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Abstract. Inspired by empirical work in neuroscience for Bayesian ap-
proaches to brain function, we give a unified probabilistic account of
various types of symbolic reasoning from data. We characterise them in
terms of formal logic using the classical consequence relation, an empiri-
cal consequence relation, maximal consistent sets, maximal possible sets
and maximum likelihood estimation. The theory gives new insights into
reasoning towards human-like machine intelligence.
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1 Introduction

There is growing evidence that the brain is a generative model of environments.
The two images shown in Figure 1 would cause the perception that a white trian-
gle and a white square overlay the other objects. A well-accepted explanation of
the illusions is that our brains are trained to unconsciously use past experience
to see what is likely to happen. Much empirical work argues that Bayesian, or
probabilistic generative, models give a clear explanation of how the brain rec-
onciles top-down prediction signals and bottom-up sensory signals, e.g., [8, 13,
7, 12, 14, 9, 5, 23, 22, 3, 10, 1, 20, 29].

An interesting question emerging from this idea is how logical consequence
relations, relevant to human higher-order thinking, can be given a Bayesian ac-
count. The question is important for the following reasons. First, such an account
should result in a simple computational principle that allows logical agents to
reason over symbolic knowledge fully from data in an uncertain environment.
Second, such a principle is expected to tackle fundamental assumptions of the
existing computational models such as statistical relational learning (SRL) [6],
Bayesian networks [19], naive Bayes, probabilistic logic programming (PLP) [27],
Markov logic networks (MLN) [24], probabilistic logic [18], probabilistic rela-
tional models (PRM) [4] and conditional probabilistic logic [25]. For example,
they have the implicit assumption that the method used to extract symbolic
knowledge from data cannot be applied to the method used to perform logical
reasoning over the symbolic knowledge, and vice versa.

In this paper, we simply model how data cause symbolic knowledge in terms
of its satisfiability in formal logic. The underlying idea is to see reasoning as
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Fig. 1. Kanizsa illusions. It is known that cats select to sit or stand within the illusory
square contour just as often as the real square contour [28].

a process of deriving symbolic knowledge from data by abstraction, i.e., selec-
tive ignorance. We show that various types of well-grounded symbolic reasoning
emerge from direct interaction between data and symbols, not between symbols
and symbols. We theoretically characterise them in terms of formal logic.

This paper contributes to new insights into reasoning towards human-like
machine intelligence. Symbolic reasoning is essentially a reference to data in
our theory. It thus brings up an idea of inference grounding rather than or
beyond symbol grounding. Symbolic reasoning can also be seen as interaction
between an interpretation in formal logic and its inversion. The inversion, we
call inverse interpretation, differentiates our work from the mainstream referred
to as inverse entailment [15], inverse resolution [16, 17] and inverse deduction
[26], which mainly study dependency between pieces of symbolic knowledge.
Our analysis causes reasoning from an impossible source of information, which
may be coined as parapossible reasoning, since reasoning from an inconsistent
source of information is often referred to as paraconsistent reasoning [21, 2].

In Section 2, we define a generative reasoning model for inference of ab-
straction. Section 3 gives full logical characterisations of the theory. Section 4
summarises the results.

2 Inference of Abstraction

2.1 Definitions

Let {d1, d2, ..., dK} be a multiset of K data. D denotes a random variable of data
whose values are all the elements of {d1, d2, ..., dK}. For all data dk(1 ≤ k ≤ K),
we define the probability of dk, denoted by p(D = dk), as follows.

p(D = dk) =
1

K

Let L represent a propositional language for simplicity, and {m1,m2, ...,mN}
be the set of models of L. Each model is a different assignment of a truth value
to each atomic formula. Intuitively, each model represents a different state of
the world. We assume that each data dk supports a single model. We use a
function m, {d1, d2, ..., dK} → {m1,m2, ...,mN}, to map each data to the model
supported by the data. M denotes a random variable of models whose realisations
are all the elements of {m1,m2, ...,mN}. For all models mn(1 ≤ n ≤ N), we
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define the probability of mn given dk, denoted by p(M = mn|D = dk), as
follows.

p(M = mn|D = dk) =

{
1 if mn = m(dk)

0 otherwise

The truth value of a propositional formula and first-order closed formula in
classical logic is uniquely determined in a state of the world specified by a model
of a language. Let α be a formula in L. We assume that α is a random variable
whose realisations are 0 and 1 meaning false and true respectively. We use symbol
[[α]] to refer to the models satisfying α. Namely, [[α = 1]] and [[α = 0]] represent
the set of models in which α is true and false, respectively. Let µ ∈ [0, 1] be a
variable, not a random variable. For all formulas α ∈ L, we define the probability
of each truth value of α given mn, denoted by p(α|M = mn), as follows.

