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Abstract
The fault diagnosis of cargo UAVs (Unmanned Aerial Vehicles) is crucial to ensure the safety of logistics distribution. In
the context of smart logistics, the new trend of utilizing knowledge graph (KG) for fault diagnosis is gradually
emerging, bringing new opportunities to improve the efficiency and accuracy of fault diagnosis in the era of Industry
4.0. The operating environment of cargo UAVs is complex, and their faults are typically closely related to it. However,
the available data only considers faults and maintenance data, making it difficult to diagnose faults accurately.
Moreover, the existing KG suffers from the problem of confusing entity boundaries during the extraction process,
which leads to lower extraction efficiency. Therefore, a fault diagnosis knowledge graph (FDKG) for cargo UAVs
constructed based on multi-domain fusion and incorporating an attention mechanism is proposed. Firstly, the
multi-domain ontology modeling is realized based on the multi-domain fault diagnosis concept analysis expression
model and multi-dimensional similarity calculation method for cargo UAVs. Secondly, a multi-head attention
mechanism is added to the BERT-BILSTM-CRF network model for entity extraction, relationship extraction is
performed through ERNIE, and the extracted triples are stored in the Neo4j graph database. Finally, the DJI cargo UAV
failure is taken as an example for validation, and the results show that the new model based on multi-domain fusion
data is better than the traditional model, and the precision rate, recall rate, and F1 value can reach 87.52%, 90.47%,
and 88.97%, respectively.
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1 Introduction
With the increasing development of the logistics industry,
consumer demand for efficient and timely delivery is in-
creasing, so it is crucial to open up the “last mile” logistics
[1]. This segment is typically constrained by issues such as
traffic congestion, delivery delays, and high labor costs [2],
urgently requiring an innovative solution. As an important
branch of intelligent logistics, UAV logistics utilizes its ad-
vantages of flexibility, efficiency, safety, and convenience
to solve complex terrain and end transportation problems
[3]. However, cargo UAVs face various complex situations
during operation, such as urban environment, geographic

*Correspondence: yanwei81@wust.edu.cn
1School of Automotive and Traffic Engineering, Wuhan University of Science
and Technology, Wuhan 430081, China
Full list of author information is available at the end of the article

climate, and extreme weather conditions, which are very
likely to induce various types of failures, seriously threat-
ening the safety of cargo distribution. Therefore, UAV fault
diagnosis technology is needed to ensure the efficiency and
safety of last-mile logistics distribution.

As of right now, using KG for UAV fault diagnosis is
a novel and innovative technique. The KG is a semantic
network structure that displays the links between items
and efficiently organizes knowledge and presents it in the
form of a graph [4]. Compared with traditional fault di-
agnosis methods, FDKG can integrate data from multiple
sources, demonstrate complex entity relationships, and re-
veal potential correlations of fault patterns [5]. At the same
time, FDKG can be dynamically updated and reasoned and
is capable of logical reasoning to discover implied failure
modes [6]. In addition, the intuitive visualization and ex-
planatory nature of FDKG make the fault diagnosis pro-

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1007/s43684-024-00072-y
https://crossmark.crossref.org/dialog/?doi=10.1007/s43684-024-00072-y&domain=pdf
https://orcid.org/0000-0002-0563-8092
mailto:yanwei81@wust.edu.cn
http://creativecommons.org/licenses/by/4.0/


Xiao et al. Autonomous Intelligent Systems            (2024) 4:10 Page 2 of 16

cess more transparent [7]. Therefore, constructing a fault
diagnosis knowledge graph can improve the accuracy and
timeliness of fault diagnosis.

However, the current FDKG for UAVs only takes into
account information on faults and maintenance, which
makes it difficult to cover diverse operational scenarios,
limiting the global insights for fault diagnosis under dif-
ferent conditions [8–10]. Therefore, it is necessary to con-
sider the data in each domain e.g., environment, fault, and
maintenance, to construct a conceptual knowledge data
corpus that integrates multiple domains to provide the re-
quired fault knowledge for the FDKG of cargo UAVs. The
conceptual relationships and data knowledge structures of
different domains are quite different, so multi-domain fu-
sion becomes the primary problem in establishing FDKG.

The primary difficulty in building FDKG is extracting the
entities. The knowledge graph’s quality will suffer if the en-
tities are not appropriately extracted [11]. Deep learning
has received a lot of attention lately in the field of entity
extraction [12], and many deep learning algorithms have
been researched, including BERT [13], BILSTM-CRF [14],
BBiGRU-CRF [15], and D-CNN [16]. However, they still
encounter problems such as entity overlapping and confu-
sion in entity boundaries in practical applications, leading
to reduced efficiency of entity extraction. Thus, accurate
entity extraction is also a key element that affects the mod-
eling of FDKG.

In this study, we aim to propose a multi-domain fusion-
based KG construction method for cargo UAV fault diag-
nosis based on the introduction of an attention mecha-
nism. The contribution of this paper is summarized as fol-
lows:

1) In the domain of cargo UAV fault diagnosis, there re-
mains a scarcity of relevant research concerning KG con-
struction. Compared to traditional fault diagnosis meth-
ods, we proposed to integrate KG and UAV fault diagnosis
to guarantee the security and effectiveness of the last kilo-
meter of logistics distribution.

2) To address the problem that a single distribution of
UAV fault data, a multi-domain fusion method based on
a multi-domain conceptual analysis expression model and
multi-dimensional similarity calculation is proposed. On-
tology concepts and attribute relationships are then clari-
fied by analyzing the multi-domain corpus sentence infor-
mation to achieve multi-domain fusion ontology model-
ing. This establishes a solid foundation for the construc-
tion of FDKG.

