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ABSTRACT The integration of distributed energy resources (DERs) and digital technologies has accelerated
the transition to decentralized energy systems. Among these technologies, blockchain stands out for its
ability to facilitate peer-to-peer (P2P) energy trading efficiently and securely. This paper explores the
concept of P2P energy trading within community microgrid systems, leveraging blockchain-based smart
contracts. The proposed system integrates an incentive-driven demand response program directly into the
smart contract framework, offering real-time rewards for load-balancing contributions. By incorporating
the microgrid’s Energy Management System (EMS) and transparently recording all transactions on the
blockchain, the proposed platform provides detailed data and immediate reward distribution. At the core
of our system lies the Supply to Demand Ratio (SDR), ensuring fair energy exchange within the community.
Dynamic pricing, enabled by blockchain and Tether (USDT) cryptocurrency, adjusts to real-time market
conditions, enhancing transparency and responsiveness in energy trading. This adaptive pricing model
fosters a more equitable and efficient trading environment compared to static approaches. Moreover, this
system is tailored for community microgrids, emphasizing a community-centric approach. Local prosumers
serve as validators in the blockchain network, aligning energy management decisions with community
needs and dynamics. This localized engagement promotes efficiency and participation, fostering resilient,
sustainable, and user-centric energy landscapes. Through rigorous analysis, we demonstrate the system’s
effectiveness in optimizing economic efficiency, reducing operational costs, and increasing compliance rates.
By combining blockchain technology with community-focused design principles, the proposed platform
represents a significant advancement towards self-sufficiency and resilience in local energy systems.

INDEX TERMS Blockchain technology (BT), microgrid energy management system (MEMS), peer-to-peer
(P2P) energy trading, prosumers, demand response (DR), smart contract.

NOMENCLATURE: VARIABLES AND PARAMETERS
P2P: Peer to Peer.
BESS: Battery Energy Storage System.

The associate editor coordinating the review of this manuscript and

approving it for publication was Qiang Li .

DER: Distributed Energy Resource.
RES: Renewable Energy Sources.
COP: Conference of the Parties.
PCC: Point of Common Coupling.
USDT (Tether): Cryptocurrency.
P = {p1, p2, . . . ,pn}: Set of prosumers.
C = {c1, c, . . . ,cn}: Set of consumers.

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 80781

https://orcid.org/0000-0002-7433-0024
https://orcid.org/0000-0003-2640-9712
https://orcid.org/0000-0002-7561-3157
https://orcid.org/0000-0002-3212-8493
https://orcid.org/0000-0001-5903-5257
https://orcid.org/0000-0002-1899-2808


A. Umar et al.: Decentralized Community Energy Management: Enhancing Demand Response

Gpi,h: Energy generation by prosumer pi
at time h.

Lcj,h: Energy demand (load) of con-
sumer cj at time h.

Costpi,h: Cost of energy generation for pro-
sumer pi at time h.

Priceh: Price of energy in the market at
time h.

Epi→cj,h: Energy sold from prosumer pi to
consumer cj at time h.

MaxGenpi : Maximum generation capacity of
prosumer pi.

MaxConscj : Maximum consumption capacity
of consumer cj.

Ggrid,h: Energy bought from the grid at
time h.

Pricegrid,h: Price of energy from the grid at
time h.

Cpi,h: The energy charged to the battery
of prosumer pi at time h.

Dpi,h: The energy discharged from the
battery of prosumer pi at time h.

ηcharge: The charging efficiency of the
prosume r’s battery (0.9).

ηdischarge: The discharging efficiency of the
prosume r’s battery (0.9).

SDR: Supply to Demand Ratio
USDT P2P: Trading Price for Individual

Household who Participate in the
P2P Energy Trading.

USDT usell : Surplus Power Price Sold to the
utility Grid.

USDT ubuy: Utility Grid Price.

I. INTRODUCTION
A. MOTIVATION AND BACKGROUND
Distributed Energy Resources (DERs) and microgrids are
increasingly recognized as key solutions to meet the growing
energy demand, a result of global industrialization and urban-
ization. This shift aligns with global governmental initiatives
to lessen dependence on fossil fuels. The 2021 COP-26 sum-
mit highlighted this trend, urging governments to propose
bold emission reduction targets for 2030, aiming for net-zero
carbon emissions by mid-century. Achieving these goals
will require significant investment in Renewable Energy
Sources (RESs), accelerated adoption of electric vehicles, and
gradual phasing out of fossil fuel-based power generation.
Microgrids (MGs) offer versatility in operation, capable of
functioning independently in an isolated mode or integrat-
ing with the main grid in a grid-connected mode through
a Point of Common Coupling (PCC). This dual function-
ality allows them to autonomously manage energy needs
or exchange energy with the main grid following specific
guidelines. As we move forward, an increase in microgrid
installations is anticipated, which will play a crucial role

in reducing dependency on high-voltage networks and fos-
sil fuel-based power plants [1], [2], [3]. Several obstacles
need to be addressed to facilitate broad market participa-
tion. These include (i) effectively incorporating the concept
of local energy trading within the distribution network,
(ii) ensuring robust communication channels between micro-
grid operators and Distribution System Operators (DSOs),
and (iii) developing a user-friendly platform that encourages
public engagement in energy trading. Additionally, if factors
such as price-responsive loads and the principles of perfect
competition are not considered while shaping the energy
market in the distribution system, there’s a risk of setting
prices that are either excessively high or unduly low. Foster-
ing intra-microgrid trading is a key strategy for minimizing
reliance on the central utility grid. Community microgrid
systems offer significant benefits for local energy needs.
Nowadays, even in areas served by larger grids, community
microgrids are being explored to enhance local energy inde-
pendence and resilience. Peer-to-Peer (P2P) energy trading is
a system that permits households to distribute excess energy
among their neighbors once their personal energy needs have
been satisfied, as noted in [4]. In the environment of a micro-
grid, transactions of energy can take place among individual
community members or between these members and the
utility grid. Each participant in the microgrid is identified as a
peer, including both thosewho actively consume and generate
energy and those who solely consume it, as mentioned in [5].
Active energy consumers, commonly known as prosumers,
are characterized by their ownership of distributed energy
resources (DERs) like rooftop solar systems or wind power
installations.

B. RELATED WORKS
The research presented in [6] delves into optimizing power
dispatch in microgrids, a crucial aspect of ensuring effi-
cient and reliable energy distribution in isolated systems.
Significant research has been conducted on the integra-
tion of Renewable Energy Sources (RES), battery storage,
and electric vehicles into power grids, a topic extensively
covered in reference [7]. The application of blockchain
technology in smart grids, especially for improving the oper-
ational efficiency of microgrids, is a key area of focus,
as described in [8]. Research trends are increasingly cen-
tered on demand-side management and the enhancement of
microgrid operations. The use of blockchain technology as a
coordination tool for Distributed Energy Resources (DERs)
is discussed in [9], where it is recognized for provid-
ing a secure and transparent framework essential for
maintaining the integrity and safety of DER operations.
Munsing et.al [10] introduced a decentralized model for opti-
mal power flow (OPF) aimed at effectively managing a
variety of DERs within microgrids, focusing on optimization
and control.

