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Abstract—Deep-learning-based single-image super-resolution
models are typically trained using image patches, rather than
the whole images, due to hardware limits. Since different brain
regions have disparate structures and their size varies, such
as the cerebrum and cerebellum, models trained using image
patches can be dominated by the structures of the larger brain
regions and ignore the fine-grained details in smaller areas.
In this paper, we first evaluate several previously proposed
models using more blurry low-resolution images than previous
studies, as input. Then, we propose an effective approach for the
conventional patch-based strategy by balancing the proportion
of patches containing high-frequency details. This makes the
model focus more on high-frequency information in tiny regions,
especially for the cerebellum. Compared with the conventional
patch-based strategy, the resultant super-resolved image from our
approach achieves comparable image quality in the whole brain.
In contrast, it improves significantly on the high-frequency details
in the cerebellum.

Index Terms—cerebellum, MRI, super-resolution

I. INTRODUCTION

High-resolution (HR) structural MR images contain rich
anatomical details, which is preferred in clinical diagnosis.
However, HR images come at the cost of longer scan time
and lower signal-to-noise ratio [1], which poses obstacles in
the clinical situation due to hardware limits. One solution for
this problem is to apply the single image super-resolution
(SISR) technique, which requires a low-resolution (LR) image
to reconstruct its HR counterpart. It does not require extra scan
time or high-cost scanners to generate an HR image and could
be used to enhance image quality from low-field scanners.

Training SISR models requires paired LR and HR images
for models to learn mappings between images. Due to the rare
availability of paired MR images, synthetic LR images, gen-
erated from their HR counterpart, have been widely adopted
in the literature. To mimic the behaviors of the real-world
low-field scanners, HR images are transformed into the k-
space using the Fast Fourier Transform (FFT), and resolution
degradation is performed on the k-space data [2].

The work of Hanzhi Wang was supported by the China Scholarship Council
(CSC) for his PhD (No. 202008060053). The work of Derek K. Jones was
supported in part by the Wellcome Trust Investigator Award 096646/Z/11/Z
and in part by the Wellcome Trust Strategic Award 104943/Z/14/Z.

In previous studies, synthetic LR images are similar to HR
images, even if only keeping the central 25% k-space data [2]–
[5], which may face performance degradation on real-world
LR images. We first investigate whether these previously pro-
posed models are capable of learning more complex mappings
when using more blurry LR images as input. We follow the
procedures in generating LR images [2], while only keeping
6.25% of the k-space data. By keeping a smaller proportion of
the original k-space data, a more significant difference exists
between synthetic LR and authentic HR images.

A more fundamental problem in brain super-resolution is the
patch-based training strategy. Typically, image patches sam-
pled uniformly from the whole brain volume, rather than the
whole images, are adopted as model input to prevent memory
issues [2]–[5]. However, such uniform sampling introduces a
data imbalance issue. The cerebrum, containing low-frequency
information, generates far more patches than the cerebellum,
whereas the latter contains more complex structures. It could
result in the model being more focused on the information
from larger regions of the brain and ignoring the fine-grained
details in tiny areas. In the literature, the reconstruction of the
cerebrum has achieved almost indistinguishable performance
using relatively simple models [2]. However, there is still
a huge gap between the super-resolved cerebellum and the
authentic HR one, even using decent models [6], [7].

To solve the data-imbalance issue, we propose a simple
yet effective approach via a non-uniform patch sampling for
the conventional patch-based training strategy, to treat the
whole brain volume and cerebellum equally to derive better
reconstruction quality.

Our main contributions in this paper are:

1) We evaluate the capacity of several renowned models
using more blurry LR images as input than previous
studies. By keeping 6.25% of the k-space data rather
than 25% in the literature, synthetic LR images look
more similar to real-world LR ones, which may improve
model generalization ability on real-world images.

2) We propose a direct and effective method using a non-
uniform sampling for the patch-based training strategy
to improve the reconstruction quality for high-frequency
details, especially for the cerebellum. To the best of



our knowledge, the proposed method is the first work
that treats the brain volume as two separate regions,
the cerebellum and non-cerebellum regions, for brain
MRI super-resolution tasks. The implementations are
available in the GitHub repository 1.

