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Abstract. Inspired by Bayesian approaches to brain function in neuro-
science, we give a simple theory of human-like probabilistic reasoning. We
simply model how data cause symbolic knowledge in terms of its satisfi-
ability in formal logic. The underlying idea is that reasoning is a process
of deriving symbolic knowledge from data by abstraction, i.e., selective
ignorance. The theory does not impose the assumption of independence
or conditional independence of symbolic knowledge, an unrealistic but
necessary assumption of Bayesian networks and their variants. The the-
ory is empirically justified by its digit prediction and image generation
performance on the MNIST dataset.
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1 Introduction

Bayes’ theorem plays an important role today in AI, neuroscience and cognitive
science. It underlies most modern approaches to uncertain reasoning in AI sys-
tems [21]. Neuroscience often uses it as a metaphor for functions of the cerebral
cortex, the outer portion of the brain in charge of higher-order cognitive func-
tions such as perception, memory, emotion and thought [13, 10, 8, 3, 7]. It relates
various brain theories such as Bayesian coding hypothesis [10], free-energy prin-
ciple [6] and predictive coding [19]. Their common idea is that the biological
brain can be seen as a probabilistic generative model by which the past experi-
ence of the brain is constantly, but unconsciously, used to predict what is likely
to happen outside the brain [6, 22, 9].

The success of Bayesian approaches in AI and neuroscience makes us think
that there is a common Bayesian account of reasoning and learning, especially en-
tailment and prediction, the main concern of formal logic and machine learning,
respectively. The idea is worth investigating as it may give a clue to think upon
how reasoning and learning operate in the human brain. Additionally, finding a
principle underlying reasoning and learning is an open problem in AI across dif-
ferent disciplines, e.g., neuro-symbolic AI [1]. Despite the scientific importance,
few research in AI has focused on a Bayesian approach to a computational model
of reasoning and learning. Indeed, most present research papers, e.g., [14–16, 5,
20, 24, 26, 23, 2], study how to combine existing reasoning and learning methods
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with the assumption that they are intrinsically different. For example, maximum
likelihood estimation is the method most often used to learn the probability or
weight of symbolic knowledge. Logical semantics is then used to draw conclu-
sions from the probabilistic or weighted symbolic knowledge. Various types of
logical semantics exist such as the semantics of Bayesian networks [15], Markov
logic networks [20] and distribution semantics [24]. However, the method used
for learning cannot be used for reasoning, and vice versa. Moreover, in computa-
tional cognitive science, the theory-based Bayesian models of induction [25], the
learned inference model [4] and the Bayesian program learning framework [11,
12] rest on the idea that observable data and their variants are generated from
more abstract hypotheses such as background knowledge and principles about
the world. Although the idea is prevalent in the machine learning community,
the idea eventually struggles with intractable computation associated with an
exponentially growing hypothesis space, especially when trying to incorporate
symbolic knowledge.

In this paper, we argue that some important aspects of reasoning and learning
can be unified by inference of abstraction as selective ignorance. The simple idea
underlying the inference of abstraction is that intrinsically abstract symbolic
knowledge should be derived from intrinsically concrete data via inference. The
idea is simply formalised as a probabilistic model of the causality that data
determine states of the world, and the states of the world determine the truth
value of symbolic knowledge. The idea opposes existing work such as [25, 4, 11,
12], since we argue that abstract hypotheses and knowledge are generated from
observable data by abstraction.

We discuss three important perspectives on reasoning and learning. First,
knowledge is intrinsically abstract whereas data are intrinsically concrete. The
inference of abstraction derives symbolic knowledge from data. The natural view
and approach contrast rules of inference and the semantics of Bayesian networks
deriving knowledge from another knowledge. Second, this paper looks at how
symbolic knowledge can be derived from data. This contrasts the machine learn-
ing approach looking at how data can be derived from parameters characterising
the data, e.g., the mean and variance of a normal distribution. Third, the in-
ference of abstraction comprises an interpretation and inverse interpretation of
formal logic. The inference can be seen as a realisation of top-down and bottom-
up processing often used in neuroscience as a metaphor for the information
processing of the brain.