p(α = 1|M = mn) =

{
µ if mn ∈ Jα = 1K
1− µ otherwise

p(α = 0|M = mn) =

{
µ if mn ∈ Jα = 0K
1− µ otherwise

Let [[α]]mn
be a function such that [[α]]mn

= 1 if mn ∈ [[α]] and [[α]]mn
= 0 oth-

erwise. The above expressions can be simply written as a Bernoulli distribution
with parameter µ ∈ [0, 1].

p(α|M = mn) = µ[[α]]mn (1− µ)1−[[α]]mn

Here, as we will see in the next section, the variable µ ∈ [0, 1] plays an important
role to relate various types of symbolic reasoning. We will see that µ = 1 relates
to the classical consequence relation and its generalisation, and µ approaching
1, denoted by µ → 1, relates to its generalisation for reasoning from inconsistent
sources of information and its further generalisation.

2.2 Properties

In classical logic, the truth value of each formula is determined by a model. In
other words, given a model, the truth value of a formula cannot be changed or
discarded by the truth value of any other formulas.

Example 1. Let L be a propositional language built with two symbols, rain and
wet, meaning ‘rain falls’ and ‘the road gets wet,’ respectively. Let mn(1 ≤ n ≤ 4)
be the models of L. The truth values of the five logical connectives are shown in
the following truth table.

rain wet ¬rain rain ∧ wet rain ∨ wet rain → wet rain ↔ wet
m1 0 0 1 0 0 1 1
m2 0 1 1 0 1 1 0
m3 1 0 0 0 1 0 0
m4 1 1 0 1 1 1 1
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Each row represents a different state of the world characterised by the two sym-
bols rain and wet. It is clear from the truth table that the truth value of each
formula is determined given a model.
In probability theory, the truth value of a formula α1 is thus condition-
ally independent of the truth value of another formula α2 given a model
M , i.e., p(α1|α2,M,D) = p(α1|M,D) or equivalently p(α1, α2|M,D) =
p(α1|M,D)p(α2|M,D). Let Γ ⊆ L be a finite theory. We therefore have

p(Γ |M,D) =
∏
α∈Γ

p(α|M,D). (1)

Moreover, in classical logic, the truth value of a formula depends on models
but not data. Thus, in probability theory, the truth value of a formula α is
conditionally independent of data D given a model M , i.e., p(α|M,D) = p(α|M).
We thus have ∏

α∈Γ

p(α|M,D) =
∏
α∈Γ

p(α|M). (2)

Therefore, the full joint distribution p(Γ,M,D) can be written as follows.

p(Γ,M,D) = p(Γ |M,D)p(M |D)p(D) =
∏
α∈Γ

p(α|M)p(M |D)p(D) (3)

Here, the second equation is derived by the product rule (or chain rule) of prob-
ability theory, and the third equation by Equations (1) and (2). The full joint
distribution p(Γ,M,D) serves as a probabilistic model of logical reasoning from
data. We refer to the full joint distribution and reasoning from the distribution
as a generative reasoning model and generative reasoning, respectively. We often
represent p(Γ,M,D) as p(Γ,M,D;µ) if our discussion is relevant to µ. We use
symbol ‘;’ to represent that µ is a variable, but not a random variable. In this
paper, we assume a finite number of realisations of each random variable.

The full joint distribution implies that we can no longer discuss only the
probabilities of individual formulas, but they are derived from data. For example,
the probability of α ∈ L is calculated as follows.

p(α) =
∑
m

∑
d

p(α,m, d) =
∑
m

p(α|m)
∑
d

p(m|d)p(d) (4)

Here, the second equation is derived by the sum rule of probability theory, and
the third equation by Equation (3).
Proposition 1 (Negation). Let p(Γ,M,D;µ) be a generative reasoning model.
For all α ∈ Γ , p(α = 0) = p(¬α = 1) holds.

Proof. For all models m, α is false in m if and only if ¬α is true in m. Thus,
[[α = 0]] = [[¬α = 1]] is the case. Therefore,

p(α = 0) =
∑
m

p(α = 0|m)p(m) =
∑
m

µ[[α=0]]m(1− µ)1−[[α=0]]mp(m)

=
∑
m

µ[[¬α=1]]m(1− µ)1−[[¬α=1]]mp(m) =
∑
m

p(¬α = 1|m)p(m) = p(¬α = 1).
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Fig. 2. Right: A schematic of how the probability distribution over data determines
the probability distribution over logical formulas. For simplicity, an arrow is omitted
if the formula at the end of the arrow is false in the model at the start of the arrow or
if the model at the end of the arrow is not supported by the data at the start of the
arrow. Left: The summation over models can be eliminated, since each model without
data support has a zero probability.

This holds regardless of the value of µ. ⊓⊔

Hence, we replace α = 0 by ¬α = 1 and abbreviate ¬α = 1 to ¬α. We also
abbreviate M = mn to mn and D = dk to dk.

