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Abstract
Purpose: Demonstrating and assessing self-supervised machine-learning fitting
of the VERDICT (vascular, extracellular and restricted diffusion for cytometry
in tumors) model for prostate cancer.
Methods: We derive a self-supervised neural network for fitting VERDICT
(ssVERDICT) that estimates parameter maps without training data. We compare
the performance of ssVERDICT to two established baseline methods for fitting
diffusion MRI models: conventional nonlinear least squares and supervised deep
learning. We do this quantitatively on simulated data by comparing the Pear-
son’s correlation coefficient, mean-squared error, bias, and variance with respect
to the simulated ground truth. We also calculate in vivo parameter maps on a
cohort of 20 prostate cancer patients and compare the methods’ performance in
discriminating benign from cancerous tissue via Wilcoxon’s signed-rank test.
Results: In simulations, ssVERDICT outperforms the baseline methods (non-
linear least squares and supervised deep learning) in estimating all the parame-
ters from the VERDICT prostate model in terms of Pearson’s correlation coeffi-
cient, bias, and mean-squared error. In vivo, ssVERDICT shows stronger lesion
conspicuity across all parameter maps, and improves discrimination between
benign and cancerous tissue over the baseline methods.
Conclusion: ssVERDICT significantly outperforms state-of-the-art methods for
VERDICT model fitting and shows, for the first time, fitting of a detailed multi-
compartment biophysical diffusion MRI model with machine learning without
the requirement of explicit training labels.
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1 INTRODUCTION

Prostate cancer (PCa) characterization is reliant on inva-
sive biopsy, but in recent years, multiparametric MRI
(mp-MRI) has become established in the diagnostic path-
way for localization and staging of clinically signifi-
cant PCa (csPCa).1 Diffusion MRI (dMRI) is a power-
ful component of mp-MRI, measuring the motion of
water molecules in biological tissues to infer information
about local microstructure. Advanced multi-compartment
models of the dMRI signal can estimate parameters
relating to specific microstructural properties such as
cell size, density, and vasculature.2 Such models enable
noninvasive analysis of similar metrics to those typi-
cally only accessible by histology and have been shown
to reduce the need for invasive biopsies in breast3

and PCa.4
Microstructural information can be extracted by

designing models with parameters corresponding to these
biophysically relevant metrics, which are then estimated
by fitting the models to dMRI data. These models tend
to be nonlinear with many free parameters, and dense
q-space sampling is required for accurate description of
the microstructure, which involves time-consuming pro-
cesses. This means that parameter estimation becomes a
difficult inverse problem, scaling with both voxel number
and model complexity. Additionally, parameter estima-
tion requires an optimization-based procedure, typically
relying on nonlinear least squares (NLLS) curve fitting,
which is computationally expensive and prone to esti-
mation errors.5 These challenges when obtaining and
examining dMRI data hinder the clinical translation of
these methods.

Recent work has used deep learning (DL) techniques
to solve this parameter-estimation inverse problem. These
algorithms learn the mapping between the q-space data
and the microstructural parameters of the dMRI model.
Pioneering work on q-space learning by Golkov et al.6
estimated model parameters using a multilayer percep-
tron (MLP), an approach that has since been widely
used for ultrafast model fitting.7–9 Convolutional neu-
ral networks (CNNs) have also been used with super-
vised learning for dMRI model fitting,10 as have trans-
formers,11 but these methods require large amounts of
training data. Supervised DL approaches have been used
to fit both simple exponential models as well as com-
plex biophysical models, such as NODDI (neurite orienta-
tion dispersion and density imaging)12 and the spherical
mean technique.13 However, supervised methods are sig-
nificantly affected by the underlying distribution of the
training data, which can introduce biases in the parameter
estimates.5,13

Another branch of deep learning is referred to as
self-supervised learning. These methods require the neu-
ral network to predict one part of the input data given
another part,14 removing the requirement for explicitly
labeled training data and thus the risk of introducing bias
to the estimates. This approach has been successful for
microstructural parameter estimation with the intravoxel
incoherent motion (IVIM) model.5,15–19 However, despite
these numerous IVIM examples, and in contrast to super-
vised model fitting, self-supervised model fitting has not
been demonstrated for detailed multicompartment bio-
physical models.