The contributions of this paper are summarised as follows. First, this paper
results in a new machine learning method that significantly generalises a sort of
k-nearest neighbour method. The method empirically outperforms a k-nearest
neighbour method in AUC on the MNIST dataset. Second, this paper bridges
probability theory and machine learning in a novel way that a sort of k-nearest
neighbour method can be seen as probabilistic reasoning.

This paper is organised as follows. In Section 2, we define a generative rea-
soning model for inference of abstraction. Section 3 discusses its probabilistic
correctness. We summarise our results in Section 4.
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2 Inference of Abstraction

Let {d1, d2, ..., dK} be a multiset of K data. D denotes a random variable of data
whose values are all the elements of {d1, d2, ..., dK}. For all data dk(1 ≤ k ≤ K),
we define the probability of dk, denoted by p(D = dk), as follows.

p(D = dk) =
1

K

L represents a propositional language for simplicity. Let {m1,m2, ...,mN} be
the set of models of L. A model is an assignment of truth values to all the atomic
formulas in L. Intuitively, each model represents a different state of the world.
We assume that each data dk supports a single model. We thus use a function m,
{d1, d2, ..., dK} → {m1,m2, ...,mN}, to map each data to the model supported
by the data. M denotes a random variable of models whose realisations are all
the elements of {m1,m2, ...,mN}. For all models mn(1 ≤ n ≤ N), we define the
probability of mn given dk, denoted by p(M = mn|D = dk), as follows.

p(M = mn|D = dk) =

{
1 if mn = m(dk)

0 otherwise

The truth value of a propositional formula and first-order closed formula in
classical logic is uniquely determined in a state of the world specified by a model
of a language. Let α be a formula in L. We assume that α is a random variable
whose realisations are 0 and 1 meaning false and true respectively. We use symbol
[[α]] to refer to the models of α. Namely, [[α = 1]] and [[α = 0]] represent the set
of models in which α is true and false, respectively. Let µ ∈ [0, 1] be a variable,
not a random variable. For all formulas α ∈ L, we define the probability of each
truth value of α given mn, denoted by p(α|M = mn), as follows.

p(α = 1|M = mn) =

{
µ if mn ∈ Jα = 1K
1− µ otherwise

p(α = 0|M = mn) =

{
µ if mn ∈ Jα = 0K
1− µ otherwise

Let [[α]]mn be a function such that [[α]]mn = 1 if mn ∈ [[α]] and [[α]]mn = 0 oth-
erwise. The above expressions can be simply written as a Bernoulli distribution
with parameter µ ∈ [0, 1].

p(α|M = mn) = µ[[α]]mn (1− µ)1−[[α]]mn

Here, the variable µ ∈ [0, 1] plays an important role to relate formal logic to
machine learning. We will see that µ = 1 relates to Bayesian networks. We also
see that µ → 1 relates to an all-nearest neighbour method, a generalisation of a
sort of the k-nearest neighbour method in machine learning. Additionally, µ < 1
relates to a smoothed or weighted version of the all-nearest neighbour method.
They are all discussed in the next section.
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In classical logic, given a model, the truth value of a formula does not change
the truth value of another formula. Thus, in probability theory, the truth value
of a formula α1 is conditionally independent of the truth value of another for-
mula α2 given a model M , i.e., p(α1|α2,M,D) = p(α1|M,D) or equivalently
p(α1, α2|M,D) = p(α1|M,D)p(α2|M,D). Let Γ ⊆ L be a finite theory of L. We
therefore have

p(L|M,D) =
∏
α∈L

p(α|M,D). (1)

Moreover, in classical logic, the truth value of a formula depends on models
but not data. Thus, in probability theory, the truth value of a formula α is
conditionally independent of data D given a model M , i.e., p(α|M,D) = p(α|M).
We thus have ∏

