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Summary  
Fibre matrix debonding, fibre pullout, delamination and mechanical anisotropy are the main common 

disadvantages of most fibre-reinforced composites.  Interpenetrating phase composites (IPCs), however, do not 

have these problems because both their matrix material and their reinforcement fibre materials are self-connected 

networks, and interpenetrate each other.  Moreover, IPCs could be designed to have an almost isotropic Young’s 

modulus much larger than the Voigt limit, and a Poisson’s at a desired value (i.e. positive, or negative or zero).  

In addition, they could have an isotropic thermal or electrical conductivity very close to the theoretical upper limit 

(i.e. the Hashin—Shtrikman’s upper limit).  This paper will introduce the relevant theoretical, simulation and 

experimental results on the elastic properties and thermal/electrical conductivities of some IPCs and compare their 

properties with those of other types of composites. 
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Introduction 1 

Fibre composites are widely used in engineering 2 

applications, in which the fibres are usually much 3 

stronger and stiffer than the matrix material and used 4 

to reinforce the matrix material.   To make the best 5 

use of the reinforcement material, it is very 6 

important that the reinforcement material is self-7 

connected to form a network structure.  For example, 8 

in modern buildings, bridges or water containing 9 

dams, the reinforcement steel bars are welded 10 

together to form a self-connected network, and the 11 

concrete material (i.e. the matrix material) is then 12 

casted into the porous space of the steel network.  If 13 

the reinforcement steel bars are not self-connected, 14 

even if the same amount of the reinforcement steel 15 

material is used in buildings, bridges or dams, these 16 

structures could easily fall apart.  Thus, in 17 

conventional fibre composites, the reinforcement 18 

fibres are in general not best used.  Their common 19 

disadvantages include fibre matrix debonding, fibre 20 

pullout, delamination and mechanical anisotropy, 21 

etc [1]. In contrast, interpenetrating phase 22 

composites (IPCs) can avoid all these disadvantages.  23 

By theoretical analysis and computational 24 

simulations, Zhu et al. [2,3] and Zhang et al. [4,5] 25 

have found that IPCs could have an almost isotropic 26 

Young’s modulus much larger than the Voigt limit, 27 

a Poisson’s ratio at a desired value (i.e. positive, 28 
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negative or zero), and a thermal or electrical 29 

