are annotated with 17 landmarks, covering the face
and the major joints of the human body. PoseTrack [52] is
a large-scale video-based dataset for human pose estimation,
where 15 landmarks are defined to represent the pose of
a person in video frames. There also exist some landmark-
based datasets in other scenarios. Cao et al. [54] created the
Animal-Pose dataset, in which not only the coordinates of
landmarks were labelled, but also the “bones” were defined
to build the skeletons of animals. Wang et al. [55] annotated
the vehicles in VeRi-776 dataset [56] with 20 landmarks,
from which orientation invariant features can be extracted
for vehicle re-identification. However, there is no landmark
dataset specifically created for ships, and the concept of
ship landmarks has never been mentioned in previous works.
Hence, we are committed to filling this gap by constructing a
public ship dataset with landmark annotations.

C. Landmark Detection Methods
Landmark detection is a computer vision technique that

aims to identify and locate distinct points of objects in
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Fig. 2. Overview of ship structure. This figure illustrates the structural
composition of the ship from two main perspectives.

images. Most existing methods for landmark detection focus
on landmark-based human pose estimation due to its wide
applications in action recognition and human computer in-
teraction. For example, DeeperCut [57] was specially pro-
posed for multi-person pose estimation, which applied image-
conditioned pairwise terms between body parts to boost the
performance of landmark prediction. Sun et al. [58] designed
an effective backbone with multi-scale fusion modules to learn
high-resolution representation for human pose estimation.

In general, existing landmark detection approaches can be
roughly divided into two categories: top-down methods [58]–
[67] and bottom-up methods [57], [68]–[76]. The top-down
methods usually involve the bounding box of an object as
prior knowledge, allowing the detector to place its focus on
the object rather than the cluttered background. As such,
the difficulty of landmark detection is significantly reduced.
On the contrary, the bottom-up methods start with detecting
all landmarks in the entire image, followed by a landmark
clustering process to obtain the final detection results. Since
dense landmark prediction is a necessary step in bottom-up
landmark detection, such kind of methods require a large
amount of annotated data to achieve satisfactory performance.

III. SHIP LANDMARK DATASET

In this section, we elaborate the process of creating the
Ship Landmark Dataset (SLAD), including data collection,
ship landmark selection, and data annotation.

A. Data Collection

Considering the unique characteristics of maritime scenes,
conducting on-ground photography to collect ship images
is labour-intensive and potentially hazardous. Therefore, we
download ship images from Shipspotting1, where the basic
information of ships, such as category, location, and Inter-
national Maritime Organization (IMO) number, can be easily
accessed. Then we filter out ships with less than 150 images,
and select images of each ship with various external conditions
while ensuring the class balance of ships. As a result, SLAD
consists of 12, 199 images of 949 different ships. In Fig. 1,

1http://www.shipspotting.com

we show some representative ship images in SLAD, which
vary considerably in terms of viewpoint, category, background,
light, and weather.

To annotate the ship samples in SLAD with landmark
information, we further build a dataset for identity-level ship
recognition (referred to as Ship-ID) by filtering out the images
with more than one ship from SLAD. This dataset facilitates
the analysis of deep features of ships for landmark selection.
Note that we only keep in the Ship-ID dataset the ships
containing more than 8 images captured at different views to
ensure 5 images per ship for training and 3 images per ship
at least for testing. Moreover, the Ship-ID dataset consists of
11, 079 ship images, which are further split into training and
testing subsets with 3, 195 and 7, 884 ship images, respec-
tively.

B. Ship Landmark Selection

Similar to the landmarks of other objects, ship landmarks
should refer to specific locations that hold special significance
or importance. In this section, we aim to find out the signif-
icant parts of ships via conducting comparative analysis on
the structural characteristics and the feature distributions of
different ships.

1) Structural Analysis of Ships: Ship structure is an in-
variant property of ships that remains relatively stable in the
face of changing factors such as viewpoint, illumination, and
background. Since each type of ship has its specific structure
[77], [78], humans can effectively distinguish between differ-
ent types of ships relying on the invariant features of ship
structures. Specifically, as shown in Fig. 2, a ship includes
three main parts in the horizontal direction: the stern, which
is the rear or aft section of the ship; the midship, which is
the middle section; and the bow, which is the front or forward
section. In the vertical direction, a ship is divided into two
parts by the deck, namely the superstructure and the main
hull. The superstructure refers to the upper part of the ship that
includes various compartments like cabins, bridge, navigation
areas, and other facilities. The main hull, on the other hand,
is the lower part of the ship submerged in water and provides
buoyancy and stability to the ship.