α∈Γ

p(α|M,D) =
∏
α∈Γ

p(α|M). (2)

Therefore, the full joint distribution, p(Γ,M,D), can be written as follows.

p(Γ,M,D) = p(Γ |M,D)p(M |D)p(D) =
∏
α∈Γ

p(α|M)p(M |D)p(D) (3)

Here, the product rule (or chain rule) of probability theory is applied in the first
equation, and Equations (1) and (2) in the second equation. As will be seen later,
the joint distribution p(Γ,M,D) is a probabilistic model of symbolic reasoning
from data. We call the joint distribution a generative reasoning model for short.
We often represent p(Γ,M,D) as p(Γ,M,D;µ) if our discussion is relevant to µ.
We use symbol ‘;’ to represent that µ is a variable, but not a random variable.
In this paper, we assume a finite number of realisations of each random variable.

The full joint distribution implies that we can no longer discuss only the
probabilities of individual formulas, but they are derived from data. For example,
the probability of α ∈ Γ is calculated as follows.

p(α) =
∑
m

∑
d

p(α,m, d) =
∑
m

p(α|m)
∑
d

p(m|d)p(d) (4)

Here, the sum rule of probability theory is applied in the first equation, and
Equation (3) in the second equation.

Proposition 1. Let p(Γ,M,D;µ) be a generative reasoning model. For all α ∈
Γ , p(α = 0) = p(¬α = 1) holds.

Proof. For all models m, α is false in m if and only if ¬α is true in m. Thus,
[[α = 0]] = [[¬α = 1]] is the case. Therefore,

p(α = 0) =
∑

m p(α = 0|m)p(m) =
∑

m µ[[α=0]]m(1− µ)1−[[α=0]]mp(m)

=
∑

m µ[[¬α=1]]m(1− µ)1−[[¬α=1]]mp(m) =
∑

m p(¬α = 1|m)p(m) = p(¬α = 1).

This holds regardless of the value of µ. ⊓⊔
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Fig. 1. A schematic of how the probability distribution over data determines the prob-
ability distribution over logical formulas. For simplicity, an arrow is omitted if the
formula at the end of the arrow is false in the model at the start of the arrow and if the
model at the end of the arrow is not supported by the data at the start of the arrow.

Hence, we replace α = 0 by ¬α = 1 and abbreviate ¬α = 1 to ¬α. We also
abbreviate M = mn to mn and D = dk to dk.

The hierarchy shown in Figure 1 illustrates Equation (4). The top layer of the
hierarchy is a probability distribution over data, the middle layer is a probability
distribution over states of the world, often referred to as models in formal logic,
and the bottom layer is a probability distribution over a logical formula α. A
darker colour indicates a higher probability. Each element of a lower layer is an
abstraction, i.e., selective ignorance, of the linked element of the upper layer.

Example 1. Let L be a propositional language built with two symbols, rain and
wet, meaning ‘rain falls’ and ‘the road gets wet,’ respectively. Let mn(1 ≤ n ≤ 4)
be the models of L and dk(1 ≤ k ≤ 10) be data about rain and road conditions.
Table 1 shows which data support which models and which models specify which
states of the world. The probability of rain → wet can be calculated using
Equation (4) as follows.

p(rain → wet) =

4∑
n=1

p(rain → wet|mn)

10∑
k=1

p(mn|dk)p(dk)

= µ

10∑
k=1

p(m1|dk)
1

10
+ µ

10∑
k=1

p(m2|dk)
1

10
+ (1− µ)

10∑
k=1

p(m3|dk)
1

10

+ µ

10∑
k=1

p(m4|dk)
1

10
=

4

10
µ+

2

10
µ+

1

10
(1− µ) +

3

10
µ =

1

10
+

8

10
µ

Therefore, p(rain → wet) = 9/10 when µ = 1 or µ → 1, i.e., µ approaching 1.
Figure 1 illustrates the calculation and visualises how the probability of rain →
wet, denoted by α in the figure, is derived from data.