Here we introduce a self-supervised approach to fit the
vascular, extracellular, and restricted diffusion for cytom-
etry in tumors (VERDICT) model for prostate: a multi-
compartment biophysical dMRI model.20 We refer to our
method as ssVERDICT. The VERDICT framework, cur-
rently in clinical trials applied to PCa, requires robust
model fitting to estimate microstructural metrics such
as cell size, intracellular volume fraction, and diffusiv-
ity. These have previously been estimated via NLLS and
supervised DL approaches,21–23 but the complexity of VER-
DICT increases its susceptibility to the aforementioned
limitations of these techniques.

This is the first work demonstrating self-supervised fit-
ting of diffusion MRI models beyond simple exponential
models. We show that ssVERDICT achieves higher accu-
racy and reduced bias when estimating microstructural
parameters using ground-truth simulations. On real data,
ssVERDICT achieves discrimination of cancerous tissue
from benign at a higher confidence level on a data set of 20
PCa patients, highlighting the potential of the method for
clinical translation.

2 METHODS

In this section, we first introduce the VERDICT model for
prostate, a three-compartment biophysical dMRI model.
We then outline how the simulated data was generated
and how the patient data was acquired. We discuss the
two baseline fitting methods (conventional NLLS fitting
and supervised deep learning), followed by our novel
self-supervised fitting method, ssVERDICT. Finally, we
give details on the preprocessing steps, region-of-interest
(ROI) selection, and the evaluation metrics used.

2.1 VERDICT model

The VERDICT prostate model is the sum of three para-
metric models describing the dMRI signal as arising from
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intracellular (IC), extracellular-extravascular (EES), and
vascular (VASC) water populations, as originally intro-
duced in Panagiotaki et al.20 The total normalized signal is
calculated as

S
S0
= fVASCSVASC(dVASC, b) + fICSIC(dIC,R, b,Δ, 𝛿)

+fEESSEES(dEES, b),
(1)

where fi is the volume fraction; Si is the normalized sig-
nal from water molecules in population i (where i =IC,
VASC, or EES); and R represents the cell radius. The
vascular signal fraction, fVASC, is computed as 1 − fIC −
fEES, since

∑3
i=1fi = 1 and 0 ≤ fi ≤ 1, and S0 is the sig-

nal with no diffusion weighting.20 The contribution of
each compartment to the overall signal can be assessed
via the volume fractions. Here, b is the b-value; Δ is the
gradient pulse separation; and 𝛿 is the gradient pulse
duration.

In this paper, we use a modified version of the original
VERDICT model first introduced in Panagiotaki et al.,22

where the mathematical signal forms are as follows:
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where𝜙 is the error function𝜙(z) = ∫ z
0 exp

(
−t2)dt, and 𝛼

2
m

is the mth root of (𝛼R)−1J 3
2
(𝛼R) = J 5

2
, where Jn(x) is a Bessel

function of the first kind.2,22,24

The spherical mean version of the VERDICT model
represents the IC component as restricted diffusion within
spheres of radius R (using the Gaussian phase distribu-
tion approximation25) with intrasphere diffusivity fixed at
dIC = 2 μm2∕ms. The EES component is represented as
Gaussian isotropic diffusion with effective diffusivity dEES,
and the vascular component as isotropically restricted
diffusion within spherically-averaged randomly oriented
sticks with intrastick diffusivity fixed at dVASC = 8 μm2∕ms
as in Refs. 22 and 24. The fixed values are chosen in Pana-
giotaki et al.22 via preliminary work on model selection
to minimize fitting error, and here we use the VERDICT
model with free dEES, as in Bonet-Carne et al.,24 which can
be informative for describing cancer tissue.26 By fitting the

model to dMRI data, we estimate four model parameters:
fEES, fIC, R, and dEES.