3) To address the problems of entity overlap and con-
fusion regarding entity boundaries during entity extrac-
tion, we adopt the BERT-BILSTM-MHA-CRF model for
entity extraction. The introduced multi-head attention
mechanism can distinguish overlapping entities by simul-
taneously focusing on different semantic levels in parallel,
which enhances the model’s ability and accuracy to recog-
nize key entities.

The remainder of this paper is structured as follows. Sec-
tion 2 reviews the related works on UAV fault diagnosis,
multi-domain fusion, and knowledge graph construction.
Section 3 details the fault KG construction methodology.
Section 4 conducts a case analysis. Section 5 summarizes
the important conclusions.

2 Related works
2.1 UAV fault diagnosis
The fault diagnosis technology for UAVs refers to the use of
various measurements to quantify and analyze the effects
caused by a malfunction in the event of a failure in a UAS to
determine the type, location, and cause of the malfunction
and to give an effective repair solution [17]. Model-based
[18], knowledge-based [19], and signal-processing fault di-
agnosis [20] techniques are the three main types of current
UAV fault diagnostic techniques.

Fault diagnostic procedures based on mathematical
models need the construction of an accurate mathematical
model of the system being tested, which mainly includes
the parameter estimation method and the state estima-
tion method. Cao et al. [21] introduced a fault detection
system for UAV actuators based on interval and extended
state observers that can identify different types of faults
in the presence of rudder failure and limited disturbances.
Knowledge-based methods are used to build diagnostic
systems such as expert systems, fuzzy systems, etc. for fault
diagnosis through a priori knowledge. Currently in the
field of UAV fault diagnosis, the traditional rule-based ex-
pert system is gradually replaced by the fuzzy logic-based
neural network expert system. Muhammad et al. [22] em-
ployed a neural network observer based on fuzzy-assisted
sliding mode control to estimate and isolate quadcopter
UAV sensor faults online. They achieved accurate fault di-
agnosis and isolation by integrating an adaptive technique
with fuzzy-assisted sliding mode control. Signal-based ap-
proaches use wavelet transform and information fusion
to evaluate quantifiable signals, and they handled time-
domain, frequency-domain, and time-frequency signals to
extract the associated features. Li et al. [23] used wavelet
analysis to extract the frequency domain features of the
data and then used a neural network on the signal to diag-
nose it. Based on this, data from a single sensor signal is
used for self-diagnosis, and a joint information diagnosis
method is proposed, which is capable of effectively diag-
nosing sensor faults in a multi-sensor system.

Existing fault diagnosis methods can solve the problem
but still have some limitations. Model-based fault diagno-
sis methods still have issues regarding the sensitivity and
practicality of algorithmic detection, and it is difficult to
obtain an accurate mathematical diagnostic model. Fault
diagnostic techniques based on expert systems rely ex-
cessively on professional expertise. Low fault diagnostic
accuracy is caused by data sparsity constraints on signal
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processing-based fault diagnosis methods. In this context,
fault diagnosis using KG presents a new approach to solv-
ing the problem, which is expected to bring new opportu-
nities to improve the accuracy of fault diagnosis.

2.2 Multi-domain fusion
Over the last few years, a rising quantity of academics has
begun to study how to explore ways to solve the problems
of machine operation process, data, and knowledge sepa-
ration from the three directions of data, knowledge, and
model, and proposed the concept of multi-domain fusion
[24]. Multi-domain fusion has previously been employed
in the fields of biotechnology and healthcare. Mangesh
et al. [25] the discovery of new multidomain truncated
hemoglobins and their distinct structural arrangement,
which expands on the development and uses of the trHb
family. Liu and Zhong [26] utilized multi-channel access to
heterogeneous data sources, combined with multi-domain
fusion methods to construct a medical knowledge graph,
and realized an intelligent questioning model based on
a medical knowledge graph covering the whole range of
diseases. Within the domain of fault diagnosis, multi-
domain fusion also shows great potential for application.
By fusing data, knowledge, and models from different
domains, faults can be diagnosed more comprehensively
and accurately. Hasan et al. [27] used multidomain vibra-
tion imaging and convolutional neural network (CNN)-
assisted multitask learning to identify bearing fault prob-
lems under varying speed and health circumstances. Wu
et al. [28] proposed a multi-domain feature fusion method
based on a generalized learning system for variable-speed
bearing diagnosis, which converts raw vibration data at
different speeds into unified time and frequency-domain
data to obtain more dynamic fault information. Xie et al.
[29] built a gearbox fault diagnosis experimental platform
and proposed a gearbox fault diagnosis method based on
multi-domain information fusion CNN. It is verified that
the method has high robustness and feasibility. However,
multidomain fusion has not yet been applied to the level
of UAV fault diagnosis, and most of them are fault diag-
noses of mechanical parts. There are some problems in
UAV fault diagnosis, such as single data and sparse data
sources, so it is of great significance and value to apply
multi-domain fusion to UAV fault diagnosis.

2.3 Knowledge graph construction
KG is a structured semantic repository capable of thor-
oughly and accurately describing the ideas and their in-
terrelationships that exist in the physical world, as well
as mining the implicit information that underpins knowl-
edge. It is made up of a sequence of nodes, edges, and
attributes, usually in the form of an “entity-relationship-
entity” triad to effectively organize the scattered knowl-
edge and present it in the form of a graph [30]. The build-
ing of KG involves several processes, including ontology

modeling, named entity recognition, and relationship ex-
traction.