Proposition 2 (Maximum likelihood estimation). Let p(Γ,M,D) be a
generative reasoning model. p(M) is equivalent to maximum likelihood estima-
tion.
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Table 1. An example of Figure 1. From the left, each column show data, models and
the likelihood of the formula.

D M rain wet p(rain → wet|M)

d1, d2, d3, d9 m1 0 0 µ
d4, d5 m2 0 1 µ
d10 m3 1 0 1− µ

d6, d7, d8 m4 1 1 µ

Proof. For all n, p(mn) can be simply derived from p(Γ,M,D) as follows.

p(mn) =
∑

d p(mn|d)p(d) = 1
K

∑
d p(mn|d) = Kn

K

Here, Kn is the number of data supporting the nth model. We show that this
is a maximum likelihood estimate. In statistics, data are assumed to be gener-
ated from a probability distribution. Let θ = (θ1, θ2, ..., θN ) be the parameter
of a categorical distribution generating our data d1, d2, ..., dK . The maximum
likelihood estimation is defined as follows.

θ̂ = argmax
θ

p(d1, d2, ..., dK |θ)

It is common to assume that data are generated independently from the same
distribution, i.e., i.i.d. We thus have

p(d1, d2, ..., dK |θ) =
K∏

k=1

p(dk|θ) = θK1
1 θK2

2 · · · θKN−1

N−1 (1− θ1 − θ2 − · · · − θN−1)
KN ,

where Kn is the number of data in the nth category and θN = 1−θ1−θ2−· · ·−
θN−1. θ maximises the likelihoods if and only if it maximises their log likelihoods
given as follows.

L(θ) = K1 log θ1 +K2 log θ2 + · · ·+KN−1 log θN−1 +KN log(1− θ1 − · · · − θN−1)

To find θ maximising L, we differentiate L with respect to θn and set the resulting
expression to zero, for all n(1 ≤ n ≤ N − 1). We then have

∂L(θ)

∂θn
=

Kn

θn
− KN

1− θ1 − θ2 − · · · − θN−1
= 0.

It causes the simultaneous equations with the following matrix representation.
K1 +KN K1 . . . K1

K2 K2 +KN . . . K2

...
...

. . .
...

KN−1 KN−1 . . . KN−1 +KN




θ1
θ2
...

θN−1

 =


K1

K2

...
KN−1


The solution to the simultaneous equations can be given as follows.

θ =

(
K1

K
,
K2

K
, ...,

KN

K

)
⊓⊔



Inference of Abstraction for Human-like Probabilistic Reasoning 7

3 Correctness

3.1 Bayesian networks

Let Xi (for i = 1, 2, 3) represent three binary random variables corresponding
to the propositions ‘it is raining outside’, ‘the grass is wet’, and ‘the outside
temperature is high’, respectively. The lower case of each random variable rep-
resents its realisation. What one needs in most cases is a posterior probability.
For example, p(x1|x3) can be represented as follows.

p(x1|x3) =
p(x1, x3)

p(x3)
=

∑
x2

p(x1, x2, x3)∑∑∑
x1,x2

p(x1, x2, x3)

This equation shows that the full joint distribution is required for the exact pos-
terior probability. The space complexity of the full joint distribution is O(2N )
where N is the number of propositions. Thus, the calculation of a posterior prob-
ability is generally intractable. [17] tackled this issue by incorporating the idea
of independence. For example, if X3 is assumed to be conditionally independent
of X2 given X1, the above equation can be simplified as follows (see Figure 2).

p(x1|x3) =

∑
x2

p(x3|x2, x1)p(x2|x1)p(x1)∑∑∑
x1,x2

p(x3|x2, x1)p(x2|x1)p(x1)
=

∑
x2

p(x3|x1)p(x2|x1)p(x1)∑∑∑
x1,x2

p(x3|x1)p(x2|x1)p(x1)

The assumption of independence reduces a space complexity. However, those
who strictly adhere to data should not accept the assumption. This is because
the assumption rarely holds in reality without a modification of original data or
resort to expert knowledge.