Different types of ships usually have different combinations
of bow, stern and superstructure, which provide strong clues
for visual perception of ships. For example, passenger ships
often have a prominent superstructure located towards the
midship or aft. They usually have multiple decks for accom-
modation, entertainment, and other facilities, and their bows
are often sleek and rounded for better hydrodynamics. Cargo
ships typically have a large, rectangular-shaped superstructure
located towards the bow or midship. The stern of a cargo ship
is usually flat and wide to facilitate loading and unloading of
cargo. In Fig. 3, we present the structural sketches of several
types of ships with different bow, stern, or superstructure. One
can find that the relative positions of the vertices determine the
structural property of ships and serve as distinctive features,
which includes some key information that may be useful
for ship perception. Therefore, it is feasible to define ship
landmarks near these vertices.
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Fig. 3. Images and sketches of representative types of ship parts, including 5 types of bow, 3 types of stern, and 4 types of superstructure.

ResNet 18
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Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5 Epoch10 Epoch 15 Epoch 20 Epoch 100

Fig. 4. CAMs for the same image (the one corresponding to ‘Forecastle’ in Fig. 3) generated by various models during the training process. Each row
corresponds to a specific model.

2) Feature Analysis of Ships: Based on the Ship-ID dataset,
we are able to train ship recognition models with the dataset
and conduct an in-depth feature analysis. Specifically, we start
with training the deep models with ResNet-based architectures
but at different depths (i.e. numbers of layers). Compared to
the original version of ResNet networks, we set the dimension
of the last fully connected layer to be the same as the number
of ship identities in the Ship-ID dataset, which means that we
treat each ship as a unique class.

We use class activation map (CAM) to visualize ship
features through the heatmaps of class-wise activation which
have the same size as the input image. In a CAM, higher
values indicate locations more important for the specific class.
We employ Full-Grad CAM [80], which considers the gradient
with respect to not only the input but also the bias term, to
generate heatmaps with values ranging from 0 to 1. In Fig. 4,

we show the CAMs of deep models with various depths during
the training stage. It gives the evolution of the feature maps as
the training progresses, from which we can obviously find that
the recognition models gradually learn to focus their attention
on key parts of ships. Such a finding is consistent with previous
research [81], [82] that indicated the varying importance of
different regions for object recognition. Fig. 5 shows that
models with smaller sizes (18, 34, 50 layers) learn faster, so
that they are capable of locating key parts of ships after only
5 epochs of training. It can be seen that the performance of
the network varies from one model to another, but is similar
overall in terms of attention to key regions.

Moreover, the CAMs in Fig. 4 have some local similarities,
which suggests the existence of important areas in ship images
critical for perception. Accordingly, we attempt to explore such
areas commonly present in different ship images captured at
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Fig. 5. Accuracy curves on the training (top row) and the testing (bottom row) sets during the training process. Each model is depicted with a distinct colour.

different viewpoints. Specifically, we defined the mean correct
CAM for a ship image as an average of the CAMs generated
with checkpoint models that predict the correct identity of
the input ship image. Then, we extracted 3 sub-CAMs from
each CAM according to the activation values. Fig. 6 shows the
CAMs and sub-CAMs of 4 ships, each of which has 4 different
views. In Fig. 6, the sub-CAMs gradually pay attention to
the most important areas from left to right. The activation
values for ship profiles are generally below 0.8, while the
values higher than 0.8 mainly occur in some specific areas
such as the bow, stern, and superstructure of the ships. The
values higher than 0.95 tend to be located at the junctions
of such areas. In addition, Fig. 7 shows the visualised results
of the CAM images of ViT [79] which replaces the ResNet
encoder in this test. We can observe that the attention of
the Transformer-based ViT does not concentrate on a specific
region but spreads over the image. In comparison, the CNN-
based ResNet highlights locally the ship region.

By summarising the locations of the important areas high-
lighted in CAMs, we find that they show consistency with the
physical structure of ships. In other words, the highlighted
areas tend to appear in the parts that reflect the structural
characteristics of the ships. Based on this finding, we define
17 landmarks for each ship based on the multi-view CAMs (as
shown in Fig. 6) to represent its structure. Besides, considering
that a ship with a particular structure produces a specific
waterline (i.e. the line where the ship meets the water), we
define 3 additional landmarks on the waterline, one at the bow
and two at the stern, which fits the ship structure of sharp bow
and flat stern. As a result, each ship in SLAD is annotated with
20 landmarks and Fig. 8 shows some examples. A detailed
description of ship landmarks is shown in Table II. In addition
to representing key characteristics of the ship, these landmarks
can also be used for segmenting the functional areas of the
ship, which is supposed to facilitate ship perception in many

application scenarios.