Ontology modeling is the key to constructing KG, which
provides a structured framework for knowledge units by
conceptualizing the KG schema in the form of an ontol-
ogy in a top-down manner. Recently there has been an in-
crease in research and applications of ontology modeling.
Tang et al. [31] developed an engineering-based technique
that may improve traditional natural language processing
to create a domain KG based on the oil exploration and de-
velopment ontology. Taking the domain of fault diagnosis
as an example, Jiang et al. [32] created a fault event ontol-
ogy model to label the elements and relationships found in
the CRDM fault event corpus. Wang et al. [33] proposed an
ontology-based KG construction method for turbine gen-
erator fault diagnosis. The main concepts of the fault di-
agnosis domain include equipment name, fault diagnosis,
operators, and overhaul cases, which realize the standard-
ized expression and application of fault diagnosis knowl-
edge.

One of the most important jobs in knowledge extrac-
tion and the cornerstone of KG creation is named entity
recognition. During recent years, deep learning models
and probabilistic graph models have combined to achieve
significant results in named entity recognition tasks. For
example, Deng et al. [34] employed stacked BILSTM to
acquire deep contextual characteristics of the text. As a
complement to stacked BILSTM, the self-attentive mech-
anism obtains character-dependent features from differ-
ent subspaces and achieves entity recognition using CRF.
Pre-trained language model embedding has now become a
promising approach for entity recognition. As an illustra-
tion, Kameko et al. [35] proposed a named entity recogni-
tion model combining BERT-CRF and multi-task learning
for performing factual analysis of Japanese events. Liu et
al. [36] suggested a training model that uses Transformers’
bi-directional encoder representation of BERT, combining
BILSTM and CRF to extract specified entity classes from
unstructured citrus pest and disease data. Chen et al. [37]
introduced the BERT-BILSTM-CRF model for extracting
named entities from faulty text in power equipment.

The process of locating and expressing relationships be-
tween entities as entity-relationship triples from unstruc-
tured or semi-structured data is known as relationship
extraction. In recent years, neural network models, the
combination of neural network models and reinforcement
learning, etc. have achieved better results in relation ex-
traction tasks. Chen et al. [11] suggested a remotely su-
pervised relationship extraction (RSRE) based approach
to construct an FDKG for fault diagnosis that does not
require large amounts of annotated data. Sun et al. [38]
suggested a supervised relationship extraction approach
using dependency paths in the inter-entity dependency
tree, which successfully reduced the time for model train-
ing data. Abdurrahim et al. [39] proposed a paradigm for
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deep learning for relational extraction with BILSTM-CNN
based on the attention mechanism, and the experiments
demonstrated the accuracy and F1 value of the method
compared to the traditional deep learning methods (RNN,
CNN).

KG has now been introduced into the domain of equip-
ment fault diagnosis and fault repair. Xiao et al. [30] pro-
posed a bearing fault diagnosis framework based on a
knowledge graph and a data accumulation strategy, and
used the weighted random forest algorithm as the knowl-
edge graph’s inference algorithm to fully exploit the cor-
relation between features and faults, thereby improving
bearing fault classification accuracy. Guo et al. [40] con-
structed KG for high-speed train repairability design based
on multi-domain ontology fusion and a bi-directional cod-
ing Transformer model. Li et al. [41] proposed an analysis
of design-oriented fault KG using maintenance text, which
can feed back the fault knowledge recorded by mainte-
nance into the next generation of product design to realize
the closed loop of the product life cycle.

In summary, most of the existing research on using KG
for fault diagnosis but few studies have modeled KG for
cargo UAV failure domains. However, the operating en-
vironment of cargo UAVs is complex and variable, and
traditional fault diagnosis methods are difficult to cope
with multiple sources of heterogeneous data and complex
causal relationships. KG is widely concerned because it can
solve similar problems well [42]. Therefore, this work aims
to provide a knowledge graph-based approach for mod-
eling fault diagnosis information of cargo UAVs to fill the
research gap. This research can not only improve the ac-
curacy and timeliness of fault diagnosis of cargo UAVs but
also enhance the safety and efficiency of cargo delivery.

3 Methodology
3.1 UAV fault diagnosis KG construction framework
The UAV Fault Diagnosis KG is used for fault analysis,
fault knowledge query, fault detection, and repair scenar-
ios when a UAV fault. It is primarily made up of a pat-
tern layer and a data layer. The methods for building KG
can be classified as bottom-up, top-down, or a hybrid of
both. The bottom-up construction approach starts with
building the data layer of the KG. The process involves ex-
tracting the relationships between entities, between enti-
ties and attributes, and between attributes to form the en-
tity, attribute, and relationship triad. Subsequently, more
entity layers are created and added to the data layer to com-
plete the data model. In contrast, the top-down construc-
tion approach first builds an ontology conceptual model
and then extracts knowledge instances from the data based
on the ontology to add to the graph. Currently, there is a
lack of corresponding technologies to support the effective
retrieval of UAV fault repair knowledge for UAV fault di-
agnosis KG. The data source is single, making it difficult to

abstract the ontology layer as well as build the graph from
the bottom up directly through fault knowledge and data
generalization. Moreover, the raw corpus of UAV failures
is complex and specialized. As a result, this article uses a
combination of top-down and bottom-up methodologies
to construct KG for UAV fault diagnosis.

The model layer is first constructed using a top-down
approach. By analyzing the data knowledge content of the
three domains, the entity data model such as fault subject,
fault content, and fault cause, and the relationship data
model such as cause, association, and trigger are deter-
mined. After that, a bottom-up approach is used to build
the data layer. Suitable extraction methods are designed
for different fault information materials to perform the ex-
traction of entities, relationships, and attributes. The ex-
tracted knowledge is then fused to form a series of high-
quality factual representations. Finally, the KG is stored in
the graph database Neo4j and visualized to display the KG.
Its building process is depicted in Fig. 1.

