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Problem definition 

The use of Building Performance Simulation (BPS) to support 
building design has long been the ‘holy grail’ of building 
science research. BPS can also be used during construction 
and operation of buildings, for instance supporting rating 
and certification, optimal control, or fault emulation, but 
design support is particularly interesting as this is where 
the foundations for future building performance are laid. 
The underlying premise is that good predictions of future 
building performance can inform and improve design 
decision-making, and thus help to create buildings that are 
more energy efficient, more comfortable, and overall perform 
better than buildings that are designed without such 
predictions. Work on BPS for design support has been carried 
out since the emergence of building science as a separate area 
of research in the 1960s (Markus et al. 1972; Clarke 2001; 
Maver 2002; Augenbroe et al. 2004). 

However, the need for better buildings is ever-increasing: 
beyond the long quest for energy efficiency, thermal comfort 
and proper lighting, today’s built environment also needs 
to cope with further challenges such as the extreme events 
caused by climate change, the need to decarbonize in terms 
of operational as well as embodied energy, remaining healthy 
in a more polluted world (including fine dust particles, 
Covid-19 and other sources of concern), while at the same 
time becoming an active player in terms of energy generation 
and sharing  –  see for instance the UN sustainable 
development goals or various EU initiatives (United Nations 
2012; European Commission 2019, 2021). At the same time, 
the ongoing digitalization and advances in machine learning 
and artificial intelligence while adding new technologies to 
the building simulation toolset are potentially changing the 
role and focus of simulations in building design and project 

delivery (de Wilde 2023). These new opportunities are 
fascinating and offer all kinds of novel prospects which 
combined with high performance, zero-carbon and smart 
buildings provide a plethora of further possibilities to be 
explored by the BPS community. 

However, the literature on BPS to support design seems 
to suffer somehow from ‘fixation’, particularly in relation 
to the way it interacts with design practice:  
 Too many ‘design tools’ presented in the literature are 

‘solutions in search of a problem’. Their developers have 
reduced functionality and focused on what they believe 
is important to practitioners. But that does not necessarily 
map to what an actual building designer in practice is 
looking for (Augenbroe et al. 2004; Bleil de Souza and 
Tucker 2015). 

 Some of the literature presents ‘models’ and ‘frameworks’ 
of design that are not operational. They are not grounded 
on the complexities of design practice which is permeated 
by liabilities and structured to protect itself from these. 
Deployable models and frameworks need to provide 
actionable information such as numbers or workflows in 
order to be usable, enabling designers to risk assess their 
actions when deciding to ‘jump out of the conventional’ 
(Bleil de Souza et al. 2023b). 

 Some studies also present ‘holistic’ solutions to the problem 
grounded on rarely used procurement processes such  
as ‘Integrated Project Delivery’; a type of procurement 
based on deep and continuous interaction between various 
design professionals, with shared risks and liabilities. 
Similarly, calls in support of these ‘holistic’ solutions 
fail to provide methods to support their propositions, 
particularly in relation to information transfer and 
management, complicating how building performance 
information and design information are exchanged, 
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hindering the creation of useful feedback loops between 
simulation and design (Amorocho 2023; Bleil de Souza 
et al. 2023b). 

 Much of the literature makes rather sweeping and 
stereotyping statements about various building design 
professionals such as ‘the architect’, ‘architectural practitioner’ 
and ‘engineer’ (Attia et al. 2012). They completely dismiss 
the actual roles these professionals take in practice (senior 
designer, information manager, project manager, etc.) 
(RIBA 2020) as well as the level of knowledge they have 
from experiencing different types of education, careers, 
and skills beyond basic academic instruction (Alsaadani 
and Bleil De Souza 2016, 2019). 

 Upon close inspection, many papers cite each other on 
perceived needs and ideas without actually connecting to 
any hard underlying evidence from the practical world. 
For instance, there is no consideration for issues related 
to division of labour and information transfer, or the 
role of heuristics in decision-making (Bleil de Souza et al. 
2023a) in combination with knowledge gained from 
previous projects (Tucker and Bleil de Souza 2021), all of 
which contribute to understand how practitioners are likely 
to interact with BPS. In addition, despite significant 
efforts dedicated towards creating tools for ‘fast feedback’ 
to designers, improving calculation speed and efficiency 
of simulation, little attention has been paid to create 
fit-for-purpose post-processed information for designers 
to act upon simulation results. 