2.2 Patient data

The study was performed with the approval of the local
ethics committee embedded within the INNOVATE clin-
ical trial (NCT02689271),27 which included men sus-
pected of having csPCa. For this study, we randomly
selected 20 patients from the INNOVATE cohort with
biopsy-confirmed csPCa. This sample size was cho-
sen based on previous work,15 allowing us to provide
an initial demonstration of the fitting technique on a
range of Gleason grades while optimizing radiologists’
time. VERDICT-MRI was performed on a 3T MRI sys-
tem (Achieva; Philips, Best, the Netherlands) using a
pulsed-gradient spin-echo sequence. The imaging param-
eters, as published in Refs. 4 and 26–28 were as follows:
TR= 2482–3945 ms, FOV = 200 × 220 mm, voxel size =
1.3 × 1.3 × 5 mm, no interslice gap, acquisition matrix =
176 × 176. The optimized VERDICT acquisition protocol
for prostate is: b = 90, 500, 1500, 2000, and 3000 s∕mm2;
𝛿 = 3.9, 11.4, 23.9, 14.4, and 18.9 ms; and Δ = 23.8, 31.3,
43.8, 34.3, and 38.8 ms28 (with some slight variation in 𝛿∕Δ
due to machine settings). Images were acquired with diffu-
sion weighting in three orthogonal directions. Six repeats
were acquired per b-value in each direction (except for b =
90s∕mm2, for which four repeats were acquired). For each
of the five combinations of b/𝛿/Δ, we used the minimum
possible TE, giving TEs of 50–90 ms, and a b = 0 image was
acquired with each of the five datasets. The three direc-
tions were averaged for each b-value, resulting in 10 image
volumes.

2.3 Simulated data

We generated synthetic datasets for quantitative analysis
using the VERDICT model with added Rician noise. We
first simulated datasets with SNR levels ranging from 10
to 100, so we could test the robustness of the methods
to noise. We then set SNR= 50 for the final simulated
data set. We created 100 000 signals from uniform VER-
DICT parameter distributions within biophysically realis-
tic parameter ranges: fEES = [0.01, 0.99], fIC = [0.01, 0.99],
R = [0.01,15] 𝜇𝑚, and dEES = [0.5,3] μm2∕ms. We calcu-
lated fVASC = 1 − fIC − fEES as before, with fVASC < 0 set to
be equal to 0. We normalized each volume fraction by
dividing by fVASC + fIC + fEES, to scale them proportionally
while ensuring they sum to one. We simulated dMRI data
using the same acquisition protocol as the patient data.28

The parameters were drawn from uniform (rather than
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in vivo) distributions to minimize bias in the resulting
parameter estimates.5,13

2.4 Conventional iterative fitting

We fit the VERDICT model via NLLS using custom code
in MATLAB (The MathWorks Inc., Natick, Massachusetts,
USA). This used the “lsqcurvefit” function to implement
the Levenberg–Marquardt algorithm as in Refs. 20 and 22
with parameter constraints as given in Section 2.3. Pre-
diction for the whole unmasked dMRI data set (approxi-
mately 5 × 105 voxels) took approximately 140 s per subject
(Apple M1 Pro).

2.5 Supervised deep learning

Supervised techniques approximate the function f
that maps the measurement S to its corresponding
ground-truth parameters, x, by minimizing the difference
between the ground-truth parameter values (training
labels) and the parameter estimates (network output).
The training loss is calculated as the mean squared error
(MSE) between the estimated and ground-truth values.
We use an MLP architecture, implemented in Python
3.7.13 using the “MLPregressor” in scikit-learn 0.23, to
compare with Refs 21, 26, 29, and 30.