The hierarchy shown on the left in Figure 2 illustrates Equation (4). The top
layer of the hierarchy is a probability distribution over data, the middle layer is
a probability distribution over states of the world, often referred to as models
in formal logic, and the bottom layer is a probability distribution over a logical
formula α. A darker colour indicates a higher probability. Each element of a
lower layer is an abstraction, selective ignorance, of the linked element of the
upper.

Example 2 (Continued). Let dk(1 ≤ k ≤ 10) be ten data about rain and road
conditions. Figure 2 shows which data support which models characterised by
the two symbols rain and wet. The probability of rain → wet can be calculated
using Equation (4) as follows.

p(rain → wet) =

4∑
n=1

p(rain → wet|mn)

10∑
k=1

p(mn|dk)p(dk)

= µ

10∑
k=1

p(m1|dk)
1

10
+ µ

10∑
k=1

p(m2|dk)
1

10
+ (1− µ)

10∑
k=1

p(m3|dk)
1

10

+ µ

10∑
k=1

p(m4|dk)
1

10
=

4

10
µ+

2

10
µ+

1

10
(1− µ) +

3

10
µ =

1

10
+

8

10
µ

Therefore, p(rain → wet) = 9/10 when µ = 1 or µ → 1, i.e., µ approaching 1.
The calculation is fully visualised by Figure 2 where α represents rain → wet.

Proposition 2 (Linear-time reasoning). Let p(Γ,M,D;µ) be a generative
reasoning model. For all α ∈ Γ , p(α) =

∑
d p(d)p(α|m(d)) holds.
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Proof. Equation (4) can be expanded as follows.∑
m

p(α|m)
∑
d

p(m|d)p(d) =
∑
d

p(d)
∑
m

p(α|m)p(m|d) =
∑
d

p(d)p(α|m(d))

The third expression is derived by the fact that, for all data d, the probability
of each model m except one supported by d is zero, i.e., p(m|d) = 0. ⊓⊔

Proposition 2 is crucially important because, in contrast to Example 2, the num-
ber of models is generally much larger than the number of data. Indeed, the
number of models exponentially increases with respect to the number of propo-
sitional symbols. For example, 30 propositional symbols cause 230 models. The
hierarchy shown on the right in Figure 2 illustrates this effect. The following fact
justifies the model distribution (see [11] for the proof).

Proposition 3 (Maximum likelihood estimation). Let p(Γ,M,D) be a
generative reasoning model. p(M) represents maximum likelihood estimates.

3 Correctness

3.1 Reasoning from consistent sources of information

In the previous section, we defined the generative reasoning model p(Γ,M,D)
and looked at its basic probabilistic properties. In this section, we answer how it
generalises classical and non-classical reasoning in terms of the data-based per-
spective rather than the traditional model-based perspective. We define models
without support from data as being impossible.

Definition 1 (Possible models). Let m be a model of a language L. m is
possible if p(m) ̸= 0 and impossible otherwise.

For ∆ ⊆ L, we use symbol [[[∆]]] to denote the set of all the possible models of ∆,
i.e., [[[∆]]] = {m ∈ [[∆]]|p(m) ̸= 0}. We also use symbol [[[∆]]]m such that [[[∆]]]m = 1
if m ∈ [[[∆]]] and [[[∆]]]m = 0 otherwise. Obviously, [[[∆]]] ⊆ [[∆]], for all ∆ ⊆ L, and
[[[∆]]] = [[∆]] if all models are possible. If ∆ is inconsistent, [[[∆]]] = [[∆]] = ∅. If ∆
is an empty set or if it only includes tautologies then every model satisfies all
the formulas in the possibly empty ∆, and thus [[∆]] includes all the models.

This section looks at generative reasoning models with µ = 1, p(Γ,M,D;µ =
1), for reasoning from a consistent source of information. The following theorem
relates the probability of a formula to the probability of its models.

Theorem 1. Let p(Γ,M,D;µ = 1) be a generative reasoning model, and α ∈ Γ
and ∆ ⊆ Γ such that [[∆]] = [[[∆]]].

p(α|∆) =


∑

m∈[[∆]]∩[[α]] p(m)∑
m∈[[∆]] p(m)

if [[∆]] ̸= ∅

undefined otherwise
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Table 1. Some inconsistencies between generative reasoning and classical reasoning.

