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Accurate patient prognosis is important to provide an effective treatment plan 
for Glioblastoma (GBM) patients. Radiomics analysis extracts quantitative 
features from medical images. Such features can be used to build models 
to support medical decisions for diagnosis, prognosis, and therapeutic 
response. The progress of radiomics analysis is continuously improving. The 
aim of this research is to extract standardised radiomic features from MRI 
scans of GBM patients, perform feature selection, and compare radiomic-
based risk score (RRS) and machine learning (ML) approaches for the risk 
stratification of GBM patients. We have also tested the generalisability of these 
models which is crucial for clinical implementation. Our work demonstrates 
that a stratification model based on logistic regression generalised better 
than the RRS method when applied to new unseen datasets.
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INTRODUCTION

Glioblastoma (GBM) is a malignant and lethal brain tumour 
[1]. Grade IV gliomas exhibit the highest level of aggression 
and rapid progression. After initial diagnosis, the median 
survival time for GBM patients is 15 months [2]. The poor 
prognosis for GBM can be related to genetic heterogeneity 
between patients and at intratumor level [3].

In clinical practice, brain tumours are evaluated for their 
diagnosis and prognosis by utilising magnetic resonance 
imaging (MRI) techniques. The location of tumours 
is detected in three dimensions via non-invasive MRI 
technology. In contrast to X-ray and CT imaging, MRI gives 
high resolution with better soft tissue contrast without the 
use of ionising radiation [4]. 

Biopsies are an invasive procedure to diagnose, grade 
and characterise brain tumours [5]. Due to having genetic 
differences in sub-regions of a tumour, biopsies can provide 
only limited information with a sample of small section from 
tumour tissue [6]. Other assessment methods including 
quantitative image analysis, which is non-invasive and 
evaluate the entire tumour tissue, can support biopsy as 
additional assessment. Image analysis utilising radiomics 
features has the potential to replace biopsies when they are 
infeasible or risky [7].

Radiomics analysis is a rapidly growing field of medical 
imaging involving the extraction of large amounts of 
quantitative data from medical images [8], [9]. This 
approach seeks to reveal hidden patterns and features 
that are imperceptible by the naked eye in order to provide 
patients with more personalised and precise care. To 
extract radiomic features from medical images, radiomics 
analysis employs advanced image processing techniques 
that can characterise tumour heterogeneity [10] and 
microenvironment [11]. Radiomic imaging features can be 
then used to train a model to stratify patients in different 
risk groups. This is achieved using statistical methods 
and machine learning (ML) techniques as outlined in the 
literature [9].

N. Beig et al. proposed a Radiomics-based Risk Score (RRS) 
for GBM tumour habitat [12]. However, a comparison with 
alternative methods including machine learning (ML) 
approaches was not performed. In this work, we investigate 
the best model to risk-stratify GBM patients including RRS, 
and a range of ML approaches applied to a large dataset of 
clinical MRI images and clinically defined contours.

MATERIALS AND METHODS

In this research we used two GBM datasets: (1) the publicly 
available BraTS 2020 including 236 cases [13]–[15] and (2) a 
local dataset STORM_GLIO including 53 eligible cases. Both 
datasets included overall survival (OS) information. The MRI 
sequences included in the datasets were: T1-weighted (T1), 
T1-weighted contrast-enhanced (T1ce), T2 weighted (T2), 
and T2 Fluid attenuated inversion recovery (T2-FLAIR). All 
scans included in the STORM_GLIO dataset were acquired 
between April 2014 - April 2018 in Wales.

Sixty six percent of the BraTS dataset was used as training 
cohort with the remaining 33% used in the testing cohorts 
together with the STORM_GLIO dataset. Image pre-
processing techniques similar to those used for the curation 
of the BraTS2020 dataset were implemented in this work. 
They included the following steps: (1) skull stripping, 
which was carried using HD-BET algorithm [16] (2) rigid 

registration of all sequences was applied to the dataset 
based on T1ce modality (3) an intensity normalisation 
algorithm implementing Z-score normalisation was applied 
to all datasets. 

The BraTS2020 challenge [17], included three annotated 
regions: enhancing tumour (ET), tumour core (TC; 
enhancing tumour and necrotic) and whole tumour (WT; 
enhancing tumour, necrotic and edema). On the other hand, 
the STORM_GLIO dataset included Gross Tumour Volume 
(GTV) segmentation which is defined as the gross palpable 
or visible/demonstrable extent and location of malignant 
growth [18]. For the purpose of this study, we considered 
GTV and TC equivalent volumes where to perform radiomics 
analysis in Fig.1. We have demonstrated the equivalence of 
these two volumes in previous work [19].