conductivity close to the Hashin-Shtrikman’s upper 30 

limit[6]. The aim of this paper is to highlight the 31 

advantages of IPCs over the fibre or particle 32 

composites.  33 

Material Models 34 

In our theoretical and simulation research works, the 35 

IPCs are reinforced by a self-connected periodic 36 

regular fibre network or a lattice structure. Thus, 37 

periodic representative volume elements (RVEs) 38 

and periodic boundary conditions can be used to 39 

obtain the elastic properties and thermal/electrical 40 

conductivities. Based on the geometric feature of the 41 

reinforcement network structure, the IPCs are 42 

classified into two main types: normal and auxetic.  43 

In the normal IPCs as shown in Fig. 1, the 44 

reinforcement fibre network is a normal network or 45 

lattice which has a positive Poisson’s ratio. In the 46 

auxetic IPCs as shown in Fig. 2, the reinforcement 47 

fibre network is an auxetic network or lattice which 48 

has a negative Poisson’s ratio. In theoretical 49 

analysis, the reinforcement fibre network and the 50 

matrix are divided into a number of blocks.  In finite 51 

element simulations, both the reinforcement fibre 52 

network and the matrix are partitioned into a large 53 

number of tetrahedral elements. 54 

 55 
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  1 

(a)                        (b)                         (c) 2 

 Fig. 1. Different types of normal IPCs: 3 

(a) type I, (b) type II, (c) type III. 4 

 5 

 6 

         (a)                       (b)                         (c) 7 

 Fig. 2. Different types of auxetic IPCs: 8 

(a) type I, (b) type II, (c) type III. 9 

 10 

Results 11 
 12 
A. Enhanced Young’s modulus 13 

The Voigt limit has long been regarded as the upper 14 

limit for the Young’s moduli of isotropic composites 15 

[1]. For composites composed of a reinforcement 16 

material with a Young’s modulus of 
fE and a 17 

matrix material with a Young’s modulus of 
mE , the 18 

Voigt limit is given as 19 

Voigt f f m mE E V E V= +                               (1) 20 

where 
fV  and 

mV  are the volume fractions of the 21 

fibre and matrix materials in the composites, 22 

respectively, and 1.f mV V+ =   23 

To make the theoretical and the finite element 24 

simulation results of the IPC more useful, the 25 

Young’s modulus of the matrix material is assumed 26 

to be 1, and the Young’s modulus of the 27 

reinforcement fibre material is the value of 28 

/f mE E , i.e. the ratio of the actual Young’s 29 

modulus of the fibre material to that of the matrix 30 

material.  Further, the obtained Young’s of the IPC 31 

is normalized by the Voigt limit given by Eq. (1).   32 

For different types of IPCs reinforced by a normal 33 

fibre network shown in Fig. 1, the effects of the 34 

different combinations of the constituent material 35 

properties on the normalized Young’s moduli of the 36 

IPCs are presented in Fig. 3.   37 

 38 

 39 

Fig. 3. Effects of the different combinations of 40 

the constituent material properties on the 41 

normalized Young’s modulus of different types 42 

of normal IPCs [5], where 
fv  and 

mv  are the 43 

Poisson’s ratios of the fibre and matrix 44 

materials, respectively. 45 

Both the constituent materials, i.e. the fibre and 46 

matrix, are assumed to be isotropic.  Thus, the 47 

possible range of their Poisson’s ratio is (-1.0, 0.5).  48 

The theoretical [2] and finite element simulation [5] 49 

results indicate that the elastic properties of the IPCs 50 

are nearly isotropic. The results in Fig. 3(c) and 3(d) 51 

show clearly that the Young’s moduli of the IPCs 52 

could be much larger than the Voigt limit, and 53 

therefore much larger than those of the conventional 54 

particle or fibre composites. In general, the larger the 55 

difference between the Poisson’s ratios of the matrix 56 

and the reinforcement fibre materials, or the smaller 57 

the difference between the Young’s moduli of the 58 

two constituent materials, the larger will be 59 

normalized Young’s modulus of the IPCs. It is noted 60 

that for different types of IPCs [4] reinforced by an 61 

auxetic fibre network shown in Fig. 2, their Young’s 62 

moduli are in general smaller that those of the IPCs 63 

reinforced by a normal fibre network, but still much 64 

larger than those of the conventional particle or fibre 65 

reinforced composites. It is also worth noting that 66 

for the same given amounts of the matrix and 67 

reinforcement materials, if the geometric structure 68 

of the reinforcement material is a perfect regular 69 

closed cell foam with a uniform wall thickness and 70 

the matrix material fills the identical cubic cells, the 71 
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resultant composite [7] has the largest nearly 1 