3.2 Multi-domain ontology modeling
To address the issue of insufficient fault information in
diverse operational settings during KG construction, we
propose establishing a conceptual analytical expression
model for the environment, fault, and maintenance do-
mains, and employing multi-dimensional similarity calcu-
lation for multi-domain ontology modeling. Compared to
the single-domain ontology modeling approach, the multi-
domain fusion approach can more comprehensively cover
the fault information of cargo UAVs in various operating
environments. This approach achieves data interconnec-
tion and sharing, thereby enhancing the comprehensive-
ness and accuracy of the knowledge graph [40]. Addition-
ally, multi-domain fusion helps to reveal the intrinsic con-
nection between different domains, enhancing the logic
and systematicity of knowledge representation, thus pro-
viding more reliable support for fault prediction and repair
[43].

3.2.1 Multi-domain knowledge concept analysis modeling
This paper proposes a conceptual analysis and expres-
sion model for multi-domain fault diagnosis of the cargo
UAV as shown in Fig. 2. This analytical expression model
focuses on the expression of knowledge concepts such
as fault information appearing in various operating en-
vironments of cargo UAVs and the corresponding repair
methods, which improves the flexibility of fault diagnosis
knowledge expression in the field of cargo UAVs. Based
on the expression model of concept analysis, the domain
knowledge ontology of cargo UAV environment domain,
fault domain, and maintenance domain is constructed, and
the multi-domain ontology modeling of cargo UAV is re-
alized through the conceptual semantic relationship of the
three domains.
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Figure 1 UAV fault diagnosis KG construction process

Based on the expression model of concept analysis,
the domain knowledge ontology of cargo UAV environ-
ment domain, fault domain, and maintenance domain is
constructed, and the multi-domain ontology modeling of
cargo UAV is realized through the conceptual semantic re-
lationship of the three domains. The same semantic con-
cepts contained in the environment, fault, and mainte-
nance domains of cargo UAVs are bound to have different
names in different domains, so it’s required to construct a
mapping between the knowledge ontologies of the fault di-
agnosis system of cargo UAVs. The association of semantic
concepts between two ontologies is realized through inter-
ontology mapping relations, and instances of the source
ontology are mapped to the target ontology.

3.2.2 Multi-dimensional similarity calculation
In this section, using the fault and maintenance domain
knowledge ontologies as an example, a multi-dimensional
similarity calculation is employed to establish a mapping
relationship between them. Define the fault domain ontol-
ogy OG and the repair domain ontology OL, from which
concepts CG and CL are selected to compute the concep-
tual similarity SN , attribute similarity SA, and full similarity
SO, respectively. If the maximum similarity value of one or
more of these three is greater than a given threshold λi, this
concept pair is stored in the result set. The similarity cal-
culation of all concept pairs in the ontology is completed in
the same way, and finally, the concept pair with the largest
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Figure 2 Conceptual analysis of cargo UAV failure knowledge expression model

similarity value in the result set is selected to establish the
mapping relationship.

1) Calculation of conceptual similarity
Determine the conceptual similarity between the fault

domain ontology and the maintenance domain ontology
after processing according to the string mapping method
ISub mapping. Given two concepts CG and CL in the fault
domain ontology and the maintenance domain ontology,
respectively, where CG ∈ OG and CL ∈ OL, the semantic
similarity between the concepts CG and CL is calculated
as follows:

SN
(
CG, CL) = max

(
Simname

G,L , 0.9Simsyn
G,L

)
, (1)

where Simname
G,L denotes the named similarity; Simsyn

G,L de-
notes the similarity of the same set of words.

In practical applications, consistent naming descrip-
tions better represent the same concept, so the weight of
Simname

G,L is higher than that of Simsyn
G,L. Naming similarity

and the same-word similarity are calculated respectively:
⎧
⎪⎨

⎪⎩

Simname
G,L = ωGISub(IDG, IDL) + ωLISub(LbG, LbL),

ωG + ωL = 1,
ωG ≥ 0, ωL ≥ 0,

(2)

Simsyn
G,L

(
CG, CL) = max

[
ISub(SG, SL)

]
, (3)

where IDG and IDL denote the URIs of CG and CL in OG

and OL, respectively. LbG and LbL denote the names of CG

and CL in OG and OL, respectively. SG and SL denote the
same set of words of CG and CL in OG and OL; ωG, ωL are
the weights, which are given by experts.

The string mapping method ISub is:

ISub(tG, tL) = comm(tG, tL) – diff (tG, tL)

+ winkler(tG, tL),
(4)

where tG, tL denote the strings of the conceptual pairs of
fault and repair domains. comm(tG, tL) denotes the same
part of the strings. diff (tG, tL) denotes the difference part
of the strings. winkler(tG, tL) denotes the correction factor.

2) Attribute similarity
In the Cargo UAV Failure Domain Ontology, if two con-

cepts of the Failure Domain Ontology and the Mainte-
nance Domain Ontology have a common attribute and the
similarity values of the two attributes are close to each
other, the two concepts can be determined to be the same
or similar. Thus, the similarity of concepts can be deter-
mined based on the similarity of attributes. Let the set
of attributes of the UAV fault domain ontology be CG =
{CG

1 , CG
2 , . . . , CG

m}, and the set of conceptual attributes of the
repair domain ontology be CL = {CL

1 , CL
2 , . . . , CL

n}, then the



Xiao et al. Autonomous Intelligent Systems            (2024) 4:10 Page 7 of 16

formula for the similarity of conceptual attributes is:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

SA(CG, CL) =
1
n

n∑

i=1

θi,

n∑

i=1

θi = 1, ωi ≥ 0,

max
[
SN

(
cG

j , cL
j
)]

, j = 1, 2, . . . , m,

(5)

where θi is the weight value of the conceptual attribute of
the maintenance domain ontology.