The input of the deep neural network (DNN) is a vec-
tor of dMRI signals for each combination of b, Δ, 𝛿 (a
total of 10 in this case), followed by three fully-connected
hidden layers, each with 150 neurons,21,26,29,30 and a
final regression layer with four output neurons (equal
to the number of parameters to be estimated). The DNN
is trained on 100 000 synthetic signals (split into 80%
for training and 20% for validation), with values for the
model parameters randomly chosen from the ranges given
in Section 2.3. We performed the optimization with the
ADAM method for 1000 epochs (adaptive learning rate
with initial value of 0.001; one update per minibatch
of 100 voxels; early stopping to mitigate overfitting (as
implemented in scikit-learn); and momentum= 0.9). For
the final parameter computation, we used the DNN at
the epoch with minimum validation loss. The creation
of the training set and training of the DNN (which was
performed only once) took roughly 200 s. Prediction of the
trained DNN for the whole unmasked dMRI data set took
approximately 30 s per subject.

2.6 Self-supervised deep learning

Self-supervised methods compute f by minimizing the dif-
ference between the noisy MR signals (network inputs)

and noise-free signal estimates reconstructed from the esti-
mated parameters (network outputs). The training loss is
equivalent to the MSE between the predicted signal, ̂S, and
the input signal S.15 Here, network training and inference
is performed on the same data set, mimicking the NLLS
approach.

We implemented a fully connected neural network
with three hidden layers, each with 10 neurons (equal to
the number of image volumes), using PyTorch 1.12.1. The
output layer is fed into the VERDICT model equation to
generate the predicted signal ̂S. Crucially, this requires
coding the VERDICT model in PyTorch in a differentiable
form. For this, we formulate the intricate signal equations
for VERDICT’s “sphere” and “astrosticks” compartments
(Eqs. [2] and [3]) as PyTorch tensor functions, so that
multidimensional tensors of batched parameter values can
be inputted to yield output tensors of batched predicted
signals. A schematic of ssVERDICT is given in Figure 1.

For the final parameter estimation, we used the nor-
malized input data, the ADAM optimizer, and the DNN
at the epoch with minimum validation loss. We optimized
the DNN by backpropagating the MSE between S and ̂S,
where ̂S is reconstructed via the VERDICT model from the
parameter estimates. We chose a learning rate of 0.0001
and the network was trained until 10 consecutive epochs
occurred without any improvement in loss, before termi-
nating to prevent overtraining. We used dropout (p = 0.5)
to prevent overfitting and constrained the parameter val-
ues to the ranges in Section 2.3 using the PyTorch clamp
function. Training and prediction for the whole unmasked
dMRI data set took about 50 s per subject.

2.7 Data preprocessing

The preprocessing pipeline included denoising of the
raw DW-MRI using MP-PCA31 as implemented within
MrTrix332 “dwidenoise,” and then correction for Gibbs
ringing33 with custom code in MATLAB, as done in Refs.
4, 21, 26, and 27. To reduce potential artifacts caused by
patient movement during scanning and eddy current dis-
tortions, we applied mutual-information rigid and affine
registration using custom code in MATLAB.34 We nor-
malized the data by dividing the dMRI volumes by their
matched b= 0. As we use the spherical mean version of the
VERDICT model, we spherically averaged the data across
the three orthogonal directions to produce 10 image vol-
umes, where each volume was a 3D image consisting of 14
slices.

2.8 ROIs

Patients were biopsied based on their mp-MRI
score as reported by two board-certified experienced
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F I G U R E 1 Schematic of our self-supervised network. The input to the neural network is the signal extracted from 10 signal volumes;
therefore, there are 10 input nodes. The network has three hidden layers, each with 10 nodes. The final layer has five nodes, corresponding to
the four estimated vascular, extracellular, and restricted diffusion for cytometry in tumors (VERDICT) parameters and S0, the signal with no
diffusion weighting. To reconstruct the signal (̂S), the complex VERDICT signal equations (Eqs. [1]–[4]) are written in differentiable form so
that it can be incorporated as a layer in the network, such that batches of signals can be inputted and batches of parameters outputted.

uroradiologists (over 5 years of reporting experience
at a specialist center and reporting more than 2000
prostate MR scans per year). The ROIs were drawn by a
board-certified study radiologist (S. Singh) using a pictorial
report made by the clinical uroradiologist and confirmed
as cancerous retrospectively via targeted biopsy. Twenty
patients with positive biopsies with a range of Gleason
grades were selected for inclusion in the study. For each of
the 20 patients, an additional ROI was located in an area
of benign tissue to be used for comparison, after a review
of the sampling biopsy result confirmed the absence of
tumor on the contralateral side.

