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Abstract

Our lung epithelium is continuously exposed to a harsh external environment,
accumulating tissue damage, infections, and harmful mutations that may have the
potential to drive cancer. Activating mutations in KrasG12D are responsible for around
30% of lung cancers, with patients frequently diagnosed at later stages. At early
timepoints, KrasG12D mutant cells have been shown to be eliminated from adult
tissues such as the pancreas by a conserved process known as cell competition. In
the lung, it is not clear if cell competition has a role in shaping the pre-neoplastic lung
epithelium, or even how KrasG12D drives cancer in the distal lung epithelium.

Using a well-established model of tumorigenesis in mouse lungs, cell
competition was not found to regulate the lung epithelium at early timepoints post
KrasG12D expression. Instead, alveolar cells that express KrasG12D undergo
morphological changes that are reminiscent of transition cell state changes found in
fibrotic lung disease. We identify that KrasG12D expressing alveolar type Il cells
undergo cellular differentiation via Krt8+ cell states, becoming less spherical and more
squamous in morphology. Furthermore, pro-inflammatory recruitment of innate
immune cells to the alveoli further drives differentiation of non-transformed cells ex
vivo. We identify a positive correlation between the level of KrasG12D expressing
cells and Krt8 expression in vivo in early adenomatous tissue. Thus, KrasG12D
mutant cells in lung are subject to differentiation driven by conserved injury
remodelling pathways in the alveoli. Whether or not these cell state changes are pro-
tumorigenic or are an attempt to offset tumorigenesis is not yet clear, however, further
elucidation of processes identified in this thesis could provide a novel marker to

identify early stage disease for better detection and intervention.
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1 Introduction.



1.1. The Mammalian Lung.

1.1.1. Origins of the lung.

The mammalian lungs are a complex branched organ that ensures efficient
gaseous exchange of oxygen into the blood from the lungs, and carbon dioxide out of
the blood. In development, two primitive lung buds arise from the foregut endoderm
at 4-7 post-conception weeks (pcw) in human lungs, and between E9-E12 (embryonic
day) in mice (Fig 1.1Ai), which eventually give rise to the left and right lung lobes
(Nikoli¢ et al. 2018; Dean and Cheong 2023). From here, the buds undergo
successive branching events during the pseudoglandular stage of development (5-17
pcw; E12-15,Fig 1.1 Ai), giving rise to the core structure of the airway tree (Nikoli¢ et
al. 2018). By the end of this developmental stage, the preliminary airway tree is
formed of 20 generations of branches generated from distinct morphological
branching types referred to as domain branching, planar bifurcation, and orthogonal
bifurcation (Metzger et al. 2008; Mullassery and Smith 2015). Domain branching
arises when a new tip erupts from the stalk of an existing branch (Fig 1.1 B), setting
the primary architecture of tertiary and quaternary branches. Orthogonal and planar
bifurcation (Fig 1.1 C-D) is the process of tip branching either in the anterior-posterior
plane (planar; Fig 1.1C), or rotated 90° from the previous branching plane (orthogonal;
Fig 1.1D) (Mullassery and Smith 2015).

From 16-26 pcw and E15-E17, the epithelial tree is mostly established and the
canalicular stage of organogenesis occurs. Here, further branching occurs that
prepares for alveolar expansion and development, existing airways expand, and
epithelial cell fate determination via epithelial-mesenchymal interactions is initiated
(Nikoli¢ et al. 2018; Lim et al. 2023). Following this, sacculation begins at 26-36 pcw
in humans, and from E17.5 to the first few days of postnatal life in mice (Nikoli¢ et al.
2018; Akram et al. 2019). Primitive air sacs that formed at the later end of the
canalicular stage from distal lung tips begin to dilate and form early alveolar sacs
(Desai et al. 2014; Nikolic et al. 2018; Dean and Cheong 2023). At the end of
development resides the most important stage: alveologenesis, where the air sacs
formed in previous stages increase in surface area, migrate into position, and cluster
with other migrating cells to expand and septate (Akram et al. 2019). This stage
occurs from 36 pcw and continues to around 3 years after birth in humans, and begins

from birth to around postnatal day 20 in mice (Nikoli¢ et al. 2018).



Figure 1. 1 Branching morphogenesis programmes in the developing lung.

A) In situ staining of E-Cadherin in mouse embryonic lungs across the (i) embryonic
stage (embryonic day; E11-12), (ii) pseudoglandular stage (E12-E15), (iii) and
canalicular stage (E15-E16). Scale bar, 500 um. B) Domain branching refers to
branches that erupt from existing branches. C) Planar Bifurcation refers to division of
branches in the anterior-posterior plane. D) Orthogonal bifurcation occurs 90° from
the previous plane of branching tips. Adapted from (Metzger et al. 2008; Varner and
Nelson 2017).



1.1.2. Structure and comparative anatomy.

Developmental processes underpinning the broad patterning of the lung are
similar between mouse and humans. However, in adult tissues, differences between
mouse and human lungs are abundant and need to be considered in lung research.
Human lungs have five lobes: three right lobes and two left lobes. Branching in the
pattern described before can be seen for 23 to 26 generations in human lungs, before
they reach terminal bronchioles, and then respiratory airways; distinct niches in larger
mammals where small alveoli are interspersed between rows of cuboidal cells (Basil
and Morrisey 2020). Mice also possess five lung lobes, instead with one larger left
lobe, and four right lobes: the right superior, right middle, right inferior, and the
smallest, right accessory lobe which wraps around the bottom of the heart. Mouse
airways branch for 13 generations (Basil and Morrisey 2020) and terminate abruptly
in structures referred to as the bronchioalveolar ductal junction (BADJ).