3) Calculation of full similarity of concepts
As there will be cases of homonymy or heteronymy in re-

ality, the degree of overlap between two concepts cannot
be determined solely based on the similarity of the con-
cepts or the similarity of the attributes. Given the weights
of concept similarity and attribute similarity, respectively,
the formula for concept full similarity is obtained as:

{
SO(CG, CL) = ϕiSN (CG, CL) + ϕjSA(CG, CL),
ϕi + ϕj = 1, ϕi,ϕj ≥ 0, i, j = 0, 1, . . . , n,

(6)

where ϕi, ϕj are the weight values.
The condition for mapping is whether the concept sim-

ilarity, attribute similarity, and concept full similarity are
greater than their respective given thresholds. If one or
more of them satisfy the conditions, they are stored in the
result set for invocation during mapping.

After mapping between ontologies, multi-domain con-
cepts, attributes, and relationships are determined after
adjudication to determine the set of concepts of a multi-
domain fusion ontology of knowledge on cargo UAV fail-
ures, as well as the definitions of relationships between
concepts. Some of the inter-concept relationship defini-
tions are shown in Table 1.

3.2.3 Ontology modeling
After clarifying the concepts and attribute relationships of
the multi-domain ontology modeling on the fault diagno-
sis ontology for cargo UAVs, ontology modeling was per-
formed using the Protégé tool. The constructed UAV fault
knowledge ontology is shown in Fig. 3, including entities
such as fault type, fault subject, fault source, fault con-
tent, fault phenomenon, fault cause, and repair measures.

The ontology primarily focuses on the input and extraction
of fault knowledge, delving into the intrinsic connections
between fault information. At the same time, constraints
have been imposed on the relationships between entities,
specifying the domains and ranges of the head and tail en-
tities. For example, regarding the relationship “associated,”
the head entity can only be “fault content,” and the tail en-
tity can only be “fault phenomenon.” If either the head en-
tity or the tail entity fails to meet the conditions simulta-
neously, the relationship is not established.

3.3 BERT-BILSTM-MHA-CRF neural network
To tackle the problem of low efficiency in faulty entity ex-
traction, we propose the BERT-BILSTM-MHA-CRF ex-
traction model, which effectively addresses entity overlap-
ping and accurately delineates entity boundaries. Specif-
ically, BERT reduces the likelihood of entity overlap by
capturing contextual information through its powerful
linguistic representation capabilities, resulting in a more
precise semantic representation of each word [44]. BIL-
STM captures forward and backward dependencies in se-
quences using a bidirectional long and short-term mem-
ory network to improve the recognition of continuous en-
tities [45]. The Multiple-Head Attention (MHA) mecha-
nism further enhances the model’s ability to perceive over-
lapping multiple entities in complex contexts by focusing
on different semantic levels in parallel to distinguish over-
lapping entities [46]. Finally, CRF is used to globally opti-
mize the label sequence to ensure that the model predicts
continuous and reasonable entity boundaries, thus effec-
tively eliminating entity overlap [45]. Through this series
of steps, the BERT-BILSTM-MHA-CRF model can accu-
rately identify and differentiate the fault entities, ensuring
the accurate extraction of fault knowledge information.

In this paper, some data are selected to summarize the
characteristics of the faulty text data, for these character-
istics to BERT-BILSTM-MHA-CRF deep neural network
as the basis, to construct the faulty text maintenance data
information entity extraction model. The model structure
is shown in Fig. 4.

1) BERT embedding layer
The BERT model is used as a feature extractor, which is

pre-trained to obtain a deep linguistic representation on a
large-scale fault knowledge corpus. As shown in Fig. 5, the

Table 1 Cargo UAV fault diagnosis knowledge conceptual relationships

Relationship type Relationship definition

Association The relationship between fault content and fault phenomenon.
Result from The causal relationship between fault symptoms and fault causes.
Belong to The attribution relationship between the fault subject and fault type.
Subclass of The parent-child relationship between resolution measures and repairs.
Execution The execution relationship between maintenance events and maintenance personnel.
. . . . . . . . .
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Figure 3 Ontology modeling of UAV failure knowledge constructed in Protégé

Figure 4 BERT-BILSTM-MHA-CRF entity recognition model

BERT model acts as an embedding layer to encode each in-
put character in the Named Entity Recognition (NER) task.
It is based on the self-attention mechanism, which allows
each character’s encoded information to merge with that
of other characters in the context for improved semantic
representation.

In using BERT for named entity extraction of UAV fault
knowledge, the input layer of the BERT model consists of
3 parts: word vectors, sentence vectors, and position vec-
tors. In this structure, [CLS] is the start flag of the text, and
[SEP] is the inter-sentence separator or end flag of the text.
Token is the process of encoding the input sequence word
by word into a vector of fixed dimensions to represent the

original word vector of the word. Segment is to differenti-
ate between pairs of input sentences and perform a subse-
quent classification task based on the semantic similarity
of the two sentences. Position is used to indicate the se-
quence position of the words in the input sequence in the
fault knowledge.

2) BILSTM layer
BILSTM is a recurrent neural network structure suitable

for sequence labeling tasks. The network consists of two
LSTM layers that process the input along the forward and
reverse sequences, respectively. The LSTM memory unit
can perform UAV fault diagnosis quickly and accurately
by selectively memorizing UAV fault knowledge and fully
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Figure 5 BERT embedded structure diagram

utilizing the vast majority of the information recorded in
the fault repair data. The formula for each gating cell of the
LSTM is:

ft = σ
(
Wf [ht–1, xt] + bf

)
, (7)

it = σ
(
Wi[ht–1, xt] + bi

)
, (8)

ot = σ
(
Wo[ht–1, xt] + bo

)
, (9)

ct = ftct–1 + it c̃t , (10)

c̃t = tanh
(
Wc[ht–1, xt] + bc

)
, (11)

ht = ot tanh(ct), (12)

where it , ft , ot are the input, forget, and output gate func-
tions, respectively. xt and ht are the input vector and the
hidden layer vector at moment t. tanh and σ are the Sig-
moid activation function and hyperbolic tangent activa-
tion function. W denotes the weight matrix for different
states. b denotes the bias vector. c̃t , ct are the new state
data candidate and the current cell state, respectively.