C. Data Annotation and Statistics

1) Data Annotation: Once the ship landmarks are defined,
we are able to annotate the collected ship images with the
coordinates of landmarks. In total, there are three types of
annotations in SLAD. As shown in Fig. 9, they include image-
level categorical labels (only for images containing a single
ship), instance-level bounding boxes, and coordinates of ship
landmarks. As shown in Table III, when compared with the
existing publicly available ship image datasets, SLAD stands
out with its unique ship landmarks annotation.

The category annotations are derived from the category tags
obtained when the images were downloaded from the web.
For the bounding box and the landmark annotations, we use
the format in the MS COCO dataset. Each bounding box is
represented by a 4-dimensional vector [x, y, w, h], where
the first two elements indicate the coordinates of the top-left
corner of the bounding box, and the last two denote its width
and height respectively. As for the landmark annotations, we
utilize a 60-dimensional vector to record the statistics of 20
ship landmarks:

[x1, y1, α1, · · · , x20, y20, α20], (1)

where each xi and yi denote the coordinates of the i-th
landmark. αi ∈ {0, 1, 2} indicates the status of the i-th
landmark. In specific, α = 0 represents that the i-th landmark
is not annotated and occluded, so that xi and yi are both set
to 0 in that condition. α = 1 indicates that the i-th landmark
is annotated but occluded. α = 2 represents that the i-th
landmark is annotated and visible in the ship image.

2) Data Statistics: SLAD includes 12, 199 images of 949
ships captured under different external conditions. Regarding
the geographical attributes, the ships in the dataset belong to 88
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Fig. 7. Visualisation of the mean correct CAMs for 4 ships using ViT [79].

different countries or regions and have been captured in over
900 ports around the world. In terms of category, there are 121
different ship categories in our dataset, including cargo ship,
passenger ship, barge ship, etc. This means that on average,
there are only about 8 ships within each category, ensuring a
diverse range of ship categories in the dataset.

Moreover, most of these images contain only one ship,
while the remaining images contain multiple ships. For ease
of use, we divide the dataset according to the ratio of 7/1/2,
resulting in 8, 530 images in the training set, 1, 209 images in
the validation set, and 2, 458 images in the testing set.

IV. SHIP LANDMARK DETECTION BENCHMARK

To boost the use of SLAD, we evaluate several state-of-the-
art bottom-up landmark detectors on it.

A. Evaluation Metrics

Following the works in landmark-based human pose estima-
tion, two widely used evaluation metrics, Average Precision
(AP) and Average Recall (AR), are employed to estimate the
performance of landmark detectors.

Precision measures how well the detected landmarks align
with the ground truth or the expected locations of the land-
marks. A high precision represents that the detected landmarks
closely match the true landmarks, while a low precision
indicates a larger deviation or error in the detection. Recall
measures the completeness or the proportion of true landmarks
successfully detected. A high recall score demonstrates that
the model can accurately identify a large portion of the true
landmarks, while a low recall means that some landmarks are
missed or not detected.

In the case of landmark detection, the similarity between the
detected and the ground-truth landmarks is usually estimated
via Object Keypoint Similarity (OKS). If OKS is greater than
a threshold, the sample is regarded as positive, and vice versa.
As such, we can calculate AP and AR separately at various
thresholds. Also, according to the size of the bounding box, we
classify the ships in the SLAD into three types, small, medium,
and large ships. We report AP and AR scores with different
OKS thresholds and ships of different sizes. AP is the average
of AP scores at 10 thresholds (0.5, 0.55, · · · , 0.9, 0.95) for
all ships. AP50 and AP75 denote the AP scores with the
thresholds of 0.5 and 0.75 respectively. APM and APL denote
the AP scores for large and medium ships respectively. The
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Fig. 8. Overview of the ship landmarks defined in this paper. The subfigures illustrate the distribution of ship landmarks from three different perspectives.
Yellow, red, green, and blue points denote landmarks in the bow, the stern, the superstructure respectively. The three blue points indicate the landmarks on
the waterline. The numbered circles represent the point labels.

TABLE II
NAMES AND DESCRIPTIONS OF THE 20 SHIP LANDMARKS.