 Much research on using BPS to support design strangely 
fails to engage in-depth with design research literature, 
therefore not acknowledging how designers interact with 
a design problem. They ignore the fact that designers 
frame the problem by trying to find a solution to it 
(Cross 2001) and that they undertake specific types of 
experiments to choose a solution based on what they 
like better, constantly refining it towards more firm 
commitments (Schön 1983; Gero 1990) to then present 
it to the client. 

 Theories about building performance are not limited  
to the traditional domains of building science (building 
physics) and BPS. There is an emerging body in 
architectural theory around the topic of ‘performativity’ 
that is worth exploring (Kolarevic and Malkawi 2005; 
Hensel 2013; Kanaani 2019). Adjacent domains such as 
construction and facility management also have their 
own contribution to building performance, for instance 
in terms of defining the brief for building design and 
thus setting design requirements and targets for BPS and 
other types of simulations to be undertaken (de Wilde 
2018). 

The forementioned points show that the BPS community 
seems to be missing the realities of what design in practice 

is about, failing to properly address the use of BPS within this 
reality, and missing opportunities not only to overcome 
interesting challenges but also to connect with new 
opportunities offered by digitalisation and the emerging 
body of architectural theory in ‘performativity’ (de Wilde 
and Bleil de Souza 2019). Time is overdue for the BPS 
community to properly engage with the reality of design 
practice in an era of digital transformation, climate emergency 
and change in values in relation to how buildings should be 
contributing to neighbourhoods, cities, and citizens.  

Design practice ‘as-is’ 

Some critical notions about what design practice currently 
is to illustrate the problems highlighted in the section above 
are presented in Table 1. They are fundamental to understand 
how BPS can move forward in supporting building design 
and can be extracted from the grey literature used by 
practitioners or the literature in design. 

Recurrent patterns found in the BPS literature 

To prevent new projects repeating earlier efforts, Table 2 
summarises previous initiatives to integrate BPS throughout 
the building design process, so that researchers can assess 
the novelty of their proposals in relation to them, stating 
clearly what is novel and where their proposed new efforts 
deviate from the past research. 

Opportunities for the BPS community 

Table 1 shows constraints for the BPS community to work 
within while developing new tools but at the same time, it 
offers different areas to invest when proposing to assist the 
design process in practice. If one takes each point highlighted 
in relation to ‘Relevance to BPS-design integration’ the 
following opportunities appear: 
 Can new proposals to integrate BPS throughout the 

design process factor in interactions between energy, 
comfort, indoor air quality and CO2 emissions with other 
requirements, particularly other measurable requirements, 
so new multidomain workflows or models can be 
developed to cater for them? Can proposals considering 
design theories about requirement independence (Suh 
1990) be used to develop new frameworks to account for 
solution independence? 

 New proposals need to collect far more empirical data 
about the actual interaction between tools in general and 
design practice to break out of theoretical notions and 
constructs that lack traction in the real world of design. 
They need to investigate what exactly happens within 
each design deliverable stage and list all the activities 
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designers undertaken in them to realistically propose 
tools that are fit-for-purpose to also respond to the 
different levels of resolution design solutions need at 
every stage. 

 It is essential that BPS tools are either inserted or at least 
have a smooth ‘conversation’ with BIM as this is where 
designers experiment (massing BIM is now being used in 
the early design stages) with ideas and develop design 
solutions. BIM ought to provide an excellent platform  
to integrate with BPS data but the BPS community is 
far from using it to its potential, missing opportunities 
to engage with the industry pushing for building Digital 
Twins. 

 New proposals need to acknowledge that ultimate design 
choices are taken by the client and the top managers   

of the design team and abandon the idea of promoting 
‘holistic’ automations for such decisions (either multi- 
criterion, multi-objective, etc.), but instead to focus on 
producing useful visualizations to aid them. 

 BPS developers also need to understand that digital 
assistance is primarily welcome when it saves time and 
provides evidence-base decisions. Time is overdue for 
modelling to be automated from digital design environments 
to BPS to speed up the work of consultants and/or enable 
designers to analyse results while manipulating their digital 
models, depending on their background knowledge. 
New opportunities offered by AI and machine learning 
can be explored, not only to act as simulation surrogates 
but also to leverage knowledge of practitioners by aiding 
with interpreting results. 

Table 1 Design practice, ‘as-is’ with opportunities and constraints offered to BPS integration 

Characteristics of design in practice Relevance to BPS-design integration 

 Projects primarily address clients’ needs which are transformed 
into technical requirements and constraints (Bleil de Souza et 
al. 2023a). However, capturing and managing these requires 
active work by the design team (Jasuja 2005). 