2.9 Evaluation metrics

We quantitatively compared the performance of the three
parameter estimation methods via a variety of evaluation
metrics: (1) Pearson’s correlation coefficient, (2) MSE, (3)
bias, and (4) variance, all with respect to ground-truth
parameter values used for the simulated data. The formu-
las for the metrics used are as follows:

MSE = 1
N

N∑

i=1
(Oi − Ei)2, (5)

Bias = 1
N

N∑

i=1
(Oi − Ei), (6)

Variance = 1
N

N∑

i=1

(
Ei − E

)2
, (7)

where O is the ground-truth parameter value; E is the
estimated value (E is the mean); and N is the number of
samples.

We discriminated between cancerous and benign tis-
sue in vivo by comparing parameter values in respective
ROIs using the Wilcoxon’s signed-rank test (preceded by
the Shapiro–Wilk test for normality).

3 RESULTS

Figure 2 shows estimated VERDICT parameters via
each fitting method plotted against randomly generated
ground-truth parameter values (Section 2.3). The Pearson’s
correlation coefficients r are highest for all four VERDICT
parameters when fitted via ssVERDICT. We also observe
higher r values for supervised DL fitting over NLLS.

Table 1 gives the MSE, bias, and variance values for
all four fitted parameters with each of the fitting meth-
ods. We observe lower bias and MSE across all parameters
via ssVERDICT, and lower variance in estimating fEES
and dEES. However, supervised DL fitting achieves lowest
variance in estimating fIC and R.

Figure 3 shows in vivo maps of the four fitted VER-
DICT parameters and calculated fVASC. ssVERDICT shows
strong lesion conspicuity for the fIC and fEES maps, and rea-
sonable conspicuity on the fVASC, R, and dEES maps. The
supervised DL method achieves strong lesion conspicuity
for fEES and fVASC, and the NLLS method for fIC and fEES.
In Figure S1, we show these trends continue for patients
with different Gleason grades, and that the maps can aid
in discriminating cancer grades.

Figure 4 shows boxplots of the fitted VERDICT param-
eters in benign and cancerous prostate tissue for a data set
of 20 patients. All three methods can discriminate among
tissue types to a high level of significance with fIC and fEES.
ssVERDICT increases discrimination between benign and
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F I G U R E 2 Scatterplot of simulated ground-truth parameter values and predicted values via the three fitting methods, with a
signal-to-noise ratio (SNR) of 50. We observe higher Pearson’s correlation coefficient r when using self-supervised neural network for fitting
VERDICT (vascular, extracellular and restricted diffusion for cytometry in tumors) (ssVERDICT) for all four estimated parameters. EES,
extracellular-extravascular; IC, intracellular; NLLS, nonlinear least squares.

T A B L E 1 Mean-squared error (MSE), bias, and variance values calculated between simulated ground truth and predictions obtained
via each fitting method, with the best performing method highlighted in bold. We find self-supervised neural network for fitting VERDICT
(ssVERDICT) achieves the lowest MSE and bias across all four parameters, and lowest variance for f EES and dEES.