No. Name Description
1 Right Side Forecastle Deck From stern to bow, start of right side foredeck
2 Left Side Forecastle Deck From stern to bow, start of left side foredeck
3 Prow The forward-most part of a ship’s bow above the waterline.
4 Draft Mark Of Bow/Load Line Mark of Bow Markings on ship’s bow indicating draught, often with distinctive color.
5 Vice Bow Peak For bows with two bulbs in part, the lower bump is the most forward.
6 Bow Waterline The point at which the bow meets the sea surface closest to the ship’s mid-profile.
7 Right Stern Waterline The final intersection of the deck on the right side of the stern with the ocean water.
8 Left Stern Waterline The final intersection of the deck on the left side of the stern with the ocean water.
9 Load Line Mark of Right Stern Intersection of right stern load line with stern’s end.
10 Load Line Mark of Left Stern Intersection of left stern load line with stern’s end.
11 Right Stern Peak Uppermost vertex of the rearmost part of the stern with the right-hand freeboard deck.
12 Left Stern Peak Uppermost vertex of the rearmost part of the stern with the left-hand freeboard deck.
13 Right Deck House Bottom Back Lower right rear vertex of the largest continuous building in the superstructure.
14 Left Deck House Bottom Back Lower left rear vertex of the largest continuous building in the superstructure
15 Right Deck House Top Back Upper right rear vertex of the largest continuous building in the superstructure
16 Left Deck House Top Back Upper left rear vertex of the largest continuous building in the superstructure.
17 Right Deck House Top Front Upper right front vertex of the largest continuous building in the superstructure.
18 Left Deck House Top Front Upper left front vertex of the largest continuous building in the superstructure.
19 Right Deck House Bottom Front Lower right front vertex of the largest continuous building in the superstructure.
20 Left Deck House Bottom Front Lower left front vertex of the largest continuous building in the superstructure.

Class: General Cargo

IMO: 7514440

(a). Image-level category (b). Instance-level bounding box (c). Landmarks annotations

Fig. 9. Examples of the three types of annotations in SLAD.

definitions of AR, AR50, AR75, ARM , and ARL scores are
similar to those of the AP series.

B. Analysis of Results

In this paper, we build the benchmark by evaluating 6 land-
mark detection methods on SLAD, including CPM [59], Sim-
pleBaseline [67], HRNet [58], HRNet+UDP [83], HRFormer
[76], and SimCC [84].

• CPM [59], namely Convolutional Pose Machines, uses
cascaded convolutional neural networks to progressively

extract and refine landmark information of the human
body.

• SimpleBaseline [67] provides a simple but effective base-
line method for landmark detection. It employs a back-
bone network along with a few deconvolutional layers to
predict heatmaps for the landmarks.

• HRNet [58] applies a parallel multi-scale fusion strategy
to integrate multi-resolution representations for higher
accuracy and robustness in landmark detection.

• HRNet+UDP [83] enhances HRNet with Unbiased Data
Processing (UDP), and combined classification and re-
gression encoding-decoding.

• HRFormer [76] is a high-resolution transformer architec-
ture that utilizes the feature fusion strategy in HRNet
to capture multi-scale information and employs self-
attention modules to model long-range dependencies.

• SimCC [84] performs landmark detection via two coordi-
nate classification branches, which predict the horizontal
and vertical coordinates of the landmarks separately.
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TABLE III
COMPARISON OF PUBLICLY AVAILABLE SHIP IMAGE DATASETS.

Name Category Bbox Auxiliary Images
ImageNet 2012 [40] ✓ ✗ ✗ 16,114
PASCAL VOC 2012 [41] ✓ ✓ ✗ 353
MARVEL [32] ✓ ✗ ✗ 400,000
SeaShip [34] ✓ ✓ ✗ 7000
Boat Re-ID [35] ✓ ✓ ✗ 5,523
ABOships [37] ✓ ✓ ✗ 9,880
VesselReID [38] ✓ ✗ ✗ 30,589
SmartShip-HEU [39] ✓ ✓ ✗ 12,300
MS COCO [42] ✓ ✓ ✓ 3,164
SLAD ✓ ✓ ✓ 12,197

In our experiments, we take ResNet-50 as the backbone
network for both SimpleBaseline and SimCC unless other-
wise specified. For HRNet, we report the performance of its
two variants, i.e. HRNet-W32 and HRNet-W48, where the
suffix indicates the width (or number of channels) of high-
resolution sub-networks in the last three stages. Similarly,
HRNet+UDP [83] also have two variants, which take HRNet-
W32 and HRNet-W48 as backbone networks respectively. For
HRFormer, here is the report on the base version of the
implementation, the details of which can be found in [76].
Besides, it is worth noting that all the methods are conducted
under two different settings of input size, i.e. 256 × 192 and
384. For training the above methods on SLAD, we apply Adam
optimizer with a learning rate of 5e-4, betas (0.9, 0.999),
and weight decay 0.01. The batch size is set to 32 for most
of the experiments except for the HRFormer when the input
size is 384. We reduce the batch size to 12 for that scenario
due to higher computation complexity. All the experiments
are performed on a Ubuntu18.04 system with 4 Nvidia Tesla
V100 GPUs, the methods implementation above is based on
MMPose [91].