Additionally, the application of blockchain in demand-
side management, as investigated in [11], has shown promise
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in reducing the peak-to-average ratio (PAR) and mitigating
fluctuations in load profiles caused by supply constraints.
A novel approach involving blockchain for link control in
medium voltage DC systems is presented in [12], where
the strategy focuses on allocating responsibilities between
system operators and the energy network. Integrating a dig-
ital layer into the elements of the smart grid, as proposed
in [13], blockchain technology can substantially improve grid
functionality, allowing each component to have its individual
ledger within a cohesive blockchain framework. The area
of energy trading in microgrids and distributed generation
systems is increasingly becoming a focal point, as noted
in [14]. The influence of blockchain on P2P energy exchanges
is significant, providing enhanced cyber-physical security
and reducing the risk of fraudulent activities, as detailed
in [15]. In P2P systems, blockchain records transactions
instantaneously and autonomously, eliminating the need
for intermediaries and empowering energy traders to make
decisions based on their preferences, as observed in [16].
Optimization in P2P trading within blockchain networks,
particularly in Optimal Power Flow (OPF) applications,
is discussed in [13]. Globally, there are numerous blockchain
use cases. A notable example is the Brooklyn microgrid
project, facilitated by Power Ledger, an Australian firm
enabling prosumers to transfer surplus energy to nearby users.
Other companies like Grid+, SIEMENS, and LO3 Energy
have also been instrumental in advancing peer-to-peer power
trading in microgrid systems through blockchain technology,
as discussed in [11].

Numerous recent studies have explored various optimiza-
tion techniques applied in microgrids for Demand-Side
Management (DSM), including dynamic programming, and
mixed integer linear programming, as noted in refer-
ences [17], [18], [19], [20]. This paper [21] introduces a
multi-objective optimization approach to balance load flex-
ibility. Prete et al. have utilized game theory to analyze
incentive schemes that encourage participation in microgrid
consumption [22]. A non-cooperative game framework has
been adopted to study the integration of solar PV systems in
microgrids among diverse consumer groups [23]. Research
on integrating hybrid PV and wind systems into microgrids
for size optimization is discussed in [24]. Various strategies
aim to reduce the Peak-to-Average Ratio (PAR) and cost
through pricing incentives, with DSM frameworks incor-
porating battery storage examined in [11]. The paper [25]
explores distributed secondary control and management of
islanded microgrids through dynamic weights. It addresses
the complexities of managing energy flow and stability in
decentralized grid systems.

The peer-to-peer transactive energy trading in a reconfig-
urable multi-energy network was explored in [26], emphasiz-
ing the role of decentralized trading mechanisms in modern
energy systems. Khorasany et al. [27] present a framework for
prosumers’ participation in peer-to-peer energy trading and
flexibility markets. This framework addresses the evolving

landscape of energymarkets and the role of distributed energy
resources. A framework [28] for joint scheduling and power
trading of prosumers in transactive markets was discussed
which highlights the importance of efficient energy trading
mechanisms in sustainable energy systems. The study in [29]
proposes a risk-averse day-ahead bidding strategy for trans-
active energy-sharing microgrids, incorporating data-driven
chance constraints to enhance decision-making in energy
markets. The paper [30] explores demand response through
the control of aggregated inverter air conditioners, showcas-
ing the potential for demand-side management in optimizing
energy consumption.

Peer-to-peer (P2P) energy trading facilitates the swift
incorporation of Blockchain Technology (BT) into microgrid
operations, enabling direct transactions between partici-
pants without intermediaries. P2P trading allows electricity
exchange among consumers and prosumers, leveraging a
cost-effective settlement system. This system benefits partic-
ipants bymonetizing surplus power, reducing electricity bills,
and improving returns from distributed generation [31]. Users
can regularly switch energy providers and trade electricity
based on their preferences. In such systems, BT can track
the amount of electricity sold and provide a transparent,
automated payment method. Smart meters and IoT-connected
devices offer a secure platform for monitoring and managing
energy usage within microgrids through BT. Blockchain-
based systems in community microgrids could significantly
boost the efficiency of distribution systems [32]. Demand-
side management via BT exemplifies this, where smart
contracts on the BT network determine customer interactions.
These contracts facilitate direct transactions, eliminating the
need for intermediaries. BT networks aim to reduce overall
energy demand and costs [33]. The decentralization provided
by BT enhances system transparency and security, utiliz-
ing SHA-256 encryption [34]. Energy trading is conducted
through automated smart contracts, which outline the terms
for transactions. Unlike traditional energy trading, where con-
sumer choice is limited, P2P trading offers greater control to
peers involved in energy exchange [35].

The different types of consensus mechanisms commonly
used in blockchain networks are shown in Table 1, along with
their limitations [36], [37], [38]. In the domain of peer-to-
peer (P2P) energy trading, various consensus mechanisms are
employed to guarantee the secure and transparent functioning
of blockchain platforms [33], [35], [36]. The proposed frame-
work operates on the Ethereum blockchain platform, offering
a secure and efficient transaction environment for commu-
nity microgrid systems involving consumers, and prosumers.
To enhance energy efficiency and scalability, the framework
adopts the proof of stake consensus mechanism [39], rec-
ognized for its reduced energy consumption compared to
proof of work [40]. In proof of stake, transaction validation
is assigned to nodes based on their stake in the network,
eliminating the need for energy-intensive competition in solv-
ing complex mathematical problems. This transition holds
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TABLE 1. Types of consensus mechanisms in blockchain [36], [37], [38].

promise for more eco-friendly and scalable energy trading
systems [41].

TABLE 1. (Continued.) Types of consensus mechanisms in
blockchain [36], [37], [38].

In response to the distinctive challenges posed by peer-
to-peer (P2P) energy trading within microgrid environments,
we introduce the Prosumer-Powered Modified Proof of
Stake (MPoS) consensus mechanism, specifically tailored for
such ecosystems. Unlike traditional Proof of Stake (PoS)
protocols, MPoS harnesses the active participation and stake
of prosumers—individuals or entities who both consume
and produce energy—to validate transactions and create
new blocks within the blockchain network. By integrating
prosumers into the validation process,MPoS enhances decen-
tralization, resilience, and transparency in microgrid energy
trading. Smart contracts are deployed to enforce the rules
of MPoS, ensuring transparency, immutability, and integrity
in energy transactions, while facilitating real-time settlement
between prosumers and consumers. This approach stream-
lines the validation process, improves network efficiency, and
fosters trust among participants, thereby paving the way for
the widespread adoption of P2P energy trading in microgrids.
Prosumers as validators [42], [43] can significantly enhance
the performance and security of blockchain-based energy
trading systems. Their proximity to end-users reduces latency
and enhances security. Moreover, prosumers are more likely
to be motivated to protect the system because they are more
likely to be affected by any disruptions to the system.

C. CONTRIBUTIONS
Despite the extensive research on Peer-to-Peer (P2P) energy
trading within blockchain platforms, there remains a gap
in developing a comprehensive decentralized energy trading
platform. To promote the adoption and robust operation of
the blockchain within the community microgrid, engaging
local prosumers as validators is a pivotal strategy. Validators
play a crucial role in verifying and validating transactions
on the blockchain, ensuring the integrity and security of
the entire decentralized energy management system. The
microgrid Energy Management System (EMS) serves as
the backbone of the energy infrastructure, promoting the
efficient distribution of power among local prosumers and
consumers. Integrating blockchain technology into this EMS
empowers the local community with a transparent, secure,
and decentralized platform. Smart contracts, programmed
with predefined rules and conditions, enable the automated
and secure execution of agreements, ensuring a fair and
reliable energy exchange within the community. The collabo-
ration between local prosumers and the microgrid EMS using
blockchain smart contracts creates a dynamic ecosystem for
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load and generation balancing. Prosumers, acting as valida-
tors, contribute to the decentralization and security of the
blockchain network, fostering a sense of community owner-
ship. The smart contracts embedded in the microgrid EMS
automate tasks such as energy transactions, demand response
events, and incentive mechanisms, streamlining operations
and enhancing overall efficiency.