Generative reasoning Classical reasoning Rationale
p(wet|rain,¬rain) ̸= 1 rain,¬rain p= wet [[rain,¬rain]] = ∅
p(wet|rain) = 1 rain ̸p= wet [[rain]] ̸= [[[rain]]]
p(¬rain ∨ wet) = 1 ̸p= ¬rain ∨ wet [[∅]] ̸= [[[∅]]]

Proof. Let |∆| denote the cardinality of ∆. Dividing models into the ones satis-
fying all the formulas in ∆ and the others, we have

p(α|∆) =

∑
m p(α|m)p(∆|m)p(m)∑

m p(∆|m)p(m)

=

∑
m∈J∆K p(m)p(α|m)µ|∆| +

∑
m/∈J∆K p(m)p(α|m)p(∆|m)∑

m∈J∆K p(m)µ|∆| +
∑

m/∈J∆K p(m)p(∆|m)
.

By definition, p(∆|m) =
∏

β∈∆ p(β|m) =
∏

β∈∆ µ[[β]]m(1 − µ)1−[[β]]m . For all
m /∈ J∆K, there is β ∈ ∆ such that [[β]]m = 0. Therefore, p(∆|m) = 0 when
µ = 1, for all m /∈ J∆K. We thus have

p(α|∆) =

∑
m∈J∆K p(m)p(α|m)1|∆|∑

m∈J∆K p(m)1|∆| =

∑
m∈J∆K p(m)1[[α]]m01−[[α]]m∑

m∈J∆K p(m)
.

We obtain the theorem, since 1[[α]]m01−[[α]]m = 1100 = 1 if m ∈ [[α]] and
1[[α]]m01−[[α]]m = 1001 = 0 if m /∈ [[α]]. In addition, if [[∆]] = ∅ then p(α|∆) is
undefined due to division by zero. ⊓⊔

Recall that a formula α is a logical consequence of a set ∆ of formulas, denoted
by ∆ p= α, in classical logic iff (if and only if) α is true in every model in which ∆
is true, i.e., [[∆]] ⊆ [[α]]. The following Corollary shows the relationship between
the generative reasoning model and the classical consequence relation p=.

Corollary 1. Let p(Γ,M,D;µ = 1) be a generative reasoning model, and α ∈ Γ
and ∆ ⊆ Γ such that [[∆]] = [[[∆]]] and [[∆]] ̸= ∅. p(α|∆) = 1 iff ∆ p= α.

Proof. By the assumptions [[∆]] = [[[∆]]] and [[∆]] ̸= ∅, p(m) is non zero, for all m
in the non-empty set [[∆]]. The assumptions thus prohibit a division by zero in
Theorem 1. Therefore,

∑
m∈[[∆]]∩[[α]] p(m)∑

m∈[[∆]] p(m) = 1 iff [[α]] ⊇ [[∆]], i.e., ∆ |= α. ⊓⊔

The following example shows the importance of the assumptions of [[∆]] = [[[∆]]]
and [[∆]] ̸= ∅ in Corollary 1.

Example 3 (Continued). Suppose that the probability distribution is given by
p(M) = (m1,m2,m3,m4) = (0.5, 0.2, 0, 0.3). Table 1 exemplifies differences be-
tween the generative reasoning and classical consequence relation. The last col-
umn explains why the generative reasoning is inconsistent with the classical
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Fig. 3. The left two graphs illustrate reasoning of α ∈ Γ from ∆ ⊆ Γ using
p(Γ,M,D;µ = 1). The leftmost shows the assumptions of [[∆]] = [[[∆]]] and [[∆]] ̸= ∅.
Each arrow from a datum to model, denoted respectively by a black circle on the top
layer and a cell on the middle layer, represents that the datum supports the model. Each
model with an incoming arrow thus has a non-zero probability. A model is coloured
in green (resp. blue) if all the formulas in ∆ are (resp. α) true in the model. The
second shows the assumption of [[[∆]]] ̸= ∅. The right two graphs illustrate reasoning
of α ∈ Γ from ∆ ⊆ Γ using p(Γ,M,D;µ → 1). The third shows the assumption of
((∆)) = (((∆))). ∆1, ∆2 and ∆3 are the cardinality-maximal consistent subsets of ∆.
The rightmost shows no assumption. ∆1 and ∆2 are the cardinality-maximal possible
subsets of ∆.

consequence. In particular, the rationale of the last example comes from the fact
that Theorem 1 explains p(¬rain ∨ wet) as p(¬rain ∨ wet|∅).

p(¬rain ∨ wet) = p(¬rain ∨ wet|∅) =
∑

m∈[[∅]]∩[[¬rain∨wet]] p(m)∑
m∈[[∅]] p(m)

=

∑
m∈[[¬rain∨wet]] p(m)∑

m p(m)
=

∑
m∈[[¬rain∨wet]] p(m) = 1.

Here, [[∅]] = {m1,m2,m3,m4} but [[[∅]]] = {m1,m2,m4}.