The forward LSTM model and the backward LSTM
model are combined to create the BILSTM model. It has
the ability to capture long-term dependencies and con-
textual information in sequences, and effectively encodes
contextual information of words in sentences for effective
learning of temporal features of text sequences. Therefore,
BILSTM is chosen to extract the textual features of UAV
fault repair logs, and its network structure is shown in
Fig. 6, with Lt as the output data.

3) Multi-head Attention
The multiple attention mechanism enables the model to

pay attention to information at distinct places within the
input sequence. It does this by linearly mapping the input
dividing it into multiple heads and calculating the atten-
tion weight for each head. These heads enable the model to
concentrate on various segments of the sequence in paral-
lel, thus better capturing correlation information at differ-
ent locations. In this study, the multiple attention mech-
anism layer is added to the BILSTM module to improve
the model’s capacity to mine global information and sen-
tence relevance, allowing the model to be more effectively
applied to UAV fault information.

Figure 6 BILSTM network structure

Within the multi-head attention mechanism layer, the
Query, Key, and Value vector are each subjected to h in-
dependent linear mappings using different vector matri-
ces, which are then fed into h parallel heads to perform
attention operations. In this way, each parallel header can
access the semantic information specific to each character
in the input text sequence in separate presentation spaces.
The final output is obtained by combining the results of
the calculations on the h parallel heads and performing a
linear mapping. The specific function formulae are given
below:

hi = Attention
(
QW Q

i , KW K
i , VW V

i
)
, (13)

MultiHead(Q, K , V ) = Concat(h1,h2, . . . hk)W O, (14)

where W Q
i , W K

i , W V
i , W O are the weight matrices. hi de-

notes the ith head in the multi-head attention module.
Concat is the multiplication with the connection matrix
after connecting each hi matrix.

4) CRF layer
The Multi-head Attention Mechanism layer and the BIL-

STM layer though can discover local and global feature
information from contexts and output labels with max-
imum probability values for pairs of words. However, it
cannot learn the relationship between individual labels, re-
sulting in an illogical output of consecutive labels. To fully
learn the dependencies between neighboring labels, this
paper employs CRF at the conclusion of the model to de-
code the fault fusion feature data generated by the multi-
attention mechanism layer, obtains the transfer probability
of each sequence through the feature function, and calcu-
lates the highest-scoring sequence labels using the Viterbi
algorithm.

3.4 ERNIE relational extraction
In this paper, ERNIE [47] is used for fault relation extrac-
tion. ERNIE is an improvement on BERT, using a mask-
ing mechanism with a priori knowledge. The model se-
mantic representation is enhanced by modeling semantic
information such as words and phrases, and using enti-
ties and phrases as masking units. In this way, knowledge



Xiao et al. Autonomous Intelligent Systems            (2024) 4:10 Page 10 of 16

Figure 7 BERT model and ERNIE model masks

and longer semantically dependent information is learned
implicitly. The masking strategy for the BERT and ERNIE
models is shown in Fig. 7.

3.5 Knowledge integration
The knowledge obtained through knowledge extraction
may have a large number of fuzzy and repetitive data. The
purpose of knowledge fusion is to effectively fuse and unify
them to improve the knowledge quality of the knowledge
graph database [48]. The task of knowledge fusion mainly
includes entity disambiguation and coreference resolution.
Entity disambiguation techniques are employed to address
the issue of multiple referents for the same named entity.
For instance, “sensor” in some texts may refer to a “tem-
perature sensor,” while in others, it may refer to a “pressure
sensor.” Therefore, it is necessary to leverage the semantic
context to clarify the accurate meaning of the same named
entity. Coreference resolution techniques are used to ad-
dress the issue of multiple expressions corresponding to
the same entity object. For example, “motor,” “engine,” and
“electric motor” all correspond to the entity “motor.” Espe-
cially in manually written fault reports and troubleshoot-
ing experiences, the phenomenon of non-standard lan-
guage usage is quite common. Therefore, there is a need
for standardized entity naming. In this paper, the cosine
similarity algorithm is used for the extracted entities to cal-
culate the similarity value between the candidate entities,
the higher the similarity the closer the expression of the
two. Assuming that the 2 phrase vectors are u and v, the
cosine similarity cos(u, v) = (u,v)

‖u‖×‖v‖ , the closer the cosine
value is to 1, the more similar the corresponding phrases
are. The closer the cosine value is to 0, the more irrelevant
the corresponding phrase is. The implementation is shown
in Algorithm 1.

The algorithm uses ‘CountVectorizer’from the ‘sklearn’
library to convert the text into a vector representation and
the ‘cosine_similarity’function to calculate the cosine simi-
larity between fault descriptions. It then groups similar de-

scriptions into the same category based on a set similarity
threshold.

4 Case study
4.1 Data analysis
The information in this document is derived from the
flight simulation data of the cargo UAV provided by DJI
Innovation Technology Co. Ltd, which records the fault re-
pair data of the cargo UAV, and some of the fault data are
shown in Table 2. During the flight simulation, a variety of
flight environments and mission scenarios were simulated
using the simulation system, including cargo flight mis-
sions in different geographic locations and meteorologi-
cal conditions. Various fault-triggering mechanisms were
also simulated to trigger fault events according to set fault
models and rules, and the flight status and parameters at
the time of the fault were recorded. All simulation flight
data is recorded and stored in a database to ensure data
integrity and accuracy. The dataset covers a wide range
of cargo UAV failure data such as operating environment,
failure content, failure causes, and repair measures. For
data cleaning, some ambiguous fault data records were
first eliminated, and missing data values were filled in. Sub-
sequently, some important attribute data were integrated
to optimize the model training results.