MSE

Method fIC fEES R (𝝁𝒎) dEES
(
𝛍m2∕ms

)

NLLS 0.1232 0.1137 17.6976 0.9905

Supervised DL 0.0714 0.0994 6.8860 0.7489

ssVERDICT 0.0289 0.0362 5.5278 0.7160

Bias

Method fIC fEES R (𝝁𝒎) dEES
(
𝛍m2∕ms

)

NLLS −0.0742 0.0680 −0.9442 −0.3624

Supervised DL −0.1008 0.1571 −0.7152 0.3994

ssVERDICT −0.0070 −0.0162 0.4002 0.2522

Variance

Method fIC fEES R (𝝁𝒎) dEES
(
𝛍m2∕ms

)

NLLS 0.0958 0.0942 17.5022 0.8649

Supervised DL 0.0459 0.0627 13.3562 0.6388

ssVERDICT 0.0655 0.0542 16.7244 0.4378

Abbreviations: DL, deep learning; NLLS, nonlinear least squares; VERDICT, vascular, extracellular and restricted diffusion for cytometry in tumors.
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F I G U R E 3 Parameter maps of the four fitted vascular, extracellular and restricted diffusion for cytometry in tumors (VERDICT)
parameters and calculated fVASC for 2 patients. Data set 1 shows a Gleason 3+ 3 grade tumor in the left anterior and 3+ 4 grade tumor in the
right posterior peripheral zone, and data set 2 shows a Gleason 4+ 3 grade tumor in the right peripheral zone. We observe improved lesion
conspicuity overall when using self-supervised neural network for fitting VERDICT (ssVERDICT), whereas supervised deep learning only
shows strong tumor conspicuity for fEES and fVASC, and nonlinear least squares (NLLS) only for fIC and fEES. We observe greater variations in
the NLLS maps due to the fitting technique’s susceptibility to noise.6 EES, extracellular-extravascular; IC, intracellular; VASC, vascular.

cancerous prostate tissue when compared with NLLS and
supervised fitting in two ways:

1. Shows statistically significant differences at p < 0.001
with extracellular-extravascular diffusivity (dEES),
which is not achieved by the other techniques; and

2. Shows statistically significant differences at p < 0.05 for
cell radius (R), which is not seen with supervised DL or
NLLS fitting.

Figure 5 shows boxplots of the difference between the
fitted VERDICT parameters and the ground-truth values
for 10 000 simulated signals via the three fitting methods
at varying SNR. In general, we observe that ssVERDICT

results in estimates with a median difference closest to
zero and smaller interquartile ranges, including at low
SNR. More specifically, the supervised and NLLS meth-
ods result in differences with interquartile ranges over
half the span of the parameter range from a relatively
high SNR, whereas ssVERDICT maintains robust fitting
until SNR= 10 for fIC, fEES, and R (and SNR= 20 for
dEES). This suggests more accurate estimation via ssVER-
DICT across a range of SNR values, with reduced robust-
ness only at very low SNR. This also supports our deci-
sion to simulate data with an SNR of 50, as we show
that parameter estimation remains robust across a wide
range of SNRs, and this value is close to that observed in
practice.
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F I G U R E 4 Boxplots of four fitted vascular, extracellular and restricted diffusion for cytometry in tumors (VERDICT) parameter values
in benign and cancerous tissue regions in a data set of 20 prostate cancer patients, calculated via the three fitting methods. We find that
self-supervised neural network for fitting VERDICT (ssVERDICT) maintains the high level of statistical significance achieved by the baseline
methods when using fIC and fEES for tissue discrimination. ssVERDICT also improves the level of statistical significance with dEES and
achieves statistical significance with R. EES, extracellular-extravascular; IC, intracellular; NLLS, nonlinear least squares.

We also investigate correlations between the VERDICT
parameters using ssVERDICT (with results included as
Figures S2 and S3). We propose that these arise due to the
inevitable way in which that biophysical compartments
interact; for example, a higher volume fraction for one
compartment will always lead to lower volume fractions
for other compartments. The same trends are observed
in both simulations (see Figure S2) and real data (see
Figure S3); therefore, we conclude that they are not an
artifact of the fitting process.