Figure 3 illustrates the assumptions of [[∆]] = [[[∆]]] and [[∆]] ̸= ∅ for reasoning
of α ∈ L from ∆ ⊆ L using the generative reasoning model p(L,M,D;µ = 1).
Both α and ∆ are consistent, since there is at least one model satisfying α and
all the formulas in ∆, i.e., [[α]] ̸= ∅ and [[∆]] ̸= ∅. Such models are highlighted
on the middle layer in blue and green, respectively. Figure 3 also shows that
every model satisfying all the formulas in ∆ is possible, since there is at least
one datum that supports each model of ∆, i.e., [[∆]] = [[[∆]]].

3.2 Reasoning from possible sources of information

Theorem 1 and Corollary 1 depend on the assumption of [[∆]] = [[[∆]]]. In this
section, we cancel the assumption to fully generalise our discussions in Section
3.1. The following theorem relates the probability of a formula to the probability
of its possible models.
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Theorem 2. Let p(Γ,M,D;µ = 1) be a generative reasoning model, and α ∈ Γ
and ∆ ⊆ Γ .

p(α|∆) =


∑

m∈[[[∆]]]∩[[[α]]] p(m)∑
m∈[[[∆]]] p(m)

if [[[∆]]] ̸= ∅

undefined otherwise

Proof. p(m) = 0, for all m ∈ [[∆]] \ [[[∆]]] and m ∈ [[α]] \ [[[α]]]. From Theorem 1,∑
m∈[[∆]]∩[[α]] p(m)∑

m∈[[∆]] p(m)
=

∑
m∈[[[∆]]]∩[[[α]]] p(m)∑

m∈[[[∆]]] p(m)
.

The condition of [[∆]] ̸= ∅ should be replaced by [[[∆]]] ̸= ∅, since there is a
possibility of [[∆]] ̸= ∅ and [[[∆]]] = ∅. Given the condition of [[∆]] ̸= ∅, this causes
a probability undefined due to a division by zero. ⊓⊔

In Section 3.1, we used the classical consequence relation in Corollary 1 for a
logical characterisation of Theorem 1. In this section, we define an alternative
consequence relation for a logical characterisation of Theorem 2.

Definition 2 (Empirical consequence). Let ∆ ⊆ Γ and α ∈ Γ . α is an
empirical consequence of ∆, denoted by ∆ p≡ α, if [[[∆]]] ⊆ [[[α]]].

If ∆ p= α then ∆ p≡ α, but not vice versa, for all ∆ ⊆ Γ and α ∈ Γ . The following
Corollary shows the relationship between the generative reasoning model and the
empirical consequence relation p≡.

Corollary 2. Let p(Γ,M,D;µ = 1) be a generative reasoning model, and α ∈ Γ
and ∆ ⊆ Γ such that [[[∆]]] ̸= ∅. p(α|∆) = 1 iff ∆ p≡ α.

Proof. ∆ p≡ α iff [[[∆]]] ⊆ [[[α]]]. p(m) ̸= 0, for all m ∈ [[[∆]]]. Thus, from Theorem
2, p(α|∆) = 1 iff [[[∆]]] ⊆ [[[α]]]. ⊓⊔

Note that Theorem 2 and Corollary 2 no longer depend on the assumption of
[[∆]] = [[[∆]]] required in Theorem 1 and Corollary 1. Figure 3 illustrates the
assumption of [[[∆]]] ̸= ∅ for reasoning of α ∈ L from ∆ ⊆ L using the generative
reasoning model p(L,M,D;µ = 1). It shows that both α and ∆ are consistent,
i.e., [[α]] ̸= ∅ and [[∆]] ̸= ∅, since there is at least one model for both α and ∆
satisfying the formulas. It also shows that ∆ and α are possible, i.e., [[[∆]]] ̸= ∅
and [[[α]]] ̸= ∅, since there is at least one model for both ∆ and α supported by
data.

3.3 Reasoning from inconsistent sources of information

Theorem 1 and Corollary 1 assume [[∆]] ̸= ∅ in practice. The conditional proba-
bility p(α|∆) is undefined otherwise. This section aims to cancel the assumption
to fully generalise our discussions in Section 3.1 so that we can reason also
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Fig. 4. Three examples of reasoning from inconsistency. The probability versus µ.

from an inconsistent source of information. To this end, we look at the gener-
ative reasoning model p(Γ,M,D;µ → 1), rather than p(Γ,M,D;µ = 1), where
µ → 1 represents µ approaching one, i.e., limµ→1. The following example shows
the intuition of how the limit works and how it naturally generalises reasoning
regardless of the consistency of its premises.