This paper seeks to fill these gaps, with the following key
contributions:

1. Development of a Local Energy Trading Platform: We
have created a platform that facilitates local energy
trading among consumers, and prosumers, integrating
seamlessly with a blockchain network. This platform is
designed with straightforward implementation steps in
mind.

2. Calculation of Local P2P Energy Trading Prices: The
trading prices within this platform are determined
using the Tether (USDT) cryptocurrency, based on a
supply-to-demand ratio method. This approach ensures
transparent and fair pricing aligned with current market
dynamics.

3. Implementation of an Incentive-Based Demand
Response Program: An incentive scheme is incorpo-
rated into the platform to maintain the balance between
load and generation within the community microgrid,
enhancing overall efficiency and sustainability.

4. Integration of Local Validators in Blockchain: Val-
idators are selected from among the local consumers
and prosumers using Proof of Stake (PoS) consen-
sus mechanism. This approach not only provides them
with an opportunity to benefit financially but also con-
tributes to making the local community microgrid more
self-sufficient within the blockchain network.

5. Smart Contract: Implementation of automated smart
contracts to achieve the desired energy demand profiles
enrolled in the DR programs by each participant (con-
sumers and prosumers).

D. PAPER ORGANIZATION
Section I provides a detailed literature review and background
of the research. In Section II, we present a comprehen-
sive design framework for decentralized Peer-to-Peer (P2P)
energy trading in microgrids, along with mathematical mod-
eling that employs Tether (USDT) cryptocurrency. The
methodology, including an algorithm for P2P energy trading
using Blockchain Technology (BT) smart contracts, is elab-
orated in Section III. Section IV is dedicated to discussing
the results and analyses of the study. Finally, the conclusions
drawn from the research are discussed in Section V.

II. DECENTRALIZED P2P ENERGY TRADING DESIGN
AND MODELLING
Microgrid energy management system must ensure that
energy balance is maintained within the community micro-
grid. Here, excess electricity generated by members of the

FIGURE 1. Design of peer-to-peer (P2P) trading for energy transactions
within a microgrid energy management system (EMS).

community is sold to the utility grid at a predefined rate,
while any additional energy required tomeet the community’s
demand is procured from the grid at standard prices. This
system necessitates processes for developing energy trad-
ing strategies, setting local electricity tariffs, and calculating
energy expenses. Accordingly, Figure 1 illustrates the Peer-
to-Peer (P2P) energy trading structure in a grid-connected
Microgrid Energy Management System (EMS), featuring
prosumers (denoted as pth), and consumers (denoted as cth).
In this schematic, solid-colored arrows indicate the physi-
cal flow of electricity, whereas dashed arrows represent the
flow of information. The presence of Distributed Energy
Resources (DERs) on the prosumers’ side allows for bidi-
rectional electricity exchange between prosumers and the
consumers. This dynamic ensures a flexible and efficient
management of local energy resources, optimizing both con-
sumption and generation within the community microgrid.
Any surplus generation is first utilized to meet local needs,
and then any remaining excess energy from the microgrid
is sold to the utility grid. Local prosumers can engage in
Peer-to-Peer (P2P) energy trading, supplying energy to other
consumers and even neighboring microgrids.

This approach significantly modifies the existing peer-to-
grid model, also known as the grid feed-in system, where
surplus generation is typically sold back to the grid. Under
this new paradigm, consumers transform into energy produc-
ers, actively participating in the energy market. Households
have the opportunity to buy and sell energy at locally
determined prices, facilitating energy exchanges within their
community. Before initiating energy trades, the original
scheduling, including adjustments based on consumer load
demands, is communicated across the Blockchain network.
This ensures a more effective match between supply and
demand, catering to the energy requirements of the commu-
nity more efficiently.

The flowchart as shown in Figure 2 outlines a blockchain-
based energy management and trading process within
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FIGURE 2. Flowchart illustrating energy management and P2P energy
trading in a community microgrid.

a community microgrid. It begins with gathering data
on forecasted loads, energy generation, pricing, and bat-
tery storage, followed by an optimization algorithm that
schedules loads for efficient energy distribution. If the opti-
mization criteria are met, the energy management phase
concludes. Simultaneously, the energy trading phase com-
municates excess power availability to buyers through an
energy management system, initiating smart contracts on
the blockchain to facilitate transactions. Sellers and buyers
engage in a process where offers are made, transactions are
accepted, and power is exchanged. The system calculates
any discrepancies between actual and agreed exchanges,
applying error compensation when necessary. Finally, the
trading details are updated, ensuring a seamless flow
of energy and financial settlement within the microgrid,
leveraging the security and efficiency of blockchain
technology.

A mathematical formulation for cost optimization in a
decentralized energy management system involving pro-
sumers and consumers to focus on balancing energy supply
and demand while minimizing the costs of community micro-
grids [17], [18], [19], [20]. This formulation will consider
key constraints such as energy balance, generation, battery
storage and consumption limits, and grid constraints.

Objective Function:
Equation (1) represents a mathematical formulation for

the minimization of total energy costs in a microgrid

system involving peer-to-peer (P2P) energy trading and grid
interactions.

min
∑

h∈H

(∑
cj∈C

∑
pi∈P

Priceh.Epi→cj,h

+ Pricegrid,h.Ggrid,h

)
(1)

Constraints
1. Energy Balance:

Equation (2) represents a balance constraint of a microgrid
system that involves peer-to-peer (P2P) energy trading and
interactions with an external power grid. It ensures that for
each hour, the total energy produced and consumed within
the microgrid, including any exchanges with the external
grid, is balanced.∑

pi∈P

(
Gpi,h −

∑
cj∈C

Epi→cj,h

)
+ Ggrid,h = 0

∀h ∈ H (2)

2. Generation Limits: MaxGenpi is a predefined maximum
limit of energy that prosumer pi can generate in an hour.
This limit is determined the capacity of their energy gen-
eration equipment (like solar PV panels).

0 ≤ Gpi,h ≤ MaxGenpi ∀pi ∈ P, ∀h ∈ H (3)

3. Consumption Limits:MaxConscj is a predeterminedmax-
imum limit of energy that consumer cj can consume in
an hour. This limit is based on the consumer’s historical
consumption patterns and the capacity of their electrical
installation.

0 ≤ Lcj,h ≤ MaxConscj ∀cj ∈ C, ∀h ∈ H (4)

4. Trading Limits: The constraint ensures that the traded
amount is greater than zero but less than the minimum
of either the energy generated by the prosumer Gpi,h or
the energy consumption need of the consumerLcj,h during
that hour.

0 ≪ Epi→cj,h ≪ min(Gpi,h,Lcj,h)

∀pi ∈ P, ∀cj ∈ C, ∀h ∈ H (5)

5. Grid Trading Limits: Limits for energy bought from or
sold to the utility grid:

Ggrid,h ≥ _MaxGridFeedIn ∀h ∈ H (6)

Ggrid,h ≤ _MaxGridWithdrawal ∀h ∈ H (7)

6. State of Charge (SoC) Limit: Equation (8) is a constraint
related to the state of charge (SoC) of the battery energy
storage systems (BESS) owned by prosumers within a
microgrid. This constraint ensures that the SoC of each
prosumer’s storage system remains within specified min-
imum and maximum limits at all times.