The paper is organized as follows. Section II reviews the
development of SISR on natural and MR images. Section III
introduces our proposed approach for improving the high-
frequency details for brain super-resolution. Section IV ex-
plains the settings of the experiments, including the dataset
and models. Section V demonstrates quantitative experiment
results. Section VI provides a use case of the proposed
approach using brain age prediction. Section VII summarizes
the overall approach to conclude this paper.

II. RELATED WORK

A. Deep-learning-based super-resolution

Super-resolution (SR) using deep learning has experienced
rapid progress over the past decade. Dong et al. proposed
SRCNN in 2014, establishing the basic structure for SR
models [8]. Kim et al. proposed VDSR that learns the residual
information between LR and HR images [9], reducing the
learning difficulty. Motivated by the ResNet [10], ResNet-
based SR models have been proposed [11], [12], achieving
superior performance using the residual connections. Inspired
by the DenseNet [13], Tong et al. applied dense blocks and
added dense connections between different blocks to build the
SRDenseNet [14]. Zhang et al. took advantage of both residual
and dense connection, proposing a residual dense network to
further improve the reconstruction quality [15]. With the help
of the Transformer models [16], Lu et al. proposed ESRT,
which consists of CNN and transformer backbones, achieving
competitive results with low computational costs [17].

Generative adversarial network (GAN) [18] has also been
applied to SR problems. Ledig et al. proposed SRGAN,
generating more realistic images compared with CNN-based
models [12]. Bell-Kligler et al. introduced an unsupervised
model named KernelGAN [19], using real LR images for
model training. In addition, various model designs, such as
the learning-based upsampling [20] and recursive learning [21]
have also been proposed for SR.

B. Super-resolution on MR images

Structural MR images contain four dimensions, increasing
the model complexity and learning difficulty. Therefore, mod-
els using 2D slices or 3D volumes have both been explored.

2D models are more stable and faster to train, whereas
they normally fail to learn the information from the third
dimension. Zhao et al. introduced a channel splitting block to
incorporate different information from different receptive fields
to increase the model learning capacity [22]. Du et al. built
a 2D CNN with residual connections for SR reconstruction
of single anisotropic MR images [23]. Lyu et al. established

1https://github.com/anonymousreviewonly/MRI_SR

an ensemble learning framework using 2D GANs to integrate
complementary SR results from each GAN model [24].

On the contrary, 3D models can utilize the additional in-
formation from the volumetric images and outperform the 2D
models. Pham et al. first demonstrated that for brain MRI, 3D
models outperform 2D models by a large margin [25]. Chen et
al. applied the dense connection structure and proposed the 3D
mDCSRN and mDCSRN-WGAN models [2], which contain
relatively few parameters. Li et al. proposed a lightweight
network, called VolumeNet, using separable 2D cross-channel
convolutions [5], which has fewer parameters but still achieves
superior performance. Zhang et al. adopted the squeeze and
excitation architecture [26] and attention mechanism to make
the model learn from the more informative regions of the brain
[6]. With the help of the Transformer models [16], Li et al.
proposed a multi-scale contextual matching method that can
learn information from different scales [7]. Zhou et al. applied
a domain correction network that can super-resolve unpaired
MR images [27].

There are also lots of works focusing on different aspects
of MRI super-resolution, such as models handling multi-scale
LR images [28], [29], image quality transfer [30]–[32], models
trained using real-world LR images [32], [33].

Existing works on MRI super-resolution have achieved su-
perior performance. However, even the most advanced models,
such as attention-based [6] or transformer-based model [7], fail
to handle the whole brain volume and cerebellum altogether.
The attention mechanism applied in such models [6], [7] offers
an indirect way of learning from more informative areas,
whereas the performance is poor on the cerebellum. The non-
uniform sampling proposed in this paper provides a naive yet
straightforward way to solve this problem efficiently.

III. METHOD

A. Non-uniform sampling for brain image super-resolution

As we previously mentioned in Section I, the conventional
uniform patch sampling results in a data imbalance issue
between the over-represented region (cerebrum) and under-
represented region (cerebellum), whereas the latter has more
complex details and requires much more data to learn.

Ideally, a second model can be trained using the cerebellum
images, which is expected to improve results on the cerebel-
lum. However, it requires additional training resources and
introduces problems when merging the two resultant images.