Example 4 (Continued). Consider the three conditional probabilities given dif-
ferent inconsistent premises shown in Figure 4. Suppose that the probability
distribution is given by p(M) = (m1,m2,m3,m4) = (0.4, 0.2, 0.1, 0.3). The con-
ditional probability shown on the top right is expanded as follows.

p(rain|rain,wet,¬wet) =
∑

m p(rain|m)2p(wet|m)p(¬wet|m)p(m)∑
m p(rain|m)p(wet|m)p(¬wet|m)p(m)

=
(p(m1) + p(m2))µ(1− µ)3 + (p(m3) + p(m4))µ

3(1− µ)

(p(m1) + p(m2))µ(1− µ)2 + (p(m3) + p(m4))µ2(1− µ)

=
0.6µ(1− µ)3 + 0.4µ3(1− µ)

0.6µ(1− µ)2 + 0.4µ2(1− µ)

The graph with the solid line in Figure 4 shows p(rain|rain,wet,¬wet) given
different µ values. The graph also includes the other two conditional probabilities
calculated in the same manner. Each of the open circles represents an undefined
value. This means that no substitution gives a probability, even though the curve
approaches a certain probability. The certain probability can only be obtained
by the use of limit. Indeed, given µ → 1, the three conditional probabilities turn
out to be 1, 0.5 and 0.4, respectively.

Everything is entailed from an inconsistent set of formulas in formal logic. The
use of limit is a reasonable alternative, since it allows us to consider what if there
is a very tiny chance of the formula being true. The mathematical correctness of
the solution can be shown using maximal consistent sets and maximal possible
sets.

Definition 3 (Maximal consistent sets). Let S,∆ ⊆ L. S ⊆ ∆ is a maximal
consistent subset of ∆ if [[S]] ̸= ∅ and [[S ∪ {α}]] = ∅, for all α ∈ ∆ \ S.

We refer to a maximal consistent subset as a cardinality-maximal consistent
subset when the set has the maximum cardinality. We use symbol MCS(∆)
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to denote the set of the cardinality-maximal consistent subsets of ∆ ⊆ L. We
use symbol ((∆)) to denote the set of the models of the cardinality-maximal
consistent subsets of ∆, i.e., ((∆)) =

⋃
S∈MCS(∆)[[S]].

Example 5 (Continued). Consider the model distribution shown in Example 4
and ∆ = { rain, wet, rain → wet, ¬wet}. It gives the following three maximal
consistent subsets of ∆: S1 = {rain,wet, rain → wet}, S2 = {rain,¬wet} and
S3 = {rain → wet,¬wet}. Only S1 is the cardinality-maximal consistent subset
of ∆, i.e., MCS(∆) = {S1}. Therefore, ((∆)) =

⋃
S∈MCS(∆)[[S]] = [[S1]] = {m4}.

Definition 4 (Maximal possible sets). Let S,∆ ⊆ L. S ⊆ ∆ is a maximal
possible subset of ∆ if [[[S]]] ̸= ∅ and [[[S ∪ {α}]]] = ∅, for all α ∈ ∆ \ S.

Similarly, we refer to a maximal possible subset as a cardinality-maximal possible
subset when the set has the maximum cardinality. We use symbol MPS(∆) to
denote the set of the cardinality-maximal possible subsets of ∆ ⊆ L. We use
symbol (((∆))) to denote the set of possible models of the cardinality-maximal
possible subsets of ∆, i.e., (((∆))) =

⋃
S∈MPS(∆)[[[S]]].

Example 6 (Continued). Suppose that the probability distribution is given by
p(M) = (m1,m2,m3,m4) = (0.9, 0.1, 0, 0). Consider ∆ = { rain, wet, rain →
wet,¬wet}. It gives the following two maximal possible subsets of ∆: S1 =
{wet, rain → wet} and S2 = {rain → wet,¬wet}. Both S1 and S2 are the
cardinality-maximal possible subsets of ∆, i.e., MPS(∆) = {S1, S2}. Only m2

is the possible model of S1 and m1 is the possible model of S2. Namely, [[[S1]]] =
{m2} and [[[S2]]] = {m1}. Therefore, (((∆))) =

⋃
S∈MPS(∆)[[[S]]] = {m1,m2}.

Obviously, ((∆)) = [[∆]] if there is a model of ∆, i.e., [[∆]] ̸= ∅. Similarly, (((∆))) =
[[[∆]]] if there is a possible model of ∆, i.e., [[[∆]]] ̸= ∅. Note that if ∆ is an empty
set or ∆ only includes tautologies then every model satisfies all the formulas in
the possibly empty ∆. [[∆]] is thus the set of all models, and therefore [[∆]] ̸= ∅.
Moreover, [[[∆]]] ̸= ∅, since p(M) is a probability distribution, and thus, there is
at least one model m such that p(m) ̸= 0.

Example 7. Let ∆1 = {α,¬α} and ∆2 = {α ∧ ¬α}, for α ∈ L.
((∆1)) =

⋃
S∈MCS(∆1)

[[S]] =
⋃

S∈{{α},{¬α}}[[S]] = [[α]] ∪ [[¬α]] = M. ((∆2))

=
⋃

S∈MCS(∆2)
[[S]] =

⋃
S∈{∅}[[S]] = [[∅]] = M. Here, M denotes all the mod-

els associated with L.