MinSoCpi ≤ SoCpi,h ≤ MaxSoCpi ∀pi∈P, ∀h∈H

(8)
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7. SoC for the next time interval: Equation (9) is
used to calculate the state of charge (SoC) of the
BESS for each prosumer in a microgrid from one
hour to the next. This equation takes into account
the charging and discharging activities within each
hour.

SoCpi,h+1

= SoCpi,h +
(
Cpi,h.ηcharge

)
−

(
Dpi,h.ηdischarge

)
∀pi ∈ P, ∀h ∈ H (9)

In the decentralized energy management system within a
community microgrid, a prosumer’s Battery Energy Stor-
age System (BESS) is designed with sophisticated logic
to enhance energy utilization and contribute to the over-
all resilience of the microgrid. A pivotal element of this
logic involves the management of the State of Charge
(SoC), particularly focusing on optimal actions during peri-
ods of peak demand within the community as shown
in Figure 3.

FIGURE 3. Flow chart for prosumer’s BESS discharging logic in case of DR
events.

When the prosumer’s BESS observes that its State of
Charge exceeds the 50% threshold, a strategic decision is
made to commence the discharge of the battery. This thresh-
old is carefully chosen to strike a balance between retaining
a reserve within the battery for potential future needs and
actively supporting the community microgrid during times
of heightened demand. The logic effectively utilizes the
stored energy in the battery precisely when the community
microgrid experiences peak demand, marked by elevated
energy consumption. By discharging the battery when the
SoC surpasses 50%, the prosumer actively contributes addi-
tional power to the community microgrid when it is most
required.

A. MARKET TRADING PRICE USING SDR METHOD
When formulating energy pricing strategies, we considered
three essential economic principles:

• Price Boundaries Based on Utility Rates: In line with
fundamental economic principles, the prices in Peer-to-
Peer (P2P) trading should be bounded by the utility’s
purchase price and the grid feed-in tariffs. This ensures
that P2P prices remain competitive and fair within the
existing energy market structure.

• Inverse Relationship with Supply-Demand Ratio (SDR):
The P2P pricing is inversely proportional to the SDR.
This means that as the SDR increases (indicating a
surplus of supply over demand), the P2P price tends to
decrease, and vice versa. This relationship helps in align-
ing P2P prices with current market conditions, reflecting
the balance of energy supply and demand.

• Economic Equilibrium in P2P Trading: It is crucial
to maintain an economic balance in P2P transactions
within the microgrid. The objective is to ensure a sus-
tainable and equitable trading environment where all
participants, both buyers and sellers, find value in their
transactions.

• Economic Equilibrium in P2P Trading: It is crucial
to maintain an economic balance in P2P transactions
within the microgrid. The objective is to ensure a sus-
tainable and equitable trading environment where all
participants, both buyers and sellers, find value in their
transactions.

In the microgrid P2P trading system utilizing the Ethereum
blockchain, the unique aspect is the use of Tether (USDT),
a stable coin, as the medium of exchange. This system oper-
ates without a central regulatory authority, relying instead on
the Supply-Demand Ratio (SDR) method to autonomously
determine P2P prices based on the dynamics of supply and
demand. The use of Tether within the Ethereum network
brings stability to the trading process, as it is pegged to the
US dollar, reducing the volatility often associated with cryp-
tocurrencies. Utility reference prices serve as benchmarks for
energy exchanges within the microgrids. Consumers prefer
to purchase energy from neighboring prosumers when their
offering prices are lower than the utility grid’s prices. On the
other hand, prosumers with excess energy find it more prof-
itable to sell to other consumers within themicrogrid at higher
prices than to sell back to the grid. As a result, the P2P price
using Tether is strategically set between the utility’s buying
price and the grid-feed-in price. In this framework, the P2P
trading price for each participant in the energy trading is
denoted USDT_P2P. This pricing structure can be repre-
sented as follows:

USDTusell < USDTP2P < USDTubuy

Here:

• USDTusell is the price at which prosumers sell their
excess energy to the utility.
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• USDTP2P represents the P2P trading price within the
microgrid.

• USDTubuy signifies the utility’s buying price at that
time.

This arrangement ensures a stable, balanced, and economi-
cally viable trading environment within the microgrid, lever-
aging the stability of Tether (USDT) on the Ethereum network
to facilitate efficient and transparent energy transactions.

B. MARKET TRADING PRICE DETERMINATION
The market price of energy at time ‘h′ denoted as Priceh,
is determined by applying a function f to the SDR value:

Priceh = f (SDR) (10)

The function f is designed to translate the SDR into a cor-
responding price. This function must capture how changes
in the balance between supply and demand (as reflected by
the SDR) influence the price of energy. The SDR at a given
time interval ‘h’ is defined as the ratio of the total energy
supply to the total energy demand within the microgrid.
Mathematically, it is represented as:

SDRh =

∑
pi∈P

Gpi,h∑
ci∈C Lcj ,h

(11)

The pricing model can be developed based on the SDR
method, as previously discussed, considering the inverse pro-
portional relationship between SDR and P2P trading prices.
The market trading price for P2P transactions within the
microgrid is determined using the formula presented in
Equation (4), as established in reference [44]:

Priceh=


USDT ubuy × USDT usell(

USDT ubuy − USDT usell
)
.SDRh + USDT usell

,

0 ≤ SDRh ≤ 1
USDT usell, SDRh > 1

(12)

In decentralized energy trading, the SDR value plays a crucial
role in determining the market price of energy. An appropri-
ately designed function f translates the SDR into a market
price, reflecting the current balance of supply and demand.
The pricing mechanism, therefore, remains responsive and
adaptable to the changing dynamics of the microgrid’s energy
ecosystem.

C. INCENTIVE-BASED DEMAND RESPONSE (DR)
PROGRAM FOR CONSUMERS
It is presumed that all the consumers participating in Demand
Response (DR) have a certain portion of their load that is
adjustable. Due to pricing incentives, these consumers might
opt to alter their power consumption patterns, leading to
deviations from their originally planned power usage. Recent
trends indicate that the readiness of users to shift their load is
becoming a key consideration in demand-side energy man-
agement, as users exhibit varying levels of willingness to

adjust their load [45]. For consumers, using shiftable appli-
ances without regard for DR incentives may result in no
perceived inconvenience, leaving their original load profiles
unchanged. However, if they choose to modify their shiftable
load in reaction to price signals, this decision could impact
their convenience, potentially causing delays in appliance use
or necessitating usage at earlier times than initially planned.
The inconvenience caused by such load shifting is more
precisely quantified by considering the frequency and timing
adjustments of these shiftable appliances. The cost equivalent
to this inconvenience formulated as follows:

incn = αn
∑H

h=1
(L′

cj ,h − Lcj ,h)
2 (13)

where incn is the inconvenience cost for consumer n, The
sensitivity coefficient for consumer n, denoted as αn is uti-
lized to measure the consumer’s readiness for load shifting,
while L′cj,h reflects the modified load consumption of the
consumer. When choosing αn (αn > 0), a higher value
suggests that the consumer is more sensitive to the discomfort
caused by shifting their load and is therefore less inclined to
alter their load usage.

By combining the inconvenience cost with the electricity
costs of the consumer, we can establish the following cost
function for their optimal operation:

Ch
n(L

′
cj,h) = Price′h.