4 DISCUSSION

PCa diagnosis can be significantly improved by the intro-
duction of noninvasive biomarkers derived from quan-
titative diffusion MRI.20,35 However, clinical adoption of
such techniques requires robust model fitting to avoid
misdiagnosis.13,36 This study presents a self-supervised fit-
ting strategy (ssVERDICT) that can support biophysical
multi-compartment dMRI models, demonstrated with the
three-compartment VERDICT prostate.20,22 Previously,
self-supervised model fitting was limited only to sim-
ple exponential dMRI models.5,15–19 This is likely due
to the difficulty involved in formulating complex signal

equations (typical of biophysical models) as a differen-
tiable forward model. Our work is a key step-change
for self-supervised machine learning for dMRI model
fitting, moving from simple models to more detailed
multi-compartment biophysical models. We use a version
of the VERDICT model with four free parameters previ-
ously used in Bonet-Carne et al.,24 to achieve a trade-off
between biophysical realism and robust model fitting with
traditional methods. This version has dEES unfixed, which
has shown biomarker potential for aiding discrimination
of false-positive cases of PCa.26

We demonstrate that ssVERDICT outperforms the two
baseline approaches for VERDICT model fitting (con-
ventional iterative fitting [NLLS] and supervised DL fit-
ting)20–22,26,29,30,37 across a range of quantitative metrics.
We also use ssVERDICT on clinical in vivo prostate
data, showing excellent tissue discrimination between
benign and cancerous tissue. Our work investigates DL
model fitting-estimation bias in prostate imaging, achiev-
ing reduced bias in comparison to supervised DL in sim-
ulations. Both DL methods outperform the NLLS fit both
in terms of efficiency and robustness, in line with results
from Refs. 5 and 15, strongly motivating the use of machine
learning for diffusion MRI model-fitting tasks and chal-
lenging the widespread use of NLLS as the standard



SEN et al. 9

F I G U R E 5 Boxplots of difference between fitted vascular, extracellular and restricted diffusion for cytometry in tumors (VERDICT)
parameter values and simulated ground truth for 10 000 simulated signals using the three fitting strategies. We find median differences
closest to zero and smaller interquartile ranges in general across the four parameters when using self-supervised neural network for fitting
VERDICT (ssVERDICT), suggesting more accurate fitting by our method across a range of signal-to-noise ratio (SNR) values. EES,
extracellular-extravascular; IC, intracellular; NLLS, nonlinear least squares.

fitting procedure. PyTorch code for the VERDICT prostate
model, as well as instructions on how to implement
self-supervised fitting of other VERDICT-based biophysi-
cal models,21,37 is available at https://github.com/snigdha
-sen/ssVERDICT. The differentiable form of the compart-
ments can also be used to enable self-supervised fitting
of other complex diffusion models, such as the “sphere”
for NODDI38 and “astrosticks” for the SANDI (Soma And
Neurite Density Imaging) model.39

Our simulation results suggest ssVERDICT can esti-
mate the underlying microstructure more accurately than
supervised DL and NLLS, as we observe stronger correla-
tions between parameter estimates and ground truth and
improved robustness to additional noise in the acquisition
(i.e., at low SNR). We also found reduced bias and MSE
across all four fitted VERDICT parameters when using
ssVERDICT in comparison to the other methods, as well
as lower variance when estimating fEES and dEES (Table 1).
We note these trends are generally also reflected at vary-
ing SNR. These results agree with Refs. 5 and 15, which
found that self-supervised fitting of the simple IVIM model
resulted in more accurate estimation than NLLS and lower
bias than supervised DL. Our results demonstrate that this

improvement in estimation translates to a significantly
more complex multi-compartment model.

Analysis of real patient data with ssVERDICT shows
promising results in vivo, achieving the best tumor con-
spicuity over all VERDICT maps (e.g., Figure 3) with
enhanced tissue type discrimination. Importantly, we
found higher statistical significance for dEES with ssVER-
DICT in comparison to other methods—a parameter that
has been shown to aid the characterization of false-positive
lesions.26 The improved lesion conspicuity and charac-
terization with ssVERDICT shows great promise for the
translation of the technique into the standard PI-RADS
(prostate imaging reporting & data system)40 for the scor-
ing of indeterminate lesions (PI-RADS 3 and 4).23 This
strongly suggests that the benefits of our technique will
translate to clinical practice, improving noninvasive tumor
characterization and hence further reducing invasive
biopsies.