Therefore, a unified approach can be proposed by balancing
the number of patches from the cerebrum and cerebellum
during the training process. Such non-uniform patch sampling
makes the model focus more on under-represented regions.
To keep the overall training time unchanged, the number
of generated patches stays unchanged, whereas more patches
come from the cerebellum compared with conventional patch
sampling.

The detailed steps can be summarized as:
1) Extract the cerebellum from the whole brain volume to

create a separate cerebellum dataset.



2) Generate patches from the whole brain volume and
randomly select 50% of the generated patches.

3) Generate patches from the cerebellum dataset until the
number of patches is equal to the whole brain volume
patches.

4) Combine the whole brain and cerebellum patches ran-
domly for training.

5) Repeat step 2, 3, and 4 at the beginning of each epoch
until the end of training.

The intuition of our approach is straightforward. Since the
brainstem contains few patterns, the brain super-resolution
focuses more on the cerebrum and cerebellum. Since the
cerebrum and cerebellum contain disparate structures, it is
natural to treat the whole volume super-resolution as two sub-
volume super-resolution tasks. Therefore, by keeping a 50/50
distribution of image patches, the model becomes less biased
towards the cerebrum, which helps the reconstruction of the
cerebellum. Theoretically speaking, such non-uniform sam-
pling might cause performance degradation in the cerebrum,
as less information is used for training. However, in Section V,
we will demonstrate that our modification results in negligible
difference compared with conventional uniform sampling.

IV. EXPERIMENTS

A. Dataset and data preprocessing

To fairly compare different models and strategies, we chose
a public brain structural MRI database, the Human Connec-
tome Project (HCP) [34]. It contains 3D T1-weighted MR
images from 1113 subjects acquired via the Siemens 3T
platform using a 32-channel head coil on multiple centers. The
images come in high spatial resolution as 0.7 mm isotropic in
a matrix size of 320× 320× 256. These high-quality images
serve as the authentic HR images in the following experiments.
We randomly chose 800 images as the training set, 100 as the
validation set, and the rest as the test set. Brain Extraction Tool
(BET) [35] is further performed on the HR images to delete
non-brain tissues.

To generate corresponding LR images, we followed the
same procedures demonstrated in [2]:

1) Applying the FFT to authentic HR images to convert the
original image into the k-space data.

2) Masking (zeroing) outer part of k-space data along two
axes representing two MR phase encoding directions.

3) Applying the inverse FFT to the masked k-space data to
generate the synthetic LR images.

The LR image synthesis procedure mimics the real MR
image acquisition process where a low-resolution MRI is
scanned by reducing acquisition lines in phase and slice
encoding directions. The synthetic LR images have the same
size as HR images.

A hyperparameter, named “scale factor”, is introduced in the
LR image synthesis process, which determines the proportion
of masked k-space data. A larger scale factor masks more k-
space data, resulting in more blurry images. Using a scale
factor of 2 is common in many studies [2], [4], [5], whereas,

in this paper, we set the scale factor to 4, preserving the central
6.25% (1/4× 1/4) k-space data, to evaluate models on more
blurry LR images. An image comparison in different scale
factors is shown in Figure 1.

To generate a separate cerebellum dataset for the proposed
non-uniform sampling, described in Section III-A, FastSurfer
[36], a deep-learning-based brain segmentation tool 2, is
adopted. FastSurfer automatically labels the cerebellum re-
gions for extraction. The cerebellum extraction pipeline is
demonstrated in Figure 2. It should be stressed that seg-
mentation masks are generated only on HR images, and the
corresponding masks are applied on both HR and LR images
to ensure both HR and LR cerebellums are voxelwise paired. A
diagram of the overall image preprocessing is shown in Figure
3.

Fig. 1. MR images in different scale factors. From left to right, it shows the
HR image, and LR image using a scale factor of 2 and 4. For scale factors 2
and 4, the central 25% and 6.25% k-space data are preserved.

(a)
−→

(b)
−→

(c)
−→

(d)
Fig. 2. An illustration of the cerebellum extraction pipeline. (a) represents
the authentic HR image. (b) is obtained by applying FastSurfer to (a). (c) is
obtained by selecting the cerebellum-related mask of (b) and (d) is generated
by applying the cerebellum mask on (a) and removing the useless background.
FastSurfer labels the cerebellum automatically for delineation.