Table IV lists the evaluation results, from which we obtain
the following observations:

(1) CPM produces the worst performance in ship landmark
detection, with the AP score being at least 19.14% lower
than other methods. This is mainly because CPM is the only
two-stage method among the referred methods in the table.
This kind of method performs feature extraction and landmark
estimation in two separate stages, leading to the extracted
features from the backbone network potentially not being
entirely suitable for the requirements of the landmark detection
task.

(2) High-resolution input can improve the overall perfor-
mance of ship landmark detection. For all the competing meth-
ods, increasing the input size from 256× 192 to 384 leads to
performance gains in terms of both precision and recall. This
is not surprising as high-resolution input often provides more
fine-grained details of ships, which contribute to extracting
high-quality representations for landmark localization.

(3) SimpleBaseline and SimCC are not as effective as other
end-to-end methods in ship landmark detection. Such results
demonstrate that taking HRNet as a backbone is a better
choice for ship landmark detection, due mainly to its ability
in fusing multi-scale representations. Moreover, using UDP
for data transformation can further boost the performance

of ship landmark detection. For example, when the input
size is 256 × 192, adding UDP improves the AP and the
AR scores of HRNet-32 by 2.15% and 2.40% respectively.
We also conducted comparative experiments of the baselines
with transformers-based backbones (i.e. Swin-Tiny, Swin-Base
and Swin-Large [90], HRFormer-Small and HRFormer-Large
[76] ) and listed the results in Table V. Since the task of
landmark detection relies mainly on the localization capability
of the network while Transformers have a strong ability of
capturing global information, directly employing the normal
transformer backbones does not yield promising results.

We also explore how the width and the depth of the back-
bone network affects ship landmark detection. By comparing
the results of HRNet-W32 and HRNet-W48, we find that
the wider the backbone is, the better the landmark detection
performance. In Table V, we show additional experimental
results of SimpleBaseline with various backbone networks. It
is obvious that the deeper the backbone is, the higher the
evaluation scores are. Besides, the ResNeXt series produce
better results than the ResNet series. In conclusion, ship
landmark detectors benefit a lot from a strong backbone
network that can extract discriminative ship features.

To further estimate the generalization ability of the landmark
detector trained on SLAD, we test the trained HRNet-W48
model on 4 public ship datasets. As the ship images in the
datasets are not annotated with landmark information, we only
present the qualitative results in Fig. 10. It can be seen that the
HRNet-W48 model trained on SLAD can effectively detect
the landmarks of unseen ships, which demonstrates strong
generalization ability.

V. APPLICATIONS OF SHIP LANDMARKS

In this section, we showcase some applications of ship
landmarks to several typical ship perception tasks, including
ship recognition, ship image generation, key area detection
for ships, and ship detection, where RGB images of hori-
zontal views are taken as input. It is noteworthy that some
methods using other types of data for ship perception have
also shown promising results, such as SAR-based ship clas-
sification [92], [93], detection [94]–[96], and segmentation
[97], [98].

A. Ship Recognition

To explore how the landmarks of a ship affect its recog-
nition, we propose to involve the locations of landmarks
as extra information to guide the deep model to focus on
informative areas. As shown in Fig. 11, we perform landmark-
aware ship recognition by highlighting a small region around
each landmark in the image. Specifically, we build a landmark
image of the same size as the original ship image, where the
RGB values are set to [255, 255, 255] in a circular region with
a radius of 20 pixels around each ship landmark, and the
remaining pixels are set to [0, 0, 0]. Then, we generate the
landmark-aware image as the weighted sum of the landmark
image and the original image, expressed as

Ika = Iori + βImark, (2)
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TABLE IV
AVERAGE PRECISION (AP) AND AVERAGE RECALL (AR) OF VARIOUS LANDMARK DETECTION METHODS ON SLAD.

Methods Input size AP AP50 AP75 APM APL AR AR50 AR75 ARM ARL

CPM
[59]

256×192 0.2925 0.7738 0.1415 0.1033 0.3020 0.4051 0.8388 0.3396 0.1735 0.4162
384×288 0.3807 0.8485 0.2825 0.1196 0.3923 0.4886 0.8824 0.4751 0.1735 0.5033

SimpleBaseline
[67]

256×192 0.5033 0.9136 0.4896 0.1859 0.5166 0.5934 0.9221 0.6262 0.2653 0.6086
384×288 0.5721 0.9145 0.5991 0.1879 0.5888 0.6558 0.9276 0.7033 0.2633 0.6743

HRNet-W32
[58]

256×192 0.5710 0.9340 0.6180 0.2258 0.5844 0.6565 0.9424 0.7204 0.3020 0.6732
384×288 0.6218 0.9474 0.6842 0.2040 0.6417 0.7042 0.9579 0.7664 0.3102 0.7230