Example 8 (Continued). Suppose that the probability distribution is given by
p(M) = (m1,m2,m3,m4) = (0.5, 0.2, 0, 0.3). Let ∆1 = {rain,¬rain} and ∆2 =
{rain∧¬rain}. (((∆1))) =

⋃
S∈MPS(∆1)

[[[S]]] = [[[rain]]]∪ [[[¬rain]]] = {m1,m2,m4}.
(((∆2))) =

⋃
S∈MPS(∆2)

[[[S]]] = [[[∅]]] = {m1,m2,m4}.

The generative reasoning model p(Γ,M,D;µ → 1) has the following property.

Theorem 3. Let p(Γ,M,D;µ → 1) be a generative reasoning model, and α ∈ Γ
and ∆ ⊆ Γ such that ((∆)) = (((∆))).

p(α|∆) =

∑
m∈((∆))∩[[α]] p(m)∑

m∈((∆)) p(m)
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Proof. We use symbol |∆| to denote the number of formulas in ∆ and symbol
|∆|m to denote the number of formulas in ∆ that are true in m, i.e., |∆|m =∑

β∈∆[[β]]m. Dividing models into ((∆)) and the others, we have

p(α|∆) = lim
µ→1

∑
m p(α|m)p(m)p(∆|m)∑

m p(m)p(∆|m)

= lim
µ→1

∑
m̂∈((∆)) p(α|m̂)p(m̂)p(∆|m̂) +

∑
m/∈((∆)) p(α|m)p(m)p(∆|m)∑

m̂∈((∆)) p(m̂)p(∆|m̂) +
∑

m/∈((∆)) p(m)p(∆|m)
.

Now, p(∆|m) can be developed as follows, for all m.

p(∆|m) =
∏
β∈∆

p(β|m) =
∏
β∈∆

µ[[β]]m(1− µ)1−[[β]]m

= µ
∑

β∈∆[[β]]m(1− µ)
∑

β∈∆(1−[[β]]m) = µ|∆|m(1− µ)|∆|−|∆|m

Therefore, p(α|∆) = limµ→1
W+X
Y+Z where

W =
∑

m̂∈((∆)) p(α|m̂)p(m̂)µ|∆|m̂(1− µ)|∆|−|∆|m̂

X =
∑

m/∈((∆)) p(α|m)p(m)µ|∆|m(1− µ)|∆|−|∆|m

Y =
∑

m̂∈((∆)) p(m̂)µ|∆|m̂(1− µ)|∆|−|∆|m̂

Z =
∑

m/∈((∆)) p(m)µ|∆|m(1− µ)|∆|−|∆|m .

((∆)) =
⋃

S∈MCS(∆)[[S]] ̸= ∅, for all ∆ ⊆ L. Since m̂ ∈ ((∆)) is a model of a
cardinality-maximal consistent subset of ∆, |∆|m̂ has the same value, for all
m̂ ∈ ((∆)). Therefore, the fraction can be simplified by dividing the denominator
and numerator by (1−µ)|∆|−|∆|m̂ . We thus have p(α|∆) = limµ→1

W ′+X′

Y ′+Z′ where

W ′ =
∑

m̂∈((∆)) p(α|m̂)p(m̂)µ|∆|m̂

X ′ =
∑

m/∈((∆)) p(α|m)p(m)µ|∆|m(1− µ)|∆|m̂−|∆|m

Y ′ =
∑

m̂∈((∆)) p(m̂)µ|∆|m̂

Z ′ =
∑

m/∈((∆)) p(m)µ|∆|m(1− µ)|∆|m̂−|∆|m .

Applying the limit operation, we can cancel out X ′ and Z ′.

p(α|∆) =

∑
m̂∈((∆)) p(α|m̂)p(m̂)∑

m̂∈((∆)) p(m̂)
=

∑
m̂∈((∆)) 1

[[α]]m̂01−[[α]]m̂p(m̂)∑
m̂∈((∆)) p(m̂)

.

We have the theorem, since 1[[α]]m̂01−[[α]]m̂ = 1100 = 1 if m̂ ∈ [[α]] and
1[[α]]m̂01−[[α]]m̂ = 1001 = 0 if m̂ /∈ [[α]]. ⊓⊔

The following Corollary shows the relationship between the generative reasoning
model p(Γ,M,D;µ → 1) and the classical consequence relation with maximal
consistent sets.
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Corollary 3. Let p(Γ,M,D;µ → 1) be a generative reasoning model, and α ∈ Γ
and ∆ ⊆ Γ such that ((∆)) = (((∆))). p(α|∆) = 1 iff S p= α, for all cardinality-
maximal consistent subsets S of ∆.