Now, let p(L,M,D;µ) be a generative reasoning model where L is built with
Xi (for i = 1, 2, 3). The posterior probability p(x1|x3) can be naively represented
as follows (see the leftmost graph in Figure 3).

p(x1|x3) =
p(x1, x3)

p(x3)
=

∑∑∑
x2,m,d p(x1, x2, x3,m, d)∑∑∑

x1,x2,m,d p(x1, x2, x3,m, d)

=

∑∑∑
x2,m,d p(x3|x2, x1,m, d)p(x2|x1,m, d)p(x1|m, d)p(m|d)p(d)∑∑∑

x1,x2,m,d p(x3|x2, x1,m, d)p(x2|x1,m, d)p(x1|m, d)p(m|d)p(d)

From Equations (1) and (2), the above equation can be simplified as follows (see
the second and third graphs).

=

∑∑∑
x2,m,d p(x3|m)p(x2|m)p(x1|m)p(m|d)p(d)∑∑∑

x1,x2,m,d p(x3|m)p(x2|m)p(x1|m)p(m|d)p(d)

Each datum has an equal probability, and it supports a single model, i.e.,
p(m|d) = 1 if m = m(d) and p(m|d) = 0 otherwise. Thus, the above equation
can be simplified as follows (see the rightmost graph).

=

∑∑∑
x2,d

p(x3|m(d))p(x2|m(d))p(x1|m(d))∑∑∑
x1,x2,d

p(x3|m(d))p(x2|m(d))p(x1|m(d))
=

∑
d p(x3|m(d))p(x1|m(d))∑

d p(x3|m(d))
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Fig. 2. The left can fit with any full joint distribution. The right can fit with any full
joint distribution with the conditional independence, p(X3|X2, X1) = p(X3|X1), that
rarely holds without data modification.

Fig. 3. The rightmost structure can be derived from the leftmost one using the proper-
ties of formal logic and the natural assumption that each data supports a single model.

The correctness of the outcome can be generally described as follows. Suppose
α ∈ L and ∆ ⊆ L for a generative reasoning model p(L,M,D;µ = 1). Since
1100 = 1 and 1001 = 0, we have

p(α|∆) =

∑
m p(α|m)p(∆|m)p(m)∑

m p(∆|m)p(m)
=

∑
m 1[[α]]m01−[[α]]m1[[∆]]m01−[[∆]]mp(m)∑

m 1[[∆]]m01−[[∆]]mp(m)

=

∑
m[[α]]m[[∆]]mp(m)∑

m[[∆]]mp(m)
=

∑
m∈[[α]]∩[[∆]] p(m)∑

m∈[[∆]] p(m)

Here, p(m) is a maximum likelihood estimate (MLE) as shown in Proposition
2. Therefore, the denominator (resp. numerator) is the sum of the MLEs of the
probabilities of the models satisfying ∆ (resp. α and ∆).

3.2 Nearest neighbour methods

The MNIST dataset contains 70,000 images (60,000 training and 10,000 test
images) of handwritten digits from 0 to 9. Each image comprises 28× 28(= 784)
pixels in width×height. Each pixel has a greyscale from 0 to 255 representing
pure black and white colours, respectively. We look at two machine learning
tasks on MNIST: digit prediction and image generation.