Data labeling before model training is then performed.
The corpus of cargo drone failure data is divided into a
training set with 678 sentences and 18,452 words, and a
test set with 324 sentences and 7675 words. Based on the
constructed ontology, entities from the original corpus are
labeled using the BIO format. Under the BIO annotation
system, the token at the beginning of each entity is labeled
by the label B-x (beginning), the non-beginning tokens are
labeled with the label I-x (inside), and other non-tokenized
entity tokens are denoted by the label O (other). A total of
819 entities were labeled and the results of entity labeling
are shown in Fig. 8.

4.2 Experimental environment and evaluation indicators
The experiment is based on the Windows 11 operat-
ing system, NVIDIAGeForceRTX4070GPU, Intel(R)Core
(TM)i7-13700KF processor, 32G RAM, operating plat-
form Ubuntu20.04, Pycharm2022.1.2, and building a mod-
el based on Pytoch neural network framework. The exper-
imental parameter settings are displayed in Table 3.

To validate the efficacy of the entity extraction model
built in this paper on the data, the Precision, Recall, and F1
values, which are common in the fields of machine learn-
ing and deep learning, are used as the evaluation criteria
for the entity recognition effect. To determine the superi-
ority of the entity recognition model, the assessment met-
rics against the model are still chosen as above, with the
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Algorithm 1 Fault knowledge fusion algorithm
from sklearn. feature_ extraction. text import CountVectorizer
from sklearn. Metrics. Pairwise import cosine_ similarity
# Example list of fault descriptions
Fault_ descriptions= [

“Battery issue”,
“Power supply failure”,

]
#Using CountVectorizer to convert text to vector representation
vectorizer = CountVectorizer ()
X= vectorizer. fit_ transform (fault_ descriptions)
#Calculating cosine similarity between fault descriptions
similarities = cosine_ similarity(X)
#Setting similarity threshold
threshold = 0.6
#Creating an empty dictionary to store merged descriptions
merged_ faults = {}
#Merge fault descriptions based on similarity
for i in range (len (fault_ descriptions)):

merged = False
for key in merged_ faults. key ():

if similarities [i, merged_ faults [key][0]]>threshold:
merged_ faults [key]. append (fault_ descriptions[i])
merged = True
break

if not merged:
merged_ faults [fault_ descriptions[i] = [i]

print (“Merged fault descriptions: Battery malfunction”)
for key, value in merged_ faults. items ():

print (f” {key}: {‘, ’. join ([fault_ descriptions[i] for I in value])}”)

Table 2 Partial data presentation

Serial number Fault event description

1 On October 05, 2022, a cargo drone traversed a high-temperature area during a delivery mission and was affected by the high
temperature, which prevented the drone frommaintaining its intended flight attitude, with large fluctuations in attitude angle. The
flight crew made an emergency stop immediately. The real-time monitoring of the gyroscope output data through the flight control
system was checked for abnormal unstable fluctuations, so it was inferred that a gyroscope high-temperature shock failure had
occurred. Add cooling devices to solve the problem and optimize the mission planning algorithm to avoid hot areas.

2 On October 18, 2022, the weather was clear and breezy, and a cargo drone was on a mission, but during the flight, the altitude kept
oscillating. Using the monitoring tools in the flight control system and the fault diagnosis system, the changes in the barometric
altitude parameters were monitored in real-time and it was observed that the values of the sensor barometric altitude parameters
deviated from the target values. . . . . .

3 On November 10, 2022, the weather changed from windy and cloudy to rainy, and the cargo drone suffered a sudden change in
weather during its flight, which caused the drone to lose its balance in the air and the system alarm to light up. The flight crew
immediately landed the drone and tested the servo circuitry using a multi-meter to confirm the presence of a short. . . . . .

. . . . . . . . .
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Figure 8 Entity annotation visualization

Table 3 Experimental parameter setting

Parameter category Parameter value

Epoch 28
Batch size 78
Dropout 0.5
Hidden size 500
Optimizer Adam
Attention heads 8

following formula.

Precision =
TP

TP + FP
× 100%, (15)

Recall =
TP

TP + FN
× 100%, (16)

F1 =
2 × (precision × recall)

precision + recall
× 100%, (17)

where TP represents the number of correct predictions,
FN represents the number of correct unpredicted fore-
casts, and FP represents the number of incorrect predic-
tions.

4.3 Results
Based on the collected UAV fault analysis corpus, the
Neo4j graph database is utilized to construct a UAV fault
diagnosis KG based on the method described above. Cur-
rently, a total of 472 entity nodes and 497 relational at-
tributes are constructed within the graph database. Due
to the construction of the KG as a whole containing more
content, to demonstrate the impact more clearly, this pa-
per selects part of the KG content for visualization as
shown in Fig. 9. Which can be based on the fault body to
find the corresponding fault content description, fault de-
tection methods, and fault repair countermeasures.

4.4 Discussion
4.4.1 Analysis of results of multi-domain fusion
In the knowledge extraction phase, we conducted experi-
ments comparing single-domain and multi-domain data.
Single-domain data refers primarily to data in the fault
and maintenance domains, and these datasets typically fo-
cus on domain-specific textual content, such as fault in-
formation and maintenance records. Multi-domain data,

on the other hand, includes data from the environmen-
tal, fault, and maintenance domains, which cover a wider
range of domains and contexts, including environmen-
tal conditions, types of faults, and maintenance meth-
ods. We evaluated and compared the performance of the
two datasets concerning precision, recall, and F1 values,
respectively. The experimental findings are depicted in
Fig. 10.