Fig. 3. A diagram of MR image preprocessing.

B. Models

We chose two widely recognized models in this field,
mDCSRN and mDCSRN-WGAN [2] to evaluate the proposed
approach. We chose these two models since they both adopt
the DenseNet [13] as the backbone, which is still popular in
various model designs. Also, they represent two distinct model
designs, CNN-based and GAN-based models.

It should be noted that there are no limitations in the choice
of model architectures since the proposed approach focuses

2https://github.com/Deep-MI/FastSurfer



primarily on data sampling. We chose DenseNet-based models
for their stability and effectiveness. The mDCSRN model
adopts a DenseNet [13] architecture with 4 dense blocks.
The mDCSRN-WGAN model uses the same architecture of
mDCSRN as the generator and uses the Wasserstein GAN [37]
to guide the model training.

C. Training and testing

In the training process, Adam optimizer [38] is used as the
default optimizer for all models. The initial learning rate is
set to 0.001 and then multiplied by 0.5 every 10 epochs. The
batch size is set to 64 and the total number of epochs is set
to 50. We use the L1 loss for mDCSRN and the generator of
the mDCSRN-WGAN model since L1 loss tends to generate
more realistic images than L2 loss [39]. The size of image
patches is set to 32× 32× 32 for all patches.

To evaluate the super-resolution performance, we used the
structural similarity index (SSIM), peak signal-to-noise ratio
(PSNR), and normalized root mean squared error (NRMSE)
to measure the similarity between super-resolved (SR) images
and HR images. SSIM uses the mean, variance, and covariance
to estimate the similarity of the two images. PSNR is used
to further quantify the recovered image quality using the
mean squared loss. NRMSE is a more direct way to measure
the pixel-wise similarity between the original and super-
resolved images. In general, lower NRMSE, higher PSNR, and
higher SSIM values represent better super-resolution results.
Although these metrics have been criticized that a high score
does not represent a better image quality [40], they are the
most commonly used metrics, and no other perceptual quality
metrics for 3D MR images have been applied in the literature.

V. RESULTS

In this section, we first demonstrate the SISR model per-
formance using synthetic LR images, generated under a scale
factor of 4. Then, we compare the model performance between
the conventional patch sampling and the proposed non-uniform
sampling. Due to space constraints, we only include sample
output images from the mDCSRN model. When conducting
the significance test, the paired t-test is adopted by default.

A. Model performance under a scale factor of 4

Figure 4 demonstrates the model performance of the whole
brain volume using the mDCSRN model from a sagittal view.
It can be observed that the SR image is similar to the HR image
in most regions of the brain, especially in the cerebrum. It
indicates that relatively simple models, such as mDCSRN, are
still capable of handling more blurry patterns, especially in the
cerebrum region. The quantitative analysis is demonstrated in
Table I. From Table I, both mDCSRN and mDCSRN-WGAN
significantly improve the image quality in all three metrics
compared with the baseline (p < 0.01).

Fig. 4. HR, LR, and SR brain image from sagittal view using the mDCSRN
model.

TABLE I
MODEL PERFORMANCE OF THE WHOLE BRAIN VOLUME

Model Image Pair PSNR SSIM NRMSE
None

(Baseline) HR & LR 31.33 ± 2.92 0.92 ± 0.01 0.148 ± 0.09

mDCSRN HR & SR 34.23 ± 2.14 0.95 ± 0.01 0.119 ± 0.06

mDCSRN
-WGAN HR & SR 34.19 ± 2.11 0.95 ± 0.02 0.121 ± 0.07

B. Comparisons between conventional and proposed sampling

Table II demonstrates the quantitative analysis of model
performance for mDCSRN and mDCSRN-WGAN. For each
model, we compare the conventional sampling and the pro-
posed approach on the whole brain volume and the cerebellum
respectively. We also add the PSNR, SSIM, and NRMSE
values between the HR and LR images as the baseline to
demonstrate the improvement of our approach.