For each patient, 143 imaging features were extracted from 
each scan. The radiomics analysis was performed using 
SPAARC Pipeline for Automated Analysis and Radiomics 
Computing (SPAARC) [20], [21] which is an IBSI compliant 
software package [22] written in MATLAB (The MathWorks, 
Natick USA). 

The study was designed to investigate the ability of 
radiomics features based on MRI scans to risk-stratify 
on GBM patients. The integration of radiomics-based 
risk stratification within the oncology landscape carries 
profound implications for transforming clinical decision-
making and achieving significant advancements in patient 
outcomes. Radiomic feature selection was carried out using 
the LASSO Cox regression method.  Selected features were 
then used on the training cohort to build a stratification 
model. An RRS, was constructed by linearly combining the 
features chosen with LASSO technique within the training 
cohort and multiplying them with their corresponding 
coefficients [12]. The median value of the RRS was used as 
a fixed cut-off for stratifying low-risk and high-risk groups. 
Additionally, we used a range of machine learning (ML) 
techniques to build alternative risk stratification models 
and compared their performance with the RSS model. The 
ML techniques used in this work were: Logistic Regression, 
Support Vector Machine, Decision Tree, Random Forest and 
Neural Networks. For both ML approach and RSS method, 
the precise evaluation of the expected overall survival was 
tested by implementing the Kaplan–Meier (KM) survival 
analysis and log-rank test. The KM curve is a graphical 
representation of the estimated probability of survival 
over time, and it is frequently used in survival analysis to 
evaluate the results of medical research. KM plots were used 
to compare survival times across low-risk and high-risk 
groups on both training and testing cohorts for T1, T1ce, 
T2 and T2-FLAIR modalities. P-values < 0.05 were accepted 
as significant.  For ML models, the low-risk and high-risk 
stratification was based on grid search to determine a 
cut-off on overall survival (OS). This method searches the 
optimum cut-off which is OS in month by trying to reach the 
minimum P-value. 

RESULTS

In Table 1, the performance of the RRS method for all 
available modalities in the datasets is reported. The table 
includes the P-value for tests carried out with both BraTS 
and STOMR_GLIO datasets. The data indicate that the model 
based on the T2 modality provides significantly higher 
performance for risk stratification while its application 
generalises well an unseen dataset (STORM_GLIO).  
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Fig. 2 shows KM curves of Logistic Regression and RRS 
method for STORM_GLIO dataset. The survival probability 
of RRS remained constant along the X-axis at a value of 
0.2 from 5-month of OS to over 15-month of OS. On the 
other hand, that of Logistic Regression in the same figure 
remained constant at a less value than 0.2 which resulted in 
a significantly better P-value in Table 2.

Fig. 2. The KM curve of T2 modality for A) RRS score with a median cut-off 
and B) Logistic Regression (The blue line represents high-risk group and 
the orange line represents low-risk group).

DISCUSSION

To the best of our knowledge, this is the first time that 
RRS and ML approaches are compared in their ability to 
risk-stratify on GBM patients. Although the performance of 
ML approaches used in the BraTS dataset was inferior to 
RRS, our results suggest that they can be considered as an 
alternative method for risk stratification based on overall 
survival information. The generalisability of stratification 
models is an important factor for clinical implementations 
and the logistic regression model performed well when 
tested on local MRI scans of GBM.
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Fig. 1. Example of A) TC delineation from the BraTS dataset and B) GTV 
delineations from the STORM_GLIO dataset. From top to bottom 
modalities; T1, T1ce, T2 and T2-FLAIR and Reference contour.

Modality BraTS Testing STORM_GLIO 

T1 0.01 0.22

T1ce 0.14 0.86

T2 0.0007 0.001

T2-FLAIR 0.003 0.94

Table 1. Performance of the RSS method for BraTS and STORM_GLIO 
dataset (P-value < 0.05 is significant).

Method BraTS Testing STORM_GLIO 
Testing

RRS 0.0007 0.001

Logistic 
Regression 

0.01 5.75x10-5

Decision Tree 0.26 0.91

Random Forest 0.046 0.002

Support Vector 
Machine

0.01 0.0016

Neural Networks 0.007 0.75

Table 2. Performance of RRS and ML models for T2 modality (P-value < 
0.05 is significant) 
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