∑H

h=1
(L′cj,h − Lcj,h)

+ αn
∑H

h=1
(L′cj,h − Lcj,h)

2 (14)

Cn = Ch
n(L

′
cj,h) (15)

where Ch
n(L

′
cj,h) can be separated into two parts: the

cost of using electricity Priceh.
∑H

h=1 (L′cj,h − Lcj,h) and
the equivalent cost of adjusting flexible power αn

∑H
h=1

(L′cj,h−Lcj,h)
2. These two parts constitute the cost function

in both economy and users’ willingness. Priceh is the price at
time slot ‘h’ for consumer ‘n’, which can be the selling price
or buying price, and decided by the net power:

SDR′
h =

∑
pi∈P Gpi,h∑
ci∈C L

′
cj,h

(16)

Price
′
h = f

′ (
SDR

′
h

)

=


USDTubuy×USDTusell(

USDTubuy−USDTusell
)
.SDR′h+USDTusell

,

0 ≤ SDR′
h ≤ 1

USDTusell , SDR′
h > 1

(17)

III. IMPLEMENTATION OF BLOCKCHAIN FOR
PEER-TO-PEER ENERGY TRADING USING
SMART CONTRACT
A smart contract is essentially a set of predefined rules for
interaction among parties, crafted using a high-level pro-
gramming language like Solidity on the Ethereum platform.
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FIGURE 4. Design framework of peer to peer blockchain transactions integrated with microgrid EMS.

This contract is designed to automatically execute once its
specified conditions are met. Participants in the contract, such
as prosumers, consumers, and RES owners, can engage with
its functionalities and initiate transactions that are then broad-
cast across the Ethereum Blockchain Technology Network.
For a smart contract to become operational, it must first be
created and then uploaded to the blockchain. Figure 4 shows a
detailed design framework for integrating theMicrogrid EMS
to the blockchain which demonstrates the implementation
steps from the beginning of a transaction to its conclu-
sion. Initially, in step 1, all microgrid participants submit
requests to the registration authority (RA). Step 2 ensures
that only registered participants with public keys can take
part. Step 3 involves storing all transaction requests in the
cloud. Step 4 follows theMicrogrid EnergyManagement Sys-
tem (MEMS) performs microgrid cost optimization analysis
on the data provided by prosumers, and consumers to evaluate
system parameters and optimize costs. In case of a generation
shortfall, transaction requests are sent to consumers with
an initial incentive rate to solicit Demand Response (DR)
resources. This process is iterative, adjusting the incentive
rate as needed. This approach employs elasticity-based DR
modeling to simulate scenarios. If no violations occur, the
requested transaction is broadcast to all peers, as shown
in Step 5, and the smart contract is deployed with DR
elements to determine the transaction price using Supply-
to-Demand Ratio (SDR) method. This transaction is then

validated byminers. Upon validation, a new blockchain block
is created and appended to the existing chain, and complete
with a new hash. If violations occur, reschedule the dispatch
and run the optimization, repeat the step 4.

The coordination between a Microgrid Energy Manage-
ment System (EMS) and a Blockchain smart contract for
effective peer-to-peer (P2P) energy trading involves a seam-
less integration of optimized data transmission. The Micro-
grid EMS serves as the central intelligence, continuously
collecting real-time data on energy production, consumption
patterns, and storage levels within the microgrid. Employing
sophisticated optimization algorithms, the EMS analyzes this
data to determine the most efficient allocation of energy
resources. Subsequently, it generates a transaction proposal
that encapsulates the optimal energy distribution, including
details such as participating parties, amounts, and pricing.

The interaction with the Blockchain smart contract is a
critical aspect of this coordination. The Microgrid EMS
communicates with the smart contract by submitting the gen-
erated transaction proposal. Specifically, designed functions
within the smart contract handle these proposals, ensuring
secure and transparent execution. The smart contract vali-
dates the proposed transactions based on predefined rules,
leveraging the inherent trust and transparency of blockchain
technology. Once validated, the optimized data is securely
stored on the blockchain, forming an immutable record of
P2P energy transactions. This integrated approach enhances
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Algorithm 1 Market Trading Price and Demand Response
Program
P2P Market Trading Price:
Calculate SDR:

SDRh =

∑
pi∈P

Gpi,h∑
ci∈C

Lcj ,h
from Equation (11)

Market Clearing Price:

Priceh = f (SDR) from Equation (12)

Initiate DR Signal:

Load Shifting Initiated

Run load optimization and minimize the cost for individual
consumers/ prosumers as Ch

n(L
′
cj,h) from Equation (14)

Calculate modified SDR and price setting:

SDR′
h =

∑
pi∈P

Gpi,h∑
ci∈C L

′cj ,h

Price′h = f (SDR) from Equation (17)

if
∥∥Price′h − Priceh

∥∥ ≤ ε then
stop iteration
end if

the efficiency and transparency of energy trading within the
microgrid, providing a secure foundation for decentralized
and optimized energy management.

The smart contract for the microgrid encompasses key
components that define the participant structure, incorporat-
ing both consumers and prosumers with detailed attributes
such as energy consumption, generation, and financial bal-
ances. Crucial to the contract is the Demand Response (DR)
event management system, designed to balance energy
demand and supply during peak periods by adjusting con-
sumption patterns and providing incentives for flexibil-
ity. Managing pricing parameters like grid buy and sell
prices, along with a dynamically calculated Supply-Demand
Ratio (SDR) price, ensures fair and market-reflective pricing
for energy transactions.

The functionalities of the smart contract include initializa-
tion and participant registration, energy data management,
DR event handling, transaction creation and execution,
as well as incentive distribution and event finalization.
Through these features, participants register, update their
energy data, engage in DR events, and partake in efficient
energy trading with the contract ensuring fair compensation
and event settlement.

The Algorithm-2 is designed the smart contract structures
with key functions to facilitate decentralized energy manage-
ment, incorporating features such as participant registration,
real-time energy data updates, and the calculation of the

Algorithm 2 Smart Contract for the Decentralized Energy
Management
// Participants and transactions
mapping(address => Participant) participants; Transaction[]
pendingTransactions;

// Initialize the contract
function initializeContract(float initialBuyPrice, float
initialSellPrice) {gridBuyPrice = initialBuyPrice;
gridSellPrice = initialSellPrice; currentSDRPrice =

(initialBuyPrice + initialSellPrice) / 2; currentDREvent =
DemandResponseEvent(0, 0, false);}

// Update energy data for a participant
function updateEnergyData(address id, float consumption,
float generation) { participants[id].hourlyConsumption =

consumption; participants[id].hourlyGeneration =

generation; calculateSDRPrice();
createOrUpdateTransactions(id);
checkAndRespondToDREvent(id);}

// Calculate Supply-Demand Ratio (SDR) Price
function calculateSDRPrice() {// Implement the logic to
calculate SDR based on current supply and demand using
equation (11); currentSDRPrice = // Calculation logic as
defined in equation (12)
}

Supply-Demand Ratio (SDR) Price. The contract defines two
essential data structures: ‘‘Participant’’ encapsulates infor-
mation about each participant, including their Ethereum
address, hourly energy consumption, generation, balance,
and flags indicating whether they are a prosumer and cur-
rently participating in Demand Response (DR) events. The
‘‘DemandResponseEvent’’ structure captures details of ongo-
ing DR events, specifying the required adjustment in energy
demand, the incentive rate for participant involvement, and a
boolean indicating the event’s activation status.