From Table II, when considering the reconstruction qual-
ity of the whole brain volume for both mDCSRN and
mDCSRN-WGAN model, the conventional patch-based ap-
proach achieves comparable performance with our sampling
approach in all three metrics. There are no significant differ-
ences in all three metrics when evaluated on the whole brain
volume between the two sampling approaches, whereas both
approaches outperform the baseline performance significantly
(p < 0.05). When evaluated on the cerebellum, our proposed
sampling approach significantly outperforms the conventional
sampling approach for both mDCSRN and mDCSRN-WGAN
models in all three metrics (p < 0.05).

The reason for the improved performance on the cerebellum
is clear, as we have increased the proportion of image patches
from the cerebellum for models to learn. The potential reason
for the comparable performance on the whole brain volume
between the conventional and the proposed approach is that
the number of patches from the whole brain is redundant.
Reducing the proportion of patches from the over-represented
regions does not affect model performance significantly. Also,
at the beginning of each epoch, random patches will be
selected until the end of training. Therefore, the model is still
able to learn information from all whole brain patches.

Figure 5 and Figure 6 demonstrate the super-resolution per-
formance between the conventional and the proposed approach
on both whole brain volume and cerebellum respectively.
It can be observed that our approach achieves almost the
same performance in the whole brain volume, whereas it
reconstructs more details in the cerebellum.

Therefore, compared with the conventional sampling, the



proposed non-uniform sampling approach achieves compara-
ble performance on the whole brain volume, whereas sig-
nificantly improves the reconstruction quality for the fine
structures in the cerebellum.

Fig. 5. HR, LR, SR (conventional sampling), and SR (proposed sampling)
whole brain volume illustrations from sagittal view by mDCSRN model.

VI. EVALUATION VIA BRAIN AGE PREDICTION

To further validate the proposed sampling approach, we
provide an example use case of super-resolved images via
brain age prediction. Brain age prediction has attracted interest
in the past few years [41], [42], which predicts a marker
measuring brain health. It takes brain MR images as input
and uses the chronological ages of participants as output.

A. Experiment settings

DenseNet architecture is selected for brain age prediction
considering its performance and speed and the HCP dataset is
also adopted for brain age prediction. Then, the HR images
are used to generate corresponding LR images, as discussed
in Section IV-A.

Afterward, the generated LR images are super-resolved us-
ing the mDCSRN models trained with conventional sampling
and the proposed sampling approach respectively, generating
two super-resolved images for each LR image. Therefore, two
super-resolved MR image datasets are created. One adopts the
conventional uniform sampling and the other uses the proposed
non-uniform sampling.

The two SR image datasets are used to train the brain
age prediction model respectively, resulting in two brain age
prediction models, each dedicated to a sampling strategy.
Two more brain age prediction models are also trained using
original HR images and LR images respectively as the contrast.
In total, four brain age prediction models are trained using
HR images, LR images, SR images (conventional approach),
and SR images (our approach) respectively. To decrease the
variations in the model training process, each model is trained
five times. The Mean Absolute Error (MAE) is adopted as the
evaluation metric.

B. Results

Results in Table III demonstrate the model performance of
brain age prediction using HR images, LR images, SR images
from conventional patch sampling, and SR images from our
approach respectively.

It can be observed that SR images from our approaches
achieve comparable predictive accuracy compared with SR im-
ages from conventional patch sampling, and both approaches

surpass LR images significantly (p < 0.05). The HR im-
ages show slightly better performance compared with super-
resolved images from both approaches, whereas the difference
is not significant.

The model performance is expected. Because, in brain
age prediction, the model predicts age based on the whole
brain volume rather than the cerebellum. The improvements
in the cerebellum, discussed in Section V, are likely to be
ignored by the model. However, it also validates that our
approach achieves almost the same reconstruction quality on
the whole brain volume, compared with the conventional
approach. Therefore, we have validated that the super-resolved
MR images derived from the proposed non-uniform sampling
strategy can be applied for subsequent clinical analysis and
it may demonstrate more significant improvements in some
cerebellum-specific analysis.

VII. CONCLUSION

We have proposed a simple yet effective approach, via a
non-uniform sampling strategy, for the conventional patch-
based training in brain MRI super-resolution. We provide a dif-
ferent perspective to treat brain structures differently in super-
resolution. By maintaining a 50/50 distribution of patches,
our approach achieves comparable performance on the whole
brain volume, whereas significantly surpasses the conventional
approach on the cerebellum. Our approach restores more high-
frequency details in the cerebellum.

