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After the great successes of deep reinforcement learning (DRL) in recent 
years, developing methods to speed up DRL algorithms for more complex 
tasks closer to those in the real world has become increasingly important. 
In particular, there is a lack of research on long-horizon tasks that contain 
multiple subtasks or intermediate steps and can only provide sparse rewards 
at task completion point. This paper suggests to 1) use human priors to 
decompose a task and provide abstract demonstrations – the correct 
sequences of steps to guide exploration and learning, and 2) adjust the 
exploration parameters adaptively according to the online performances 
of the policy. The proposed ideas are implemented on three popular DRL 
algorithms, and experimental results on gridworld and manipulation tasks 
prove the concept and effectiveness of the proposed techniques.
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INTRODUCTION

Deep reinforcement learning (DRL) has achieved important 
progresses in the field of recommendation systems, 
computer games, navigation, economics, etc. [1]. However, 
DRL algorithms still struggle to learn tasks with long horizon, 
multiple intermediate steps, and sparse task completion 
rewards. In the real world, many robotic manipulation tasks 
exhibit such characteristics. For example, for the block-
pushing task shown in Fig. 1, the robot needs to learn to 
open the chest before it can learn to push the block into 
the chest. With only a sparse reward signal based on task 
completion, such a task is hopeless for state-of-the-art 
continuous control DRL algorithms. This paper seeks to 
improve the performances of DRL in such tasks.

Fig. 1. Visualisation of a multi-step pushing task.

For such long horizon tasks, classic methods have 
provided successful examples of adopting manual task 
decomposition. For example, the popular task and motion 
planning (TAMP) methods employ domain languages to 
describe subtasks and skills, and search in the hybrid space 
of discrete subtasks and continuous manipulator motions 
for a solution for a long-horizon manipulation problem [2]. 
These methods, however, require the access to an accurate 
dynamic model of the world, which is one of the bottlenecks 
that limits their applications. On the other hand, this paper 
focuses on model-free DRL methods [1], which is freed 
from the assumption of having an accurate system dynamic 
model. The downside, however, is the difficulty of training 
DRL agents with a long task horizon and a sparse reward 
function. 

In previous research, human demonstrations, in the forms 
of kinesthetic motion trajectories, have been one of the 
important options to help DRL in such difficult scenarios 
[3,4]. However, these methods are not scalable due to 
the difficulty of collecting them. In response, this paper 
adopts an abstract form of demonstrations that consist of 
the correct sequences of the task steps to be learnt and 
achieved, given the access to a task decomposition scheme. 
Specifically, abstract demonstrations 1) do not encode 
human biases into the robot motions and 2) are much easier 
to collect compared to kinesthetic teaching. The idea is 
plausible because the short motion trajectories in between 
two subtasks can be learnt efficiently with hindsight 
experience replay (HER) even in the face of sparse reward 
signals [5].

Another issue that slows down learning is related to 
the design of the exploration strategy of DRL agents. In 
particular, most exploration strategies of DRL agents at the 
current stage is task-agnostic [6]. They are therefore not 
exactly suitable for multi-step tasks, in which the later task 
steps depend heavily on the former ones. For example, 
stacking the fourth block would require the previous blocks 
to be stacked well. As a result, the default setting of using a 
strategy that explores constantly or decays the randomness 
in a task-agnostic way [6] will have difficulty dealing with 
multi-step tasks.

In response to this limitation, this work suggests to adapt 
the exploration parameters of a DRL agent in accordance 
with its online performances of each task step. The main 
idea of this adaptive exploration strategy is to reduce 
unnecessary exploration when the target subtask has been 
well-learnt.

MATERIALS AND METHODS

This research employs the recent framework of goal-
conditioned reinforcement learning (GRL) [5], in which 
a universal policy  or universal q function 

 is optimised towards the expected maximum 
discounted cumulated future goal-based rewards 

, where  is the 
discount factor that determines the importance of future 
rewards. The term universal implies that the policy or q 
function make decisions for a set of goals, instead of a single 
goal as in standard RL paradigm [7]. 

The following will introduce 1) the experiment tasks and the 
implementation of the goal-conditioned Markov decision 
processes (GMDPs), 2) the main learning algorithms, 3) 
the abstract demonstration method, and 4) the adaptive 
exploration method.