 Requirements and constraints need to be elicited in the design brief, and 
pulled down to the design process (EN ISO 55000 2014; EN ISO 55001 
2014; EN ISO 55002 2018). They are augmented with externally imposed 
requirements, for instance the building regulations. Requirements go beyond 
energy, comfort, indoor air quality and CO2 emissions (Bleil de Souza et al. 
2023a; de Wilde 2018). 

 The design process is structured around a clear set of deliverables 
via procurement routes and contracts subject to approval 
(RIBA 2020). 

 Approval from the client, planning authorities and building regulators only 
enables interactive loops between the design team within project stages (Bleil 
de Souza et al. 2023a). 

 Procurement routes, contracts and information delivery plans 
specify who does what together with the type of information 
exchanged (Designing Buildings 2024). 

 There is division of labour in the industry, endorsed through federate building 
information models, the main digital environment that designers use for their 
work (EN ISO 19650-1 2018; EN ISO 12006-2 2020). 

 Every building is unique; a ‘prototype’ of one (Bleil de Souza 
et al. 2023a) responding to site, surroundings, program and 
client requirements and constraints. 

 Ultimate design decisions are context dependent and a product of concerted 
action among the design team and the client, with little room for automation 
(Hamza and de Wilde 2014; de Wilde 2018). 

 Within design stages, practitioners ‘reflect in action’ by exploring 
design alternatives, testing the consequences of their actions, 
or testing hypothesis to act (Schön 1983). 

 Solutions are chosen based on what the practitioner likes better (Simon 1973; 
Cross 2001) so digital assistance is welcome for an evidence-based solution to 
be adopted (Augenbroe 2011). 

 Design problems are ill-defined (Simon 1973) and characterised 
by a co-evolution of problem and solution (Cross 2001). 

 Solutions are constantly reframed towards eventual commitment (SchÖn 1983; 
Cross 2001), meaning their assessment needs to cater for uncertainty (Rezaee 
et al. 2015) while informing future steps. 

Table 2 Summary of approaches discussed in earlier works and their appropriateness to design practice 

Past initiatives Appropriateness to design in practice 

 Use BPS to explore wide design solution spaces or to rank 
design options. 

 Design solutions are aimed at convergence, rather than divergence (Jones 1980), 
a search across multiple options is not common (Schön 1983). 

 Development of ‘simple/simplified design tools’ for architects.  Only valid if these tools are inserted within the microcosmos of ‘reflection in 
action’ (Schön 1983).  

 Different frameworks to insert cause-and-effect methods to 
inform design (places for BPS in the process). 

 Suitable for diagnostics, compliance check, but without post-processing does 
not contribute to design decision-making (Bleil de Souza and Tucker 2015). 

 Sensitivity analyses, including parametric design methods.  Appealing to the limited public that tends to use parametric design tools in 
form finding, not necessarily compatible with BIM and wider design practice. 

 Use of deterministic choice decision-support systems in BPS 
to aid design decision-making (multi-criteria evaluation, 
optimization, etc.). 

 Mainly applied in detailed phases to select specific design components (Bleil 
de Souza et al. 2023a). 

 Interoperability between BIM and BPS tools.  Needs to be further automated, streamlined and potentially post-processed. 
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 To be inserted in the microcosmos of practitioner’s 
‘reflections in action’, BPS researchers need to be immersed 
themselves into this experience to properly experiment 
with it so that new tools become part of this process rather 
than a nuisance to it. Experimenting is fundamental to 
avoid the misconception that ‘watchers’ know better 
than ‘doers’. It prevents stereotyping or simplifying 
assumptions. The context of ‘doing’ is starkly different 
and open opportunities for innovation to emerge. 

Note that one needs to be very, very careful about 
claims regarding the impact of tool development on actual 
building performance. It is almost impossible to set up a 
solid scientific experiment that (1) is replicable (2) has one 
single meaningful intervention whilst keeping all other 
factors constant and (3) is not open to interpretation bias. 
It is therefore unlikely that the impact of tools, frameworks, 
decision-support systems and similar can be validated while 
used in practice. At best we can ask for a demonstration 
that shows feasibility in a real design setting. 

Properly addressing these challenges will lead to significant 
innovation and rejuvenation of the BPS-supporting building 
design research area. 
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