HRNet-W48
[58]

256×192 0.5982 0.9463 0.6594 0.2315 0.6125 0.6810 0.9533 0.7516 0.3163 0.6979
384×288 0.6422 0.9458 0.7081 0.2277 0.6602 0.7217 0.9533 0.7897 0.3000 0.7416

HRNet-W32+UDP
[58], [83]

256×192 0.5926 0.9324 0.6468 0.2410 0.6094 0.6805 0.9486 0.7438 0.3286 0.6976
384×288 0.6406 0.9443 0.7253 0.2445 0.6572 0.7185 0.9517 0.7921 0.3224 0.7373

HRNet-W48+UDP
[58], [83]

256×192 0.6139 0.9355 0.6757 0.2386 0.6299 0.6932 0.9463 0.7593 0.3245 0.7110
384×288 0.6557 0.9467 0.7368 0.2540 0.6719 0.7304 0.9525 0.8022 0.3388 0.7491

HRFormer
[76]

256×192 0.6070 0.9457 0.6779 0.2212 0.6216 0.6896 0.9541 0.7601 0.3020 0.7079
384×288 0.6689 0.9579 0.7576 0.2620 0.6865 0.7422 0.9618 0.8162 0.3286 0.7616

SimCC
[84]

256×192 0.5284 0.9131 0.5294 0.1952 0.5418 0.6164 0.9213 0.6589 0.2653 0.6331
384×288 0.5818 0.9240 0.6193 0.2095 0.5988 0.6663 0.9377 0.7212 0.2918 0.6842

(b) Marvel 2016(a) MS COCO (c) SesShips (d) SMD 

Fig. 10. Generalization evaluation of HRNet-W48 trained on SLAD. This figure shows the qualitative results on 4 public datasets, including (a) MS COCO [42],
(b) Marvel2016 [32], (c) Seaships [34], and (d) Singapore Maritime Dataset (SMD) [33].

+ =β

Fig. 11. Landmark-guided ship recognition. We replace the original input
of the recognition model with a synthetic landmark-aware image where the
regions around the landmarks are highlighted.

where Iori and Imark denote the original ship image and
the landmark image respectively. To estimate the value of β,
we start with training the network using the original images,
and then test the trained network using the synthesized Ika
generated with different β. The experimental results indicate
that a larger β value leads to greater differences in distribu-
tion between the new synthesized data and the source data,
especially when β > 0.2. We additionally train the same

network using the synthesized datasets generated with different
β and then test the networks, and find that the trained network
achieves the highest prediction accuracy when β = 0.2.
Therefore, we set β = 0.2 in our experiments. Except for
replacing the original input image with the landmark-aware
one, the other settings for training the ship recognition model
remain the same.

Fig. 12 shows ship recognition losses and accuracy with and
without the landmark information. From the curves in Fig. 12,
we find that it makes no difference when we use the landmark
information to train a network with less than or equal to 50
layers. However, it significantly helps larger networks, such as
ResNet101 and ResNet152, to reduce the recognition losses
and improve the recognition accuracy. This is mainly because
it is difficult to fully train large models with limited data, while
the landmark information can provide additional constraints
for training, thereby helping to improve the performance of
ship recognition.
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TABLE V
AVERAGE PRECISION (AP) AND AVERAGE RECALL (AR) OF SIMPLEBASELINE [67] WITH DIFFERENT BACKBONE NETWORKS ON SLAD.

Methods Input size AP AP50 AP75 APM APL AR AR50 AR75 ARM ARL

SimpleBaseline
+ ResNet-50 [85]

256×192 0.5033 0.9136 0.4896 0.1859 0.5166 0.5934 0.9221 0.6262 0.2653 0.6086
384×288 0.5721 0.9145 0.5991 0.1879 0.5888 0.6558 0.9276 0.7033 0.2633 0.6743

SimpleBaseline
+ResNet-101 [85]

256×192 0.5088 0.9021 0.5032 0.1782 0.5222 0.5968 0.9151 0.6316 0.2612 0.6127
384×288 0.5883 0.9252 0.6319 0.2215 0.6044 0.6697 0.9369 0.7212 0.3041 0.6871

SimpleBaseline
+ResNet-152 [85]

256×192 0.5277 0.9240 0.5546 0.1747 0.5415 0.6160 0.9338 0.6706 0.2633 0.6326
384×288 0.6003 0.9370 0.6659 0.2088 0.6172 0.6802 0.9431 0.7477 0.2939 0.6985

SimpleBaseline
+ResNeXt-50 [86]