Digit prediction Consider a generative reasoning model p(Γ,M,D;µ) where Γ
is built with propositional symbols digiti(0 ≤ i ≤ 9) and pixelj(1 ≤ j ≤ 28×28)
(digi and pixj for short), where digiti represents that an image is of digit i, and
pixelj that the greyscale of the jth pixel of an image is above the threshold of
30. All the ten digit variables and 28×28 pixel variables can take the two states,
true of false. L thus has 210+28×28 models in total, and each of the models is a
value of the random variable M . Each training image is a value of the random
variable D. We use the following fact in the machine learning context.
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Proposition 3. Let p(Γ , M , D;µ ∈ (0.5, 1)) be a generative reasoning model,
and α ∈ Γ and ∆ ⊆ Γ .

p(α|∆) =

∑
d p(α|d)

∏
β∈∆ p(β|d)∑

d

∏
β∈∆ p(β|d)

Proof. For all γ ∈ Γ and data d, we have

p(γ|d) =
∑

m p(γ,m, d)

p(d)
=

∑
m p(γ|m)p(m|d)p(d)

p(d)

=
p(γ|m(d))���p(d)

�
��p(d)

= µ[[γ]]m(d)(1− µ)[[γ]]m(d) .

Since µ /∈ {0, 1}, p(γ|d) ̸= 0. We also have

p(α|∆) =

∑
d

∑
m p(α|m)

∏
β∈∆ p(β|m)p(m|d)p(d)∑

d

∑
m

∏
β∈∆ p(β|m)p(m|d)p(d)

=

∑
d p(α|m(d))

∏
β∈∆ p(β|m(d))∑

d

∏
β∈∆ p(β|m(d))

=

∑
d p(α|d)

∏
β∈∆ p(β|d)∑

d

∏
β∈∆ p(β|d)

.

Since µ /∈ {0, 1}, this does not cause division by zero. ⊓⊔

For digit prediction, we first look at the generative reasoning model p(Γ , M ,
D;µ → 1) where µ → 1 represents that µ approaches one, i.e., limµ→1. Given
all the 60k training images, we use the following instance of Proposition 3.

p(Digiti|Pixel1, ..., P ixel28×28) =

∑60k
k=1 p(Digiti|dk)

∏28×28
j=1 p(Pixelj |dk)∑60k

k=1

∏28×28
j=1 p(Pixelj |dk)

(5)

Here, we capitalised the propositional symbols so that it is clear that they are
not formulas being true, e.g., digiti = 1, but random variables without observed
values.

Example 2 (Digit prediction with p(L,M,D;µ → 1)). Let L be built with propo-
sitional symbols digiti(0 ≤ i ≤ 9) and pixelj(1 ≤ j ≤ 5 × 5). Let the following
two 5×5-pixel images with the purple borders be training images and the fol-
lowing one 5×5-pixel image with the blue border be a test image.

The label of each image is the digit of the image. Each 5×5-pixel training
image with its digit instantiates the random variable D. Equation (5) can then
be instantiated as follows, where Pixel = (Pixel1, ..., P ixel5×5).

p(Digi|Pixel) =

∑2
k=1 p(Digi|dk)

∏5×5
j=1 p(Pixj |dk)∑2

k=1

∏5×5
j=1 p(Pixj |dk)

=
p(Digi| )

∏5×5
j=1 p(Pixj | ) + p(Digi| )

∏5×5
j=1 p(Pixj | )∏5×5

j=1 p(Pixj | ) +
∏5×5

j=1 p(Pixj | )
(6)
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Fig. 4. Each cell of the grid is a model of L. The training and test images are shown
above and below the grid, respectively. The blue cells on the top-left grid show that
the prediction fails with µ = 1, since no training image is found in the models of the
test image. The light blue cells on the top-right grid show that the prediction succeeds
with µ → 1, since the limit expands the models of the test image until its best matched
training image is found. The bottom left and right grids illustrate µ ∈ (0.5, 1) and
µ = 0.5, respectively.

The map m from each training image to a model of L is obvious. We have the
following likelihoods, where j indexes pixels from left to right and top to bottom.

p(Digi = 1| ) =

{
µ if i = 2

1− µ otherwise
p(Digi = 1| ) =

{
µ if i = 7

1− µ otherwise

p(Pixj = 1| ) =

{
µ if j ∈ {1, 4–8, 10, 11, 15, 16, 18–22, 25}
1− µ otherwise

p(Pixj = 1| ) =

{
µ if j ∈ {1, 5–8, 10–13, 15–17, 19–22, 24, 25}
1− µ otherwise

From the test image, we have

pixelj =

{
1 if j ∈ {1, 4–8, 10–12, 14–16, 18–21, 25}
0 otherwise, i.e., j ∈ {2, 3, 9, 13, 17, 22–24}.