Proof. By the assumption of ((∆)) = (((∆))), p(m) is non zero, for all m ∈ ((∆)).
From Theorem 3, thus p(α|∆) = 1 iff [[α]] ⊇ ((∆)). Since ((∆)) =

⋃
S∈MCS(∆)[[S]],

p(α|∆) = 1 iff [[α]] ⊇
⋃

S∈MCS(∆)[[S]]. Namely, p(α|∆) = 1 iff [[α]] ⊇ [[S]], for all
cardinality-maximal consistent subsets S of ∆. ⊓⊔

Note that Theorem 3 and Corollary 3 no longer depend on the assumption of
[[∆]] ̸= ∅ required in Section 3.1 for Theorem 1 and Corollary 1. Figure 3 illus-
trates the assumption of ((∆)) = (((∆))) for reasoning of α ∈ Γ from inconsistent
∆ ⊆ Γ using the generative reasoning model p(Γ,M,D;µ → 1). It shows that ∆
has no model satisfying all its formulas. It also shows that every model satisfying
all the formulas in a cardinality-maximal consistent subset of ∆ is possible.

3.4 Reasoning from impossible sources of information

Theorem 3 and Corollary 3 depend on the assumption of ((∆)) = (((∆))). In
this section, we cancel the assumptions to fully generalise our discussions in
Section 3.3. The generative reasoning model p(Γ,M,D;µ → 1) has the following
property.

Theorem 4. Let p(Γ,M,D;µ → 1) be a generative reasoning model, and α ∈ Γ
and ∆ ⊆ Γ .

p(α|∆) =

∑
m∈(((∆)))∩[[[α]]] p(m)∑

m∈(((∆))) p(m)

Proof. The proof is almost same as Theorem 3. Only difference is to divide
models into (((∆))) rather than ((∆)). ⊓⊔

The following Corollary shows the relationship between the generative reasoning
model p(Γ,M,D;µ → 1) and the empirical consequence relation with maximal
possible sets.

Corollary 4. Let p(Γ,M,D;µ → 1) be a generative reasoning model, and α ∈ Γ
and ∆ ⊆ Γ . p(α|∆) = 1 iff S p≡ α, for all cardinality-maximal possible subsets
S of ∆.

Proof. From Theorem 4, p(α|∆) = 1 iff (((∆))) ⊆ [[[α]]]. Since (((∆))) =⋃
S∈MPS(∆)[[[S]]], p(α|∆) = 1 iff

⋃
S∈MPS(∆)[[[S]]] ⊆ [[[α]]]. Therefore, p(α|∆) = 1

iff [[[S]]] ⊆ [[[α]]], for all S ∈ MPS(∆). ⊓⊔

Note that Theorem 4 and Corollary 4 no longer depend on the assumption of
((∆)) = (((∆))) required in Section 3.3 for Theorem 3 and Corollary 3. Figure
3 illustrates reasoning of α ∈ Γ from impossible ∆ ⊆ Γ using the generative
reasoning model p(Γ,M,D;µ → 1). It illustrates the most general situation
without the assumptions discussed in the previous sections.
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Table 2. The summary of the logical grounds. Due to the assumption strictness,
uncertain parapossible reasoning is the most generalised type of reasoning whereas
certain consistent reasoning is the most specialised type.

Reasoning type Logical ground Grounding assumptions
Consistent p(α|∆) = 1 iff ∆ p= α [[∆]] ̸= ∅, [[∆]] = [[[∆]]]
Possible p(α|∆) = 1 iff ∆ p≡ α [[[∆]]] ̸= ∅
Paraconsistent p(α|∆) = 1 iff ∀S ∈ MCS(∆).S p= α ((∆)) = (((∆)))
Parapossible p(α|∆) = 1 iff ∀S ∈ MPS(∆).S p≡ α No assumption
Uncertain p(α|∆) ∈ [0, 1] generalises the above Same as above

4 Conclusions

Symbolic knowledge is an abstraction of data. This simple idea caused a proba-
bilistic model of how data cause symbolic knowledge in terms of its satisfiability
in formal logic. Table 2 summarises the logical grounds and their assumptions of
all the types of logical reasoning studied in this paper. They are all based on the
simple principle that intrinsically abstract symbolic knowledge is caused from
intrinsically concrete data. The principle opposes the prevailing idea in formal
logic that knowledge is caused from preceding knowledge by rules of inference.
The principle focuses on what machine learning and statistics usually do not
deal with. The central question studied in this paper is how symbolic knowledge
is caused from data. This differs from machine learning and statistics primarily
asking how data are caused from the parameters of probability distributions. Fi-
nally, the principle can be seen as a solution to inference grounding in the sense
that reasoning from symbols to symbols always occurs via data as its references.
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