256×192 0.5130 0.9005 0.5188 0.1592 0.5280 0.6015 0.9151 0.6449 0.2306 0.6187
384×288 0.5800 0.9143 0.6278 0.2109 0.5975 0.6593 0.9245 0.7173 0.2612 0.6783

SimpleBaseline
+ResNeXt-101 [86]

256×192 0.5355 0.9122 0.5566 0.2102 0.5486 0.6180 0.9283 0.6690 0.2857 0.6336
384×288 0.6045 0.9260 0.6609 0.1943 0.6234 0.6833 0.9377 0.7438 0.2551 0.7033

SimpleBaseline
+ResNeXt-152 [86]

256×192 0.5477 0.9126 0.5690 0.1800 0.5633 0.6342 0.9283 0.6807 0.2571 0.6524
384×288 0.6083 0.9275 0.6699 0.2167 0.6270 0.6874 0.9354 0.7469 0.2694 0.7074

SimpleBaseline
+ MobileNet V2 [87]

256×192 0.4351 0.8721 0.3847 0.1467 0.4471 0.5255 0.8925 0.5327 0.2204 0.5397
384×288 0.5152 0.8993 0.5378 0.1724 0.5289 0.5988 0.9104 0.6511 0.2510 0.6150

SimpleBaseline
+ ShuffleNet V2 [88]

256×192 0.4104 0.8274 0.3518 0.1062 0.4247 0.4878 0.8528 0.4751 0.1571 0.5035
384×288 0.4657 0.8755 0.4479 0.1618 0.4785 0.5471 0.8933 0.5670 0.2327 0.5621

SimpleBaseline
+ VGG16 [89]

256×192 0.5453 0.9116 0.5766 0.1797 0.5597 0.6268 0.9276 0.6838 0.2837 0.6437
384×288 0.6140 0.9242 0.6762 0.1730 0.6333 0.6830 0.9330 0.7461 0.2327 0.7041

SimpleBaseline
+ Swin-Tiny [90]

256×192 0.4210 0.8576 0.3536 0.1364 0.4331 0.5153 0.8886 0.5164 0.2245 0.5287
384×288 0.5254 0.9114 0.5363 0.2310 0.5388 0.6097 0.9276 0.6526 0.3000 0.6243

SimpleBaseline
+ Swin-Base [90]

256×192 0.2528 0.6755 0.1315 0.0867 0.2601 0.3428 0.7492 0.2757 0.1224 0.3530
384×288 0.5261 0.9121 0.5401 0.1875 0.5413 0.6066 0.9213 0.6519 0.2551 0.6229

SimpleBaseline
+ Swin-Large [90]

256×192 0.4210 0.8576 0.3536 0.1364 0.4331 0.5153 0.8886 0.5164 0.2245 0.5287
384×288 0.3029 0.7248 0.2130 0.0775 0.3131 0.3776 0.7687 0.3364 0.1082 0.3899

SimpleBaseline
+HRFormer-Small [76]

256×192 0.5705 0.9318 0.6187 0.2597 0.5850 0.6583 0.9494 0.7220 0.3612 0.6726
384×288 0.6144 0.9464 0.6772 0.2391 0.6300 0.6978 0.9509 0.7609 0.3306 0.7154

SimpleBaseline
+HRFormer-Base [76]

256×192 0.6070 0.9457 0.6779 0.2212 0.6216 0.6896 0.9541 0.7601 0.3020 0.7079
384×288 0.6689 0.9579 0.7576 0.2620 0.6865 0.7422 0.9618 0.8162 0.3286 0.7616

B. Ship Image Generation

Ship landmarks can be seen as a simplified representation
of ships, which is often sparse compared to visual textures.
We believe that by learning the mapping between these two
kinds of representations, it is possible to generate ship images
using ship landmarks.

With the ship landmark annotations provided by SLAD,
we can establish the structures of ships in the style of “ship
skeleton”. As shown in Fig. 13, the skeleton of a ship contains
not only the coordinates of the ship landmarks but also the
links among these landmarks. We apply the pix2pix [99]
method based on Generative Adversarial Network (GAN)
to achieve structure-to-texture generation. After the training
with a small amount of data (less than 10, 000 structure-
texture image pairs), the GAN-based model is able to map
the structural input to its corresponding texture image. In Fig.
13(a), the top row shows the skeletons of different ships while
their texture outputs are shown in the bottom row. It can be
seen that the texture image of a ship can be well produced
based on the ship skeleton. This indicates that the ship skeleton
contains highly discriminative visual cues that can be used to
convey important ship information.

Furthermore, we built the 3D skeleton of each ship in
accordance with the physical symmetry prevalent in ships. Fig.
13(b) shows that by feeding the ship skeletons of different
views into the trained structure-to-texture model, we can
obtain the texture of images captured from different viewpoints
of the same ship. Note that although such ship skeletons of
different views are more likely to be out-of-distribution ones
unseen during training, the GAN-based model still generates
high-quality images of ships.