Let pixel, abbreviated to pix, denote (Pixel1 = pixel1, Pixel2 = pixel2, ...,
Pixel5×5 = pixel5×5). Equation (6) can then be instantiated as follows.

p(Digi = 1|pix) =
p(Digi = 1| )X1 + p(Digi = 1| )X2

X1 +X2

=



µ23(1− µ)3 + µ18(1− µ)8

µ22(1− µ)3 + µ18(1− µ)7
if i = 2 (7)

µ22(1− µ)4 + µ19(1− µ)7

µ22(1− µ)3 + µ18(1− µ)7
if i = 7 (8)

µ22(1− µ)4 + µ18(1− µ)8

µ22(1− µ)3 + µ18(1− µ)7
otherwise (9)
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Here, X1 and X2 were calculated as follows.

X1 =
∏5×5

j=1 p(Pixelj = pixelj | ) = µ22(1− µ)3

X2 =
∏5×5

j=1 p(Pixelj = pixelj | ) = µ18(1− µ)7

Given µ → 1, Equations (7), (8) and (9) thus turn out to be

lim
µ→1

µ5 + (1− µ)5

µ4 + (1− µ)4
=

1

1
= 1 if i = 2 (10)

lim
µ→1

µ4(1− µ) + µ(1− µ)4

µ4 + (1− µ)4
=

0

1
= 0 if i = 7 (11)

lim
µ→1

µ4(1− µ) + (1− µ)5

µ4 + (1− µ)4
=

0

1
= 0 otherwise. (12)

Figure 4 illustrates the digit prediction with different µ values. It shows a rea-
sonable role of the limit used in Equations (10), (11) and (12). The limit allows
us to cancel out (1−µ)3 from the equations. Here, (1−µ) represents a mismatch
between the test image and the training image, and thus, (1− µ)3 represents a
mismatch between the test image and the training image with the best match
for the test image. The limit thus subtracts the mismatch from all the training
images. As a result, the digit of the given image turns out to be the digit of its
best matched training image.

As shown in Equations (10), (11) and (12), the denominator turns out to
be the number of training images whose pixel values are maximally the same
as Pixel1, ..., P ixel28×28, the pixel values of a test image. Amongst them, the
numerator turns out to be the number of training images whose digit values are
the same as Digiti, the digit value of the test image. As a result, the above
conditional probability can be seen as an all-nearest neighbours method, which
generalises the k-nearest neighbours (kNN) method classifying test data by a
majority vote from the k nearest training data. This is a reasonable solution to
a well-known problem that it is often difficult to settle an appropriate value of k
for kNN methods. Moreover, the search for the nearest neighbours and the use
of them in prediction are given a unified computational account by Equation
(5).

In the machine learning context, we until now saw generative reasoning mod-
els p(L,M,D;µ → 1) as a sort of an all-nearest neighbours method. We will
next see generative reasoning models p(L,M,D;µ ∈ (0.5, 1)) as a smoothed or
weighted version of the all-nearest neighbours method.

Example 3 (Digit prediction with p(L,M,D;µ ∈ (0.5, 1)) (Continued)). Con-
sider the following five 5×5-pixel training images and one 5×5-pixel test image
with the labels of their digits.
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Fig. 5. The prediction fails with µ → 1, since the test image and its nearest training
image have different digits (see the medium blue cells). It can succeed with µ ∈ (0.5, 1),
since the models of the test image is expanded beyond its nearest training image for
its second and further nearest training images (see the light blue cells). The curves on
the right show the values of Expressions (13), (14) and (15).