In human lungs, distinct cricoid cartilage rings can be observed far into the
intrapulmonary airways where they provide structural support and prevent collapse.
In mice, these are only present around the trachea and extrapulmonary bronchi (Fig
1.2) (Danopoulos et al. 2019; Basil and Morrisey 2020). Submucosal glands are
present in the major airways of humans and mice, and function to regulate ion
concentration, and roles in host defence against invading pathogens (Ostedgaard et
al. 2020). In humans, sub-mucosal glands are present throughout most of the
extrapulmonary airways and the large-medium bronchioles (Fig 1.2), however mouse
submucosal glands are only found in the trachea (Innes and Dorin 2001). The
distribution of epithelial cells along the proximal-distal axis of the lung contains distinct
patches of epithelial cells that link structure to function. However, this is where mice
and humans greatly diverge. Due to this, the only semi-comparable regions of the
mouse and human lungs are the mouse trachea which is similar to large airways in

humans, and the alveoli.
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Figure 1. 2 Comparative anatomy of the respiratory tree between humans and

mice.

Structural differences between human and mice are important to understand and
consider in lung research. The most similar structures between both species are the
trachea: both are surrounded by cricoid cartilage (orange rings) and contain
submucosal glands (yellow circles). In humans, both cartilage and submucosal glands
are present deep into the conductive airways, towards the terminal bronchioles, then
only submucosal glands are present in the respiratory bronchioles. In mice, cartilage
is only present in the extrapulmonary bronchi, and not in the intrapulmonary airways.
Bronchioles are not comparable to humans as they possess different proportions of
cells, particularly club cells which are the dominant cell type in mice. Mouse airways
terminate abruptly at the bronchioalveolar ductal junction (BADJ), where terminal
airways open into alveolar space. Alveolar regions of human and mouse lung are
similar. Figure adapted from (Danopoulos et al. 2019).



1.1.3. Epithelial cell types of the adult lung.

1.1.3.1. Proximal airways.

The lung epithelium is continuous from the trachea down to the gas exchange
surface; therefore, regions are not distinctly isolated within the tissue as can be said
about other organs. However, the lung epithelium can be broken into approximate
regions based upon the expression and ratio of different cell types, at different levels
of the airways. Functionally the trachea forms the second line of defence after the
nasal passageway in both human and mouse lungs. Here, frequent cell types are the
basal cells, goblet cells, ciliated cells, tuft cells, pulmonary neuroendocrine cells, and
ionocytes (Fig 1.3A) (Meng et al. 2023).

Basal cells are small cuboidal cells that are secured to the basement
membrane of proximal airways and are identifiable by their expression of cytokeratin
5 and cytokeratin 14 (KRT5 and KRT14), in addition to transformation-related protein
63 (TRP63) (Rock et al. 2009; Watson et al. 2015). Basal cells have been shown to
be the principal stem cell of the airway as they are able to divide asymmetrically to
produce other differentiated luminal cells such as club cells, tuft cells, ionocytes, and
neuroendocrine cells (Rock et al. 2009; Watson et al. 2015; Davis and Wypych 2021).
In humans, basal cells are expressed along the entire airway epithelium down to the
terminal bronchioles, whereas in mice, basal cell expression is limited strictly to the
extrapulmonary bronchi and the trachea (Wu et al. 2022).

Club cells (previously known as Clara cells) are a secretory, non-ciliated cell
type that is present across the entire lung epithelium, and are one of the most
prevalent cell types found in the murine lung (Hewitt and Lloyd 2021). They are
typically characterised by expression of Scgb7a, and are known to be both self-
renewing cells, and progenitor cells for ciliated and goblet cells in the lung (Rawlins
et al. 2009), and have even been shown to replenish lost basal cells upon airway
injury (Tata et al. 2013).

Ciliated cells are an abundant columnar epithelial cell that project hair-like cilia
into the airway lumen. Organised beating of cilia moves mucous proximally in the
lungs as part of the mucociliary escalator (Davis and Wypych 2021). Ciliated cells
arise from Scgb1a1 positive club cells post birth, steadily increasing in population size
over the first 3 months of post-natal growth (Rawlins et al. 2009). Experimental
evidence suggests that ciliated cells also derive from basal cells as a result of
differentiation from club cell intermediates (Watson et al. 2015). In air liquid interface

culture, ciliated cells arise around 14 days post exposure to air, where mucociliary



action can be observed and quantified (Lee et al. 2020). Ciliated cells are
characterised by their expression of Foxj1 and acetylated tubulin, which are required
for cilia development and function respectively (Rawlins et al. 2009; Watson et al.
2015). In mice and in human airways, ciliated cells are present throughout, though in
mice, population numbers decrease compared to humans in intrapulmonary airways
(Fig 1.3 A-C).

Goblet cells are the mucous producing cells of the airways that work in
conjunction with ciliated cells during mucociliary clearance. Like ciliated cells, goblet
cells derive from club cells (Kim et al. 2019) and their presence can be highlighted by
staining for MUC