This work is limited primarily by the small size of
the patient data set and the range of prostatic disease
included. We originally chose a cohort of 20 patients to
enable an initial analysis of the efficacy of a new technique
and include a range of cancer grades. Our initial cohort

https://github.com/snigdha-sen/ssVERDICT
https://github.com/snigdha-sen/ssVERDICT
https://github.com/snigdha-sen/ssVERDICT
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demonstrates statistical significance in several parameters.
However, a larger cohort study is necessary to determine
the effect sizes with more confidence. We also only focus
on voxel-wise methods rather than extending to architec-
tures that learn spatial correspondences in images such as
CNNs or spatial transformers. Although a self-supervised
CNN has been demonstrated for the IVIM model,16,17 and
supervised CNN methods have been used widely for dMRI
model fitting,10,12 we instead focus on voxel-wise fitting
methods to enable a clear comparison between ssVER-
DICT and the currently used VERDICT fitting techniques
in a controlled environment.

Future work will aim to increase statistical signifi-
cance with a larger patient cohort and incorporate a wider
range of prostatic diseases26,29 to test ssVERDICT’s ability
to accurately characterize tissue microstructure and max-
imize its potential clinical impact. Our results in Figure 4
show improved separation between benign and cancerous
tissue with ssVERDICT, which may translate to improved
discrimination between Gleason grades (see Figure S1)
and characterization of indeterminate cases. We will also
investigate fitting more complex biophysical dMRI mod-
els such as VERDICT with tissue relaxation and the brain
VERDICT model21,37 via a self-supervised CNN approach
similar to Refs. 16 and 17, to investigate potential further
gains in fitting speed and accuracy. Finally, we will conduct
a comparison between the supervised and self-supervised
methods across the entire range of machine learning
hyperparameters, to optimize the network for VERDICT
model fitting.

In conclusion, our work shows that self-supervised
fitting of the VERDICT prostate model performs better
in simulations and in vivo data than baseline methods.
This study is the first to extend self-supervised model
fitting beyond multi-exponential models. Our results
demonstrate that ssVERDICT characterizes prostate
tumor microstructure to enable improved discrimination
between benign and cancerous tissue, contributing toward
the ultimate goal of reducing the number of biopsies and
improving patient care.
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Figure S1. Parameter maps of a patient with a Gleason
Grade 4+ 4 tumor in the patient’s left (image right) poste-
rior peripheral zone and a patient with a Gleason Grade
4+ 4 tumor in the patient’s left transition zone (upper) and
a Gleason Grade 4+ 5 tumor in the patient’s left peripheral
zone (lower). These maps show that the trends of clearer
tumor conspicuity with ssVERDICT (self-supervised neu-
ral network for fitting VERDICT [vascular, extracellular
and restricted diffusion for cytometry in tumors]) continue
over a range of Gleason grades, and we may see trends
such as higher intracellular volume fraction fIC for higher
Gleason grades.

Figure S2. Correlations between VERDICT (vascu-
lar, extracellular and restricted diffusion for cytometry
in tumors) parameters on 10 000 simulated voxels.
We observe strong correlation between fEES and fIC
(r=−0.8298), as the sum of the three volume fractions
must equal to one; therefore, as one increases, the others
will decrease. We also observe weak correlation between
R and dEES.
Figure S3. Correlations between VERDICT (vascular,
extracellular and restricted diffusion for cytometry in
tumors) parameters on the data set of 20 prostate cancer
(PCa) patients, with all voxels plotted for each patient in
benign and tumor regions of interest (ROIs). We observe
strong correlation between fEES and fIC (r=−0.7416), as
the sum of the three volume fractions must equal to one;
therefore, as one increases, the others will decrease. We see
some weaker correlation among other parameters.
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