The contract initializes with parameters for grid buy and
sell prices, setting the initial SDR Price as the average of
these values. The current DR event is initialized with default
values, signaling no active event at the contract’s onset. The
participant mappings store detailed information about each
participant, while an array of transactions keeps track of
pending energy transactions.

The contract defines various functions to interact with its
functionalities. The ‘‘initializeContract’’ function sets initial
pricing parameters and initializes the DR event. ‘‘registerPar-
ticipant’’ enables the addition of participants to the system,
initializing their data structures. The ‘‘updateEnergyData’’
function allows participants to dynamically update their
energy consumption and generation, triggering the recalcula-
tion of the SDR Price and updating transactions accordingly.

The ‘‘calculateSDRPrice’’ function, although represented
as a placeholder, is designed to implement the logic for
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Algorithm 3 The Logic for Participants to Adjust Their
Energy Usage Based on the DR Event Requirements
function adjustEnergyForDREvent(address id) {

require(currentDREvent.isActive, ‘‘No active DR event’’);
Participant storage participant = participants[id];
float adjustment = currentDREvent.requiredAdjustment;
if (adjustment > 0) {
// Implement logic for participants to reduce energy

consumption
participant.hourlyConsumption -= adjustment;

} else if (adjustment < 0 && participant.isProsumer) {
// Implement logic for prosumers to increase energy

generation
participant.hourlyGeneration -= adjustment;

}
// Calculate and update participant’s balance based on

DR incentives
participant.balance + = adjustment ∗ current-

DREvent.incentiveRate;
// Notify participant of successful adjustment
emit AdjustmentComplete(id, adjustment);

}

computing the SDR Price based on the current supply and
demand. This function forms a crucial component in the con-
tract, influencing pricing dynamics within the decentralized
energy management system.

The smart contract function ‘‘adjustEnergyForDREvent’’
is a crucial component within the Decentralized Energy
Management smart contract, designed to facilitate dynamic
adjustments to the energy consumption and generation of
individual participants in response to an active Demand
Response (DR) event as explained in Algorithm-3. The func-
tion takes the Ethereum address (id) of a participant as input
and ensures that there is an ongoing DR event by checking the
boolean status of ‘‘currentDREvent.isActive’’. If there is no
active DR event, the function exits with an appropriate error
message to maintain the integrity of the process.

Upon verifying the presence of an active DR event, the
function proceeds to retrieve the relevant participant data,
stored in the participants mapping, specifically focusing
on their hourly energy consumption ‘‘hourlyConsumption’’,
energy generation ‘‘hourlyGeneration’’, and current balance
‘‘balance’’. The adjustment parameter (adjustment) is then
extracted from the global DR event parameters ‘‘current-
DREvent.requiredAdjustment’’.

The subsequent conditional statements play a pivotal role
in determining the type of energy adjustment needed based on
the sign of the adjustment parameter. If adjustment is positive,
implying an increased demand, the function implements logic
to reduce the participant’s hourly energy consumption pro-
portionally. Conversely, if adjustment is negative (indicating
a reduced demand) and the participant is identified as a pro-
sumer, the function executes logic to increase the prosumer’s
energy generation.

Algorithm 4 Pseudo Code for the Modified PoS Consensus
Within the Smart Contract
// Define structures for Validators, Peers, and Transactions
Structure Validator: id, reputation

// Define mappings for validators, peers, and transactions
Mapping validations maps Address to Validator
Mapping peers maps Address to Peer
Mapping transactions maps uint256 to Transaction

// Functions for smart contract operation
Function addValidator(Address validatorAddress):

Create new Validator with given address
Initialize reputation based on historical performance
Add Validator to validations mapping

Function updateReputation(Address validatorAddress, Per-
formance performance):

Retrieve validator’s historical performances
Update reputation based on the latest performance and

past records
Store the updated reputation

Function proposeTransaction(uint256 transactionId, Trans-
action details):

Validate transaction details
If valid, add Transaction to transactions mapping
Update validator’s reputation who proposed the transac-

tion

Following the adjustment of energy consumption or gener-
ation, the participant’s balance is recalculated to incorporate
the financial incentives associated with their response to
the DR event. The adjustment amount is multiplied by the
incentive rate ‘‘currentDREvent.incentiveRate’’ to determine
the monetary reward, which is then added to the participant’s
balance.

Finally, to provide transparency and real-time updates, the
function emits an ‘‘AdjustmentComplete’’ event, notifying
the participant of the successful execution of the energy
adjustment. This event can serve as a trigger for external
systems or user interfaces to respond to the dynamic changes
in participants’ energy profiles during DR events.

Algorithm-4 details the essential components and func-
tionalities of a modified Proof of Stake (MPoS) consensus
algorithm implemented within a smart contract. Firstly,
it defines important structures and mappings to organize
data within the contract. The validators are mapped to
their addresses using the ‘‘validations’’ mapping, allow-
ing for easy retrieval and management. Additionally, the
‘‘peers’’ mapping associates each peer’s address with rele-
vant information. Secondly, the pseudocode outlines several
key functions responsible for managing validators and trans-
actions. The ‘‘addValidator’’ function facilitates the addi-
tion of new validators to the network by initializing their
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reputation and integrating them into the validations map-
ping. The ‘‘updateReputation’’ function plays a pivotal role
in maintaining the reputation of validators, utilizing histor-
ical performance data to adjust reputations based on recent
activities. Lastly, the ‘‘proposeTransaction’’ function handles
the submission of new transactions to the network, ensuring
their validity before adding them to the transactions map-
ping. Furthermore, this function triggers reputation updates
for validators who propose transactions, contributing to the
dynamic nature of the consensus process. The pseudocode
also incorporates additional consideration of reputations. The
‘‘historicalPerformance’’ mapping tracks past performances
of validators, serving as a basis for reputation calculations.

IV. RESULTS AND DISCUSSIONS
The dataset utilized for this study is sourced from the Pecan
Street Project and encompasses the energy usage and produc-
tion records of 244 residential households in Austin, Texas.
Within this community, there are 119 prosumers equipped
with solar photovoltaic (PV) and wind generation capabilities
and 125 consumers [46], [47], [48], [49]. For the purpose
of our analysis, we have aggregated this data into a more
manageable form by modeling the community as composed
of 5 prosumers and 5 consumers. The model retains the fun-
damental characteristics of the original community, reflecting
the energy exchange patterns and interactions that occur
within a peer-to-peer (P2P) energy trading network.

The optimization experiments utilized a computer system
equipped with an Intel Core i7-10700K processor, 32GB
DDR4 RAM, with the software programming used Python
3.8 and the Gurobi v10 solver for Mixed-Integer Linear Pro-
gramming (MILP) optimization. The optimization algorithm,
using Gurobi solver forMILP, arrived at an objective function
value of 1993.6296 US$ in 12 seconds, indicative of the
community microgrid’s total cost optimization. This value
represents the total cost optimization for the community
microgrid, the overall economic efficiency achieved through
the P2P energy transactions between prosumers and con-
sumers, incorporating the SDR basedmarket clearing pricing.