Tasks and the GMDP
To examine the effectiveness of the proposed methods, 
three robotic manipulation tasks developed in simulation 
are used in the experiments, including the ChestPush, 
the ChestPick and the BlockStack tasks from the Pybullet 
Multigoal (PMG) simulation software [8], as shown in Fig. 
2. From left to right in Fig. 2, the robot needs to 1) open the 
chest and push the block into it, 2) open the chest, grasp the 
block and drop it into the chest, and 3) pick and stack the 
blocks as indicated by the transparent spheres.

Fig. 2. The experimented tasks.

The GMDP descriptions of the tasks are exactly the same 
as that presented by in the simulation package [8], except 
that the representation of the goals is extended. The state 
of the system consists of the absolute positions and Euler 
orientations of the blocks, the relative positions and Euler 
orientations of the blocks w.r.t. the gripper tip, the relative 
linear and angular velocities of the blocks w.r.t. the gripper 
tip, the absolute position and velocity of the gripper tip 
and the finger width. At the beginning of an episode, the 
algorithm is given a final goal that specifies the desired 
positions of the blocks and the gripper and the desired 
width between the fingers. The algorithm gives actions 
based on the state and goal to move the gripper in the 
Cartesian space and control its finger width. It is given a 
reward of 0 when the final goal is achieved, and a reward of 
-1 otherwise. A desired goal is said to be achieved when its 
Euclidean distance to the actually achieved goal is less than 
a threshold . 
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Reinforcement Learning Algorithms 
Two RL algorithms for continuous action space tasks: deep 
deterministic policy gradient (DDPG) [9] and soft actor critic 
(SAC) [10] are employed as the base algorithms. A short 
description of the two algorithms is given below, and the 
readers are referred to the original papers for further details. 
Also, as one shall see, the proposed acceleration techniques 
described in the following subsections are not limited to 
these two algorithms.

DDPG and SAC are both actor-critic algorithms [9,10]. 
DDPG seeks to learn a critic network, , that predicts 
the expected return for a pair of state and action, and a 
deterministic actor network, , that takes into the state 
and predicts the action that maximise the output of the 
critic network. For the goal-conditioned version, it simply 
takes the goal as an extra input to the policy and critic. 
Implementation-wise, the goal vector is concatenated into 
the input vector. As a deterministic policy agent, DDPG 
needs a behavioural policy to collect exploration data. In 
this work, the base exploration used by DDPG is the epsilon-
Gaussian (EGa) strategy [5]:

  (1)

where,  stands for a normal distribution,  stands for a 
uniform distribution,  and . In short, the 
EGa strategy takes a random action with probability , and 
take the action output by the learnt policy with zero-mean 
Gaussian noise with a probability of . The algorithm 
optimises the following objectives for the critic and the 
actor networks, respectively:

 (2)

 (3)

where,  is the target 
Q value computed by the target critic network with weights,  
and  are the parameters of the main policy and Q networks,  
stands for the replay buffer.

The SAC algorithm is also an actor-critic algorithm, but 
instead employs a stochastic actor [10]. In short, SAC uses 
a neural network to predict the mean and deviations of a 
Gaussian actor policy. The main difference with DDPG is 
twofold. 

First, the SAC optimises the critic and actor not only towards 
the maximum return direction, but also the maximum policy 
entropy:

   (4)

 (5)

where,  
is the soft target Q value, and are the parameters of 
the main policy and Q networks, and  is the temperature 
parameter. 

Secondly, the SAC algorithm conducts exploration by 
sampling from its own policy, whose randomness is 
determined by the output of the neural network. As the 
objective partly maximises the entropy of the policy, it can 
retain a certain degree of exploration without collapsing into 
a deterministic policy.

These two algorithms are selected because they are well-
known representatives of recent model-free DRL algorithms. 
Also, they both retain the state-of-the-art performances of 
popular continuous control benchmarks [9,10]. However, 
they are not tailored for the kind of long-horizon and multi-
step tasks considered in this paper, and the following will 
then introduce the two techniques that can speed up these 
two agents.

Abstract demonstrations
The idea of abstract demonstrations (AD) is very similar to 
the human practices of learning to build a Lego house or 
assemble a furniture using a user manual that specifies a 
series of key task steps. 