C. Key Area Detection for Ships

In terms of definition, a ship skeleton formed by landmarks
is similar to the keypoint-based pose of the human body.
While as a kind of the rigid object, ships exhibit relatively
stable geometric structures compared to humans, providing
a stronger sense of direction. With this knowledge, we are
able to achieve key area detection on the basis of ship
skeleton. Due to our careful consideration of the structural
characteristics of ships when selecting ship landmarks, the
skeleton of a ship naturally divides itself into several areas
as illustrated in Fig. 14(a), including the deck area, bow area,
stern area, and superstructure area. As a result, pixels on the
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Fig. 12. Effect of landmark information on the performance of ship recognition. This figure shows the loss curves and average Top-1 performance of various
methods with and without landmark information across 10 duplicate experiments.

Input
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Output
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(b) Multi-view Ship Image Generation

(a) Ship Image Generation

Fig. 13. Results for landmark-based ship image generation. (a) Ship image generation for different ships with corresponding ship skeletons. (b) Multi-view
ship image generation for a single ship by rotating the 3D skeleton.

ship’s surface are assigned with corresponding semantic labels,
representing which specific region they belong to. We present
some qualitative results of key area detection for ships in Fig.
14(b).

Key area detection provides insights into the detailed per-
ception of specific areas of ships, which is of great significance
in the scenario of ship management. For example, according
to international maritime regulations, ships are required to
display markings such as names, registries, and IMO numbers
in visible areas on their hull. Thus a detailed perception
of such areas aids in identifying different ships. As shown
in Fig. 14(c), the parts containing the marking information
can be easily segmented, which significantly reduces the

difficulty of automatic ship identification. Simultaneously, this
can also be used to determine whether a ship has displayed
the required identification information in accordance with
regulations. Furthermore, there are strict regulations regarding
the cargo areas of a ship. As shown in Fig. 14(d), key area
detection has the potential to enable intelligent ship monitoring
systems to locate compliant cargo areas and make preliminary
assessments of the cargo contents, which helps improve the
safety of maritime transportation.

D. Ship Detection
Ship detection is one of the fundamental components of

maritime surveillance, which is crucial for ensuring the safety
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(b) Ship Area Detection

(c) Ship Marking Area Detection (d) Ship Deck Area Detection
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Fig. 14. Landmark-based key area detection for ships. (a) The schematic diagram of key area detection based on landmarks. (b) Examples of key area
detection on real ship images. (c) detection of key areas with identification markings. (d) detection of key areas for cargo.

of navigation at sea. Since the ship landmarks defined in this
paper are semantically meaningful points on the ship body,
the spatial relationships among these landmarks remain fixed,
allowing us to obtain the concepts related to ship orientation,
such as stern or bow and left side or right side. Therefore,
given the coordinates of ship landmarks and combing the
characteristics of symmetry in the ship structure, it is possible
to achieve 3D detection of ship objects using only a 2D ship
image as input. Considering that most ships are symmetrically
designed, most ship landmarks come in left-right pairs, allow-
ing us to enclose the main hull with a hollow cuboid.

In Fig. 15, we present some examples of 3D object detection
for 2D ship images. The 3D bounding boxes are drawn based
on the extreme values of the landmarks’ coordinates, combined
with the symmetry of the ship structure. In particular, to
showcase the spatial layout of the ships, we display the lines of
the 3D bounding box in different colors, where green, red, and
blue represent the right side, left side, and all the other lines,
respectively. It can be observed that the 3D bounding boxes
in the figure accurately locate the main body of the ships,
indicating that the ship landmarks work well in facilitating
monocular 3D ship detection.

VI. CONCLUSION

This paper introduces ship landmarks, which have not been
explored in previous works in the fields of computer vision and
marine engineering. The most distinct feature of this paper is
that we present SLAD, the first ship dataset with landmark
annotations. Specifically, we discover a strong correlation
between high-value regions on the deep feature maps and
the physical structure of ships, which enables us to define

20 landmarks to annotate the ships in maritime images for
creating SLAD. It is composed of 12, 199 ship images cap-
tured under different external conditions. We evaluate several
landmark detectors on SLAD to provide a benchmark for
ship landmark detection in the hope that it can promote the
development of this unexplored field. Moreover, we show the
applications of SLAD in different fields of ship perception,
including ship recognition, ship image generation, key area
detection for ships, and ship detection.

However, the focus of our work is currently limited to the
annotation of ship landmarks in RGB images that are captured
in horizontal view. In the future, we shall extend it to other
types of image data such as SAR images.
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