Each household was assigned an account on Ganache,
a personal blockchain for Ethereum development. The data
for each household includes an hourly records of con-
sumption and generation, alongside grid feed-in rates for
prosumers (for surplus generation) and utility grid prices for
consumers (when facing a shortfall in generation). As out-
lined in section III, the P2P trading price is set to be within the
range of grid buying and selling prices to encourage partici-
pation in the microgrid’s decentralized market. This approach
also aims to reduce reliance on the utility grid, fostering
community self-sufficiency through local distributed gener-
ations and blockchain-based trading platforms. Each account
in the system posts a bid if it has surplus energy and requests
energy if there is a deficit. The Supply-Demand Ratio (SDR)
method is then applied to establish a market clearance price,
with transactions occurring on an hourly basis. This price,
positioned between the grid’s selling and buying prices, is set

using dynamic grid pricing (USDT_p2p). Bids and asks are
then matched to fulfill customer needs. The total energy cost
is calculated in Wei, and the equivalent amount in USDT
cryptocurrency is transferred from the buyer to the seller.

Surplus energy post local P2P trading is sold to the utility
grid, and in cases of a microgrid generation deficit, additional
energy needs are met by the utility grid.

This study presents an efficient, secure, and self-sustaining
microgrid system for addressing local community energy
needs through P2P energy trading. It examines the impact
of the proposed market structure combined with Blockchain
Technology (BT). Pricing for various energy sources signif-
icantly influences the optimization and comparison of the
proposed market architecture. All other variables are tied to
the dynamic pricing set for the grid using the SDR method.
In the absence of local trades, the P2P price should mirror
each prosumer’s willingness to sell power at a reduced rate.

FIGURE 5. Energy allocations by five prosumers over 24 hours
time-period.

Figure 5 bar chart illustrates the optimized results of a
peer-to-peer (P2P) energy trading system showing the amount
of energy allocated by five prosumers over 24 hours period
of time, segmented into hourly intervals. From the chart,
we observe that each prosumer has contributed to the energy
allocations in varying amounts depending on their genera-
tion capacity, indicated by the different colored segments
within each bar. Prosumer 1, represented by the color blue,
appears to consistently contribute a significant portion of the
energy traded across most hours. Prosumer 2 (orange) and
Prosumer 3 (green) also demonstrate considerable activity in
the market, with their contributions showing some variation
over time. Prosumer 4 (red) and Prosumer 5 (purple) add to
the diversity of the market with their shares, although they
seem to contribute less energy than the others in certain hours.

The overall pattern of trading is dynamic, with the total
energy sold each hour fluctuating, indicating variable produc-
tion or availability of energy from prosumers, which could be
due to the intermittent nature of renewable energy sources,
solar PV. The peaks and troughs in the bar chart suggest
that at certain times during daylight hours, there is a surplus
of energy from solar generation, while at other times, the
energy sold decreases, which could correspond to periods of
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lower generation capacity or higher self-consumption by the
prosumers.

FIGURE 6. Aggregated battery storage capacity over 24 hours time-period.

Figure 6 represents the aggregated battery storage capac-
ity profile across a community of prosumers. The profile
indicates the total energy storage available at different hours
throughout the day. Each bar represents a specific hour, and
the height of the bar indicates the total storage capacity in
kilowatt-hours (kWh) at that time. The relatively uniform dis-
tribution of the bars suggests that the battery storage system
has been designed to maintain a consistent level of storage
capacity throughout the day, which can help to buffer against
variability in solar PV generation and to ensure a steady
supply of energy.

FIGURE 7. Battery discharging profiles of the five prosumers over
24 hours time-period.

Figure 7 illustrates the discharging profile of batteries for
each prosumer in the community. Negative values indicate
energy being discharged from the battery to meet demand or
to sell into the P2P energy trading market. Each color in the
stacked bars represents a different prosumer, and the length
of each colored segment indicates the amount of energy that
prosumer’s battery is discharging at that hour. This profile
demonstrates how each prosumer’s battery discharges at dif-
ferent rates and times in response to their individual energy
generation and consumption patterns, as well as their partici-
pation in energy trading. It is an essential aspect of managing
the microgrid’s overall energy balance, ensuring that excess

generation can be stored and used when generation is low or
demand is high.

FIGURE 8. Energy allocations for five consumers over 24 hours
time-period.

Figure 8 bar chart showcases the energy consumption
patterns of five consumers over a 24-hour period. Each bar
represents an hour in the day, and the stacked colors within
each bar depict the individual energy consumption for each
consumer. The varied height of each color segment within
the bars indicates the fluctuating demand for energy by each
consumer throughout the day. From the chart, we can see that
all consumers exhibit similar patterns of energy consumption,
with varying levels of demand. The presence of all five
colors in most bars suggests that every consumer is active in
purchasing energy at most hours. There are peaks and troughs
which likely correspond to typical daily activities, with higher
energy consumption during the day and evening hours, and
lower consumption overnight.

The distribution of energy consumption among the con-
sumers appears to be relatively balanced, with no single
consumer consistently dominating energy purchases. This
could imply a well-integrated demand-side management sys-
tem that allows for equitable energy distribution and reflects
the effectiveness of a demand response program that encour-
ages consumers to shift their energy usage to off-peak times
or to times when renewable energy generation is high. The
aggregation of such detailed consumption data can be pivotal
for the microgrid manager or utility provider to understand
demand patterns, which can inform strategies for energy dis-
tribution, pricing models, and energy storage requirements.
It also provides insights into the success of energy effi-
ciency measures and demand response initiatives within the
community.

The line graph in Figure 9 illustrates the impact of a
demand response (DR) program on the microgrid load profile
over a 24-hour period. The blue dashed line represents the
load profile before the implementation of the DR program,
while the orange solid line shows the load profile after the
program has been put into effect. From the graph, it is appar-
ent that the DR program has led to a modification of the
load profile across the day. Before the DR program, the load
profile exhibits significant fluctuations, with peaks likely
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FIGURE 9. Microgrid overall profile before and after Demand Response
(DR) program over 24 hours time-period.

corresponding to high-use periods during the evening time.
These peaks are interspersed with valleys, possibly indicating
lower energy usage during late-night or mid-day periods.

After the implementation of the DR program, the load
profile changes markedly. The peaks and valleys appear to be
smoothed out, suggesting a shift in energy consumption from
high-peak periods to other times of the day. This shift could
be attributed to time-of-use based DR pricing strategy where
energy costs are more during peak hours and less during
off-peak hours, encouraging consumers to use less energy
when it is more expensive.

FIGURE 10. Microgrid Supply to Demand Ratio (SDR) profile before and
after Demand Response (DR) program over 24 hours time-period.

The graph presented in Figure 10 depicts the Supply-
Demand Ratio (SDR) before and after the implementation of
a Demand Response (DR) program over a 24-hour period.
The SDR is a metric that quantifies the balance between
energy supply and demand, with higher values indicating
a surplus of energy supply relative to demand, and lower
values suggesting a closer balance or even a shortfall. The
blue line with circular markers represents the SDR before
the implementation of the DR program. It fluctuates over the
course of the day, which is typical in residential areas due to
varying consumption patterns. The peaks may correspond to
times when energy supply from renewable sources like solar
PV systems is high, or when consumer demand is low. Con-
versely, the troughs suggest periods when demand is higher

relative to supply, possibly during early morning and evening
hours when residential energy use typically increases. The
orange line with cross markers shows the SDR after the DR
program has been applied. Notably, the SDR still fluctuates,
but the peaks and valleys are less pronounced, indicating
that the DR program has succeeded in flattening the demand
curve. This could be due to load shifting based incentivizing
DR strategy to consumers to reduce consumption during peak
periods. One notable feature is the sharp peak in the orange
line towards the end of the period, which suggests a signifi-
cant surplus of supply or a substantial drop in demand. This
could indicate that the DR program has aggressively moved
loads out of this period, or that therewas a substantial increase
in renewable generation that was not matched by demand.