The experimental results show that the multi-domain
dataset significantly outperforms the single-domain data-
set in the knowledge extraction phase, with a 2.03% im-
provement in F1 value. The knowledge extraction accu-
racy of the multi-domain dataset reaches 84.25%, which
is a 2.69% improvement over the single-domain dataset.
The extraction efficiencies of single-domain datasets are
all lower than those of multi-domain datasets, which fully
demonstrates the superiority of multi-domain datasets
in knowledge extraction tasks. In multi-domain datasets,
models are more adaptable to the context and character-
istics of different domains, which improve the ability to
capture the accuracy and comprehensiveness of entities.

4.4.2 Comparative analysis of model performance
1) Performance comparison of different entity recognition
models

The experimental results of recognizing entities of a
class object by selecting BERT-CRF, BERT-LSTM-CRF,
and BERT-BILSTM-CRF models as control are shown in
Fig. 11. Cross-validation on the same dataset was per-
formed, and accuracy, recall, and F1 scores were obtained
to measure the model’s performance.

The results indicate that the F1 score of the BERT-
LSTM-CRF model increased by 1.06% compared to the
BERT-CRF model, which can be attributed to the LSTM’s
superior capability in capturing long-range dependen-
cies within sequences. Furthermore, the F1 score of the
BERT-BiLSTM-CRF model is 0.89% higher than that of
the BERT-LSTM-CRF model. This is because BiLSTM
enhances the model’s contextual capture ability and pre-
diction performance by utilizing bidirectional contex-
tual information from the sequence. Compared to the
BERT-BiLSTM-CRF model, the BERT-BiLSTM-MHA-
CRF model demonstrates superior performance, with pre-
cision, recall, and F1 scores reaching 87.52%, 90.47%, and
88.97%, respectively. The addition of the multi-attention
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Figure 9 Partial demonstration of UAV fault diagnosis knowledge mapping

Figure 10 Performance analysis of single-multi-domain data
extraction models

mechanism captures the correlation information of differ-
ent positions in the sequence and addresses issues of en-
tity overlap and boundary confusion, resulting in a 2.86%
improvement in the F1 score. The addition of the multi-
attention mechanism captures the correlation informa-
tion of different positions in the sequence and addresses
issues of entity overlap and boundary confusion, result-
ing in a 2.86% improvement in the F1 score. Among the
entities in the category of solution measures, there are a
large number of long sentences and words that express
similar meanings. Due to the lack of an attention mech-
anism, the BERT-BiLSTM-CRF model performs poorly in
capturing long-distance dependencies and handling com-
plex contextual information, resulting in an F1 score that
is 11.27% lower than that of the model presented in this
paper. Therefore, the model incorporating the multi-head
attention mechanism demonstrates superior experimental
performance compared to the baseline model.

2) Comparison of different attention head counts

In previous experience, we have found that the quan-
tity of attention heads in the attention mechanism affects
the complexity of the model and the network performance.
Therefore, we compared different attentional head counts
several times in this experiment. Each parameter setting
was executed 10 times and the average of the F1 values was
calculated and obtained. The experimental findings are de-
picted in Fig. 12.

The experimental findings suggest that the model per-
forms better when there are eight attention heads, with an
F1 value of 84.11%. In contrast, when there is just one at-
tentional head, the model can only focus on one aspect of
the input sequence and cannot fully capture the diverse in-
formation in the sequence, resulting in lower performance.
In contrast, when there are five attention heads, the in-
crease in the number of attention heads brings about an
increase in model complexity, but it does not necessarily
always bring about an increase in performance and still
fails to adequately capture enough information, leading to
a decrease in performance.

5 Conclusions
Given that the use of KG for fault diagnostics is still in
its early stages, the low performance of the knowledge ex-
traction model, and the single distribution of UAV fault
data, a multi-domain fusion KG construction method for
fault diagnosis of large-scale cargo UAVs is proposed,
drawing on the experience of the successful application
of KG technology in other fields. The methodology imple-
ments multi-domain fusion ontology modeling employing
a multi-domain fault diagnosis concept analysis expres-
sion model for cargo UAVs and a multi-dimensional simi-
larity calculation method; The UAV fault KG is created by
combining the schema and data layers, including the pro-
cesses of multi-domain heterogeneous knowledge extrac-
tion, knowledge fusion, and knowledge storage. From un-
structured UAV data to structured fault diagnosis knowl-
edge storage based on cargo UAV fault repair data records.
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Figure 11 Performance comparison of entity recognition models

Figure 12 Comparison of different attention heads

It realizes the sharing and utilization of UAV fault exper-
tise, assists UAV users in maintenance decisions as well as
improves the safety of UAVs in logistics and distribution,
and adds to the application of KG within the domain of
fault diagnosis.

In the future, we will consider using joint entity-relation
extraction methods based on recurrent neural networks or
convolutional neural networks to rapidly enrich the corpus
of UAV fault data and dynamically update the constructed
knowledge graph in real-time. This approach aims to bet-
ter serve the field of UAV fault diagnosis. Subsequent
research will focus on the failure mechanisms of UAVs,
combining the faults that occurred during test flights and
knowledge of the entire UAV production process to con-
duct “knowledge reasoning” research. This research will
explore the links between the production process and the
faults that occur, and optimize the production process to

improve product quality. Additionally, if the large language
model can be integrated with the knowledge graph for
freight UAV troubleshooting, it will result in a deeper en-
hancement of the knowledge graph in this field.
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