Going through the same process we discussed in Example 2, we can now
instantiate Equation (5) as follows.

p(Digi = 1|pix) =



5µ(1− µ)

4(1− µ) + µ
if i=2 (13)

4(1− µ)2 + µ2

4(1− µ) + µ
if i=7 (14)

4(1− µ)2 + µ(1− µ)

4(1− µ) + µ
otherwise (15)

Given µ → 1, each equation turns out to be 0, 1 and 0, respectively, which are all
reasonable as the test image and its best matched training image have different
digits. However, given µ ∈ (0.5, 0.8), the probability of the digit being two is
equal or larger than the probability of the digit being seven (see the curves in
Figure 5). This is also reasonable as the test image and all of the relatively large
number of its second matched training images have the same digits. Here, the
qualitative effect of the single best match for the test image is suppressed by
the quantitative effect of the multiple second match. As shown in Figure 5, µ
functions to balance the effects of matching quality and quantity.

Figure 6 shows the learning curves generated by Equation (5) using the real
MNIST dataset. The baseline is given by the kNN method with different k
values. We use AUC, the area under ROC (receiver operating characteristic)
curve, for performance evaluation, since the generative reasoning model returns
probabilistic outputs. µ → 1 experiences overfitting, since the number of the
training images best matched for each test image is relatively too small to discard
anomalies. This is similar to the 1NN method where only one nearest neighbour
training image is used in prediction.
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Fig. 6. The learning curves of the generative reasoning model with different µ val-
ues. The baseline is given by the kNN method built using the ‘KNeighborsClassifier’
function [18] with default setting, i.e., the ‘uniform’ weights and ‘auto’ algorithm. The
training images were extracted from the beginning.

Image generation Figure 7 shows the images generated from each digit using
the following equation, for all j(1 ≤ j ≤ 28× 28).

p(Pixelj |Digiti) =

∑70k
k=1 p(Digiti|dk)p(Pixelj |dk)∑70k

k=1 p(Digiti|dk)

Each image can be seen as the average of all the images of the same digit. The
pixel value of each pixel is the average of the all 70k images. Figure 8 shows the
entire test images generated from their partial pixel values using the following
equation, for all j(I < j ≤ 28× 28).

p(Pixj |Pix1, ..., P ixI) =

∑60k
k=1 p(Pixj |dk)

∏I
i=1 p(Pixi|dk)∑60k

k=1

∏I
i=1 p(Pixi|dk)

Figure 8 shows that, given the upper black-background area extracted from a
test image, the lower white-background area was generated using all the 60k
training images. The top row shows that the images of two and six appear to
successfully generate the correct digits even with the 112 pixels having very few
clues about the digits. All the other images in the first row appear to be an
average training image, since no clue about the digits is included in the 112
pixel values. The fourth row shows that reasonable images are generated from
the 448 pixel values, approximately worth 57%, for all the ten test images.

4 Conclusions

Inspired by Bayesian approaches to brain function in neuroscience, we asked
how reasoning and learning can be given the same probabilistic account. We
simply modelled how data cause symbolic knowledge in terms of its satisfiability
in formal logic. The underlying idea is that reasoning is a process of deriving
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Fig. 7. The images of all the ten digits. We normalised p(Pixelj |Digiti) ∈ [0, 1] to the
grayscale between 0 (black) and 255 (white), for all pixels j (1 ≤ j ≤ 28× 28).

Fig. 8. The upper black-background area of each image in the ith row visualises the
first 4i×28 pixel values, approximately worth 14.3i%, of a test image. Given the partial
information on the test image, the lower masked white-background area is generated
using all the 60k training images. We inverted the colours of the generated pixel-values
for visibility. Each test image is the first image of the digit in the test dataset. We
again normalised the generated pixels.

symbolic knowledge from data by abstraction, i.e., selective ignorance. We em-
pirically showed that it not only generalises a sort of k-nearest neighbour method
but also can cancel the assumptions of independence and conditional indepen-
dence imposed by Bayesian networks and their variants.
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