Overall, the SDR graph indicates that the DR program has
made an impact on energy consumption behavior, smooth-
ing out the extremes of energy supply and demand. This is
beneficial for the stability of the grid and can lead to cost
savings for both utilities and consumers. It also highlights
the potential for DR programs to enhance the integration of
renewable energy sources into the grid by managing when
and how much energy is used, contributing to a more sustain-
able energy system.

TABLE 2. Comparative analysis of microgrid financial metrics before and
after the implementation of a demand response program.

Table 2 gives the comparative performance of the Micro-
grid Financial Metrics before and after the Implementation of
a Demand Response Program. Before the DR program was
enacted, the cost of energy sold by prosumers was $1,950,
which increased to $2,200 after the program, resulting in
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savings of $250. Similarly, the cost of energy bought by con-
sumers decreased from $2,500 to $2,200, yielding a savings
of $300. The total cost of the microgrid load before the DR
program stood at $1,993.63, and the implementation of the
DR program led to a reduction in this cost, bringing it down to
$1,794.27, which translates to savings of $199.36. It’s worth
noting that an inconvenience cost of $150 was incurred due to
the DR program, which provides incentives to the consumers
for the shift of their load patterns. The overall operational
costs of the microgrid before the DR program were $4,700,
and after the program, these costs were reduced to $4,094.27,
marking a substantial saving of $605.73. Additionally, cost
savings were also realized in aggregated storage costs, which
dropped from $100 to $90, contributing another $10 to the
total savings. Taking all these factors into account, the total
cost savings realized from the DR program amounted to
$715 with overall 6.36 % cost saving of the microgrid. This
highlights the direct financial benefits of the program, high-
lighting the efficacy of DR initiatives in optimizing energy
costs within a microgrid setting. It is important to underline
that these savings must be carefully weighed against the
inconvenience costs to ensure that the DR program delivers
net positive value to all stakeholders involved.

FIGURE 11. Proof of Stake (PoS) consensus mechanism transaction
validated through Remix Ethereum.

We designed and implemented the Modified Proof of
Stake (MPoS) consensus mechanism on a private Ethereum
platform, specifically tailored for the decentralized commu-
nity microgrid P2P energy trading. This platform enabled
peer-to-peer energy trading between prosumers and con-
sumers. Using Ganache for setting up a private Ethereum
blockchain, MetaMask for managing accounts and trans-
actions, and Remix Ethereum for developing, testing, and
deploying Solidity smart contract as shown in Figure 11.
Figure 12 displays the user interface of a smart contract

deployment on an Ethereum blockchain platform, illustrat-
ing the smart contract’s interactive functions tailored for
the energy trading system. The functions visible at the left
side indicate a dynamic marketplace where users can trade
energy. On the right, a transaction record confirms the smart

FIGURE 12. Smart contract deployment showing functions and the
transaction record.

contract’s operations, detailing the unique transaction hash,
the contract address, and the associated transaction costs.
This figure captures both the functionality designed to facili-
tate energy trades and the inherent transparency of blockchain
transactions.

TABLE 3. Key performance metrics.

The PoS consensus mechanism allowed validators, who
were pre-registered peers among the consumers and pro-
sumers on the network, to propose and validate energy
transactions. Furthermore, the contract regulated the trading
of energy units between prosumers and consumers, ensuring
secure and transparent transactions. This successful imple-
mentation of the MPoS consensus mechanism for energy
trading demonstrates its potential for real-world applications
in decentralized energy markets.

The efficacy of the smart contracts in the blockchain-
integrated microgrid system was rigorously evaluated using
key performance metrics. These metrics were carefully
chosen to reflect the system’s operational efficiency, cost-
effectiveness, compliance with network rules, and environ-
mental sustainability. Detailed results, illustrated in Table 3
and Figure 13, showcase significant improvement in the sys-
tem’s performance.
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TABLE 4. Hourly consumer and prosumer energy transaction results using blockchain with energy volume (kWh) and price (US$).

FIGURE 13. Simulated smart contract results for energy and funds
transactions between prosumers and consumers.

Table 3 shows the transaction cost of successful contract
deployment. At a minimal cost of 0.0005 USDT per transac-
tion, the system demonstrates the cost-effectiveness. This low
transaction cost is vital for ensuring the economic feasibility
of the microgrid, particularly for frequent, small-scale energy
trades typical in a residential community setting. The execu-
tion time for the successful energy trading and fund transfer
is simulated in Figure 13.
Measured at an average 12 milliseconds, the execution

time metric highlights the swift processing capabilities of
the deployed smart contracts. This rapid execution is crucial
for real-time energy trading and demand response scenarios,
ensuring that energy transactions are promptly and efficiently
handled within the microgrid. As shown in Table 3, with a
compliance rate of 99.5%, the system exhibits a high level
of adherence to predefined network rules. This metric is
indicative of the robustness and reliability of the smart con-
tract implementation, ensuring that all energy transactions are
conducted in a transparent and trustworthy manner. However,
historical performance indices of the network participants
(consumers and prosumers) will be more indicative of this
metric in real time implementation. The introduction of a

Demand Response (DR) program in the microgrid system has
led to substantial energy cost savings, as evidenced by the
comparative analysis of financial metrics before and after the
implementation of the DR program. The net total cost savings
realized from the DR program amounted to 6.36%. This
figure represents a significant economic benefit, highlighting
the DR program’s role in optimizing energy costs within the
microgrid.

The smart contract deployment results are shown in Table 4
which illustrates the P2P energy trading among prosumer and
consumers. In the 19th hour, Consumer House_10, with a
deficit of 4.35 kWh and no battery storage, engages in P2P
energy trading, interacting using ‘AskForEnergy’ function
due to their shortfall. Meanwhile, Prosumer House_4, with a
surplus of 3.97 kWh from solar generation, utilizes ‘OfferEn-
ergy’, selling excess energy to this consumer. The transaction
reflects active P2P trading at a price of 0.337 USD, with the
consumer additionally benefiting from a demand response
adjustment and reward.

V. CONCLUSION
This paper presents a detailed examination and practical
application of a decentralized community microgrid system
integrated with blockchain technology, drawing insights from
data collected as part of the Pecan Street Project involv-
ing 244 households situated in Austin, Texas. The study
focuses on a selected group of 5 prosumers and 5 consumers
equipped with solar photovoltaic (PV) generation and bat-
tery storage capabilities, aiming to assess the viability of
peer-to-peer (P2P) energy trading within residential com-
munities. The supply-demand Ratio (SDR) plays a pivotal
role in ensuring fair energy exchange within the commu-
nity, while the deployment of blockchain technology through
smart contracts, underpins the security of these transactions.
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Through the combination of SDR for equitable trade and
blockchain for secure transactions, our system fosters a reli-
able and fair energy trading environment. Furthermore, the
proposed incentive-based demand response program is inte-
grated directly within the smart contract framework, offering
real-time rewards for load-balancing contributions, which
could be more responsive than incentive mechanisms in other
systems. Statistical analyses reveal a notable overall cost
reduction of 6.36% following the introduction of the demand
response program. Local prosumers’ active involvement as
validators in the blockchain network further reinforces com-
munity engagement and fosters resilience and sustainability
in local energy systems.
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