isotropic Young’s modulus. This is because among 2 

all the possible geometrical structures of the self-3 

connected porous reinforcement material, the 4 

regular closed-cell foam structure with identical 5 

cubic cells and uniform wall thickness has the 6 

largest nearly isotropic stiffness. However, this type 7 

of composites is not IPC because its matrix 8 

material/phase doesn’t form a self-connected 9 

network.  10 

B. Desired value of Poisson’s ratio 11 

For different types of IPCs with different fibre 12 

volume fractions and reinforced by a normal fibre 13 

network shown in Fig. 1, the effects of the different 14 

combinations of the constituent material properties 15 

on the Poisson’s ratio of the IPCs are demonstrated 16 

in Fig. 4.  As can be seen, if both the matrix and the 17 

fibre materials have a positive Poisson’s ratio, the 18 

Poisson’s ratio of the IPCs would always be positive 19 

[5].  If the matrix material has a large magnitude of 20 

negative Poisson’s ratio, the Poisson’s ratio of the 21 

IPCs could have a large magnitude negative 22 

Poisson’s ratio.   23 
 24 

 25 

Fig. 4. Effects of the different combinations of 26 

the constituent material properties on the 27 

Poisson’s ratio of different types of normal IPCs 28 

[5] reinforced by a normal fibre network. 29 

For different types of IPCs with different fibre 30 

volume fractions and reinforced by an auxetic fibre 31 

network shown in Fig. 2, the effects of the different 32 

combinations of the constituent material properties 33 

on the Poisson’s ratio of the IPCs [4] are 34 

demonstrated in Fig. 5.   In contrast to the results of 35 

the IPCs reinforced by a normal fibre network, even 36 

if the Poisson’s ratios of both the matrix and the fibre 37 

materials are positive, the IPCs reinforced by an 38 

auxetic fibre network can have a large magnitude 39 

negative Poisson’s ratio. 40 

Based on the results demonstrated in Figs 4 and 5, it 41 

is concluded that the Poisson’s ratio of PCs could be 42 

designed to achieve a desired value (i.e. positive, or 43 

negative or zero) by carefully choosing the 44 

combination of the properties of the constituent 45 

materials. 46 

 47 

 48 

Fig. 5. Effects of fibre volume fraction on 49 

the Poisson’s ratio of the composites [4] 50 

when α = 20°. (a) νm = 0.1, νf = 0.25, Ef /Em 51 

= 1000; (b) νm = 0, νf = 0.25, Ef /Em = 1000. 52 

 53 

C. Superior conductivity 54 

In two phase composites, the constituent fibre and 55 

matrix are assumed to be homogenous and isotropic 56 

materials A and B, with conductivities 
A  and 

B  57 

and volume fractions 
AV  and 

BV , respectively.  58 
 59 
For composites with anisotropic conductivity, the 60 

largest and the smallest possible effective 61 

conductivities can be easily achieved if the two 62 

constituent materials A and B are uniformly 63 

arranged in parallel, for example, sandwich/laminate 64 

composites with layers of uniform thickness. For 65 

such anisotropic composites, their upper limit of 66 

conductivity is given by 
U A A B BV V  = +  and their 67 

lower limit is given as A B
L

A B B AV V

 


 
=

+
, where 68 

1A BV V+ = .   69 
 70 
For composites with isotropic conductivity, the 71 

magnitude of the conductivity is limited by the 72 
Hashin and Shtrikman’s upper and lower bounds [6]. 73 

 74 
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−

                       (3) 76 

where it is assumed that A B  . 77 

For IPCs reinforced by the normal type-I fibre 78 

network with 0.104AV = , the relationship between 79 

the effective conductivity and the ratio /A B   has 80 

been obtained by theoretical analysis and finite 81 

element simulation using ABAQUS [3].  Fig. 6 82 

shows the effects of the ratio /A B   on the 83 

effective conductivity of such IPCs, where different 84 
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bounds/limits are plotted for comparison [3] and the 1 

results are normalized by B .  As can been seen, the 2 

theoretical results are very close to those of the finite 3 

element simulation results, and the conductivities of 4 

the IPCs are closer to the Hashin- Shtrikman’s upper 5 
bound than to their lower bound (see Fig. 6), and much 6 
larger than the experimentally measured results of the 7 
conventional particle or short- fibre composites, as 8 
shown in Fig. 7.  9 

 10 

 Fig. 6. Effects of /A B   on the conductivity 11 

of IPCs reinforced by a normal type-I fibre 12 

network [3], where the fibre volume fraction 13 

0.104AV = .   14 

 15 

Fig. 7. Comparison between the conductivities of 16 

IPCs and the experimentally measured results of 17 

the conventional particle and short-fibre 18 

composites, where the results are normalized by 19 

the Hashin-Shtrikman’s upper limit. 20 

It is noted that for the same given amounts of the 21 

matrix and reinforcement materials, if the geometric 22 

structure of the reinforcement material is a perfect 23 

regular cubic closed cell foam with a uniform wall 24 

thickness and the matrix material fills the identical 25 

cubic cells, the resultant composite will have the 26 

largest isotropic conductivity [7], which is exactly 27 

the same as the Hashin-Shtrikman’s upper limit.  28 
However, such composite is not an IPC. 29 

Discussion and Conclusions 30 

It is relatively easy to manufacture IPCs.  The 31 

regular reinforcement fibre network structure can be 32 

produced first, the matrix material (e.g. concrete, 33 

resin, or polymer) can then be casted into the self-34 

connected porous network of the reinforcement 35 

structure. The theoretical and finite element 36 

simulation results have demonstrated that for the 37 

same amounts of the constituent matrix and 38 

reinforcement materials used, IPCs can have a much 39 

larger nearly isotropic Young’s modulus than those 40 

of the conventional particle or short fibre composites.  41 

Further, the nearly isotropic Young’s modulus of 42 

IPCs could be designed to be much larger than the 43 

Voigt limit that was generally regarded as the 44 

unexceedable upper limit for all composites.  In 45 

addition, IPCs can be designed as functional 46 

material with a Poisson’s ratio at a desired value, e.g. 47 

positive, or negative, or zero.  Moreover, IPCs have 48 

a conductivity significantly larger than those of the 49 

conventional particle and short-fibre composites.  50 

Therefore, IPCs have very important engineering 51 

applications in many different areas. 52 
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