We have demonstrated the capacity of two renowned models
using more blurry LR images as input in Section V. In the
literature, a scale factor of 2 has been widely adopted to
generate LR images. In this paper, we select a scale factor
of 4 to generate LR images and the models are still capable
of learning the mappings between LR and HR images.

We have shown that our non-uniform sampling strategy
across the whole brain volume does not result in significant
reconstruction degradation in the non-cerebellum regions. The
most probable reason behind this is that in the conventional
approach, the number of patches from the over-represented
regions is already redundant, and non-cerebellum regions
contain simpler patterns. As we demonstrated in Figure 4 and
Table II, the mDCSRN model can achieve indistinguishable
reconstruction quality over non-cerebellum regions.

We have provided a use case for MRI super-resolution via
brain age prediction. From Table III, the super-resolved MR
images demonstrate significantly better predictive accuracy in
predicting brain age compared with LR images (p < 0.05).
Although the HR images achieve the highest accuracy, the
difference between HR images and super-resolved images is
not significant. In terms of the two sampling approaches, since
the proposed approach focuses primarily on the cerebellum,
there is no significant difference between the two approaches
for age prediction using the whole brain volume.

Some aspects still require further improvements. First, al-
though our approach does not depend on model architectures,
it could be worthwhile to adopt more advanced architectures.



TABLE II
MODEL PERFORMANCE ON THE WHOLE BRAIN VOLUME AND CEREBELLUM

Brain Region Evaluated Model Image Pair PSNR SSIM NRMSE

Whole Brain Volume

None (baseline) HR & LR (baseline) 31.33 ± 2.92 0.92 ± 0.01 0.148 ± 0.09

mDCSRN HR & SR (conventional sampling approach) 34.23 ± 2.14 0.95 ± 0.01 0.119 ± 0.06

HR & SR (our approach) 34.18 ± 1.98 0.95 ± 0.02 0.120 ± 0.05

mDCSRN-WGAN HR & SR (conventional sampling approach) 34.19 ± 2.11 0.95 ± 0.02 0.121 ± 0.07

HR & SR (our approach) 34.13 ± 2.17 0.95 ± 0.03 0.122 ± 0.05

Cerebellum

None (baseline) HR & LR (baseline) 27.37 ± 2.66 0.88 ± 0.01 0.15 ± 0.10

mDCSRN HR & SR (conventional sampling approach) 28.89 ± 1.81 0.905 ± 0.01 0.135 ± 0.06

HR & SR (our approach) 29.62 ± 1.55 0.93 ± 0.01 0.127 ± 0.02

mDCSRN-WGAN HR & SR (conventional sampling approach) 28.91 ± 1.73 0.902 ± 0.02 0.139 ± 0.04

HR & SR (our approach) 29.47 ± 1.81 0.918 ± 0.02 0.124 ± 0.05

(a)

(b)

(c)
Fig. 6. HR, LR, SR (conventional sampling), and SR (proposed sampling) cerebellum image by mDCSRN. (a), (b), and (c) show the sagittal, coronal, and
axial view.

TABLE III
MODEL PERFORMANCE OF BRAIN AGE PREDICTION

Images used for training models MAE
HR images 2.25 ± 0.27

SR images (conventional sampling) 2.38 ± 0.31
SR images (our approach) 2.33 ± 0.34

LR images 3.01 ± 0.28

Second, the proposed sampling strategy is mainly based on
intuitions. Given that the brain mainly contains the cerebrum,
cerebellum, and brainstem, whereas the latter contains very
few structures, it is reasonable to treat the whole brain volume
into two sub-volume SR problems and apply a 50/50 data
distribution for the cerebellum and non-cerebellum regions.
However, more sophisticated sampling could be explored to
evaluate the optimal combination of the two regions.

To conclude, we propose a more effective sampling method
for the conventional patch-based training strategy for brain
MRI super-resolution problems. Using a non-uniform sam-

pling across the whole brain volume, the model tends to
learn more high-frequency details from the cerebellum, rather
than being focused on non-cerebellum regions due to data
imbalance. With the help of the proposed sampling approach,
we improve the model performance on the cerebellum signifi-
cantly and also achieve comparable performance on the whole
brain volume.
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