AD assumes the access to a task decomposition scheme that 
produces a set of task steps, each corresponds to a subset of 
goals in the GRL framework. In this work, the decomposition 
scheme comes from human priors, but it is certainly 
interesting to develop automated task decomposition 
methods in the future. Specifically, the given tasks are 
decomposed as follows:

• ChestPush: push the door open  reach the blue block  
push the block into the chest.

• ChestPick: push the door open  grasp the blue block  
move to the top of the chest  drop the block.

• BlockStack: grasp the first block  move to the target 
position  grasp the second block  put it on top of the 
first one.

Instead of providing only the final goal at the start of 
training, the agent is given the subgoals associated with the 
subtasks in the correct order. When a subgoal is achieved, 
the next one according to the demonstrations will be given, 
until the final goal is reached or the episode runs out of 
time. A parameter,  is used to control in how many 
episodes during training that the agent is demonstrated.

Adaptive exploration
To adapt the exploration parameters, the adaptive 
exploration (AE) method first keeps a record of the 
online performances on each subtask, and then uses the 
performance to scale the exploration parameters. The 
following will explain the implementations on the DDPG and 
SAC agents.

For convenient usage, the average success rates of the agent 
over 30 testing episodes on each subtask are used as the 
performance metric, denoted as a n-dimensional vector, 
S, where N is the number of subtasks. This evaluation run 
is performed after every training epoch (800 episodes). To 
ensure a smoothly changing behaviour of the performance 
record, the Polyak average of the success rate is used instead 
of the arithmetic mean:

  (6)

where  is the Polyak averaged success rate vector and 
 is the update ratio. 
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To update the DDPG exploration strategy, Eq.1 is used with 
an individual  and  for the n-th step. All of them starts 
with  and . After each evaluation run, 
these two parameters are updated as follows:

  (7)

For the SAC agent, the evaluation success rates are used to 
scale the deviations predicted by the actor neural network 
for each subtask after an evaluation run:

  (8)

where  is predicted by the actor network.

RESULTS

To examine the effectiveness of the proposed ideas, 
ablative experiments are conducted with the three robotic 
manipulation tasks. All codes are available on GitHub: 
https://github.com/IanYangChina/A-2-paper-code. 

As shown in Fig. 3, the DDPG and SAC agents are both run on 
the three tasks in their original forms (Vanilla), aided with 
abstract demonstrations (AD), and aided with both methods 
(ADAE). The first row is the performances of the DDPG 
agents, and the second row is for the SAC agents. For each 
row, the success rates correspond to the three tasks from 
left to right: ChestPush, ChestPick and BlockStack.

In Fig. 3, both agents have substantial improvements on the 
three tasks with the help of the abstract demonstrations 
(compare the blue and green lines). As the task becomes 
more difficult (from left to right), the improvements over 
the vanilla algorithms become more obvious. This suggests 
that providing abstract demonstrations can substantially 
accelerate multi-step sparse reward reinforcement learning.

Fig. 3. Test success rates.

Secondly, the adaptive exploration has gained less obvious 
performance improvements in addition to the abstract 
demonstrations (compare the orange and green lines). 
However, it does reduce the variances of the success rates, 
indicating a more stable training processes.

DISCUSSION

The proposed abstract demonstrations and adaptive 
exploration methods have been proved in the result section 
to improve the performance of two popular DRL algorithms 
in long-horizon, multi-step and sparse reward continuous 
control tasks.

Compared to previous studies which use motion-
level trajectories as demonstrations [3,4], abstract 
demonstrations are much easier to collect and implement. 
However, there is no free lunch. It requires a given 
task decomposition scheme. In the future, developing 
automated task decomposition and subgoal discovery 
methods are promising directions. Also, abstraction 
demonstrations can be used along with kinesthetic 
demonstrations, when the motions in between subtasks are 
still too hard to learn by pure exploration.

There is not much research that paid attention to task-
oriented exploration strategy design [6]. In fact, the idea 
is compatible to use with many task-agnostic exploration 
strategies, as shown by the DDPG and SAC implementations 
in this work. For example, one can use a success rate to 
scale the noise injection rate in [11] or the random action 
probability of the popular epsilon-greedy method [7].

In addition to what were mentioned, more efforts are 
demanded to implement and evaluate the proposed 
methods on more realistic tasks, especially tasks with 
complex and noisy observations. For example, the 
representation and generation of subtasks and high-
dimensional goals [12]. Such studies will also empower 
techniques in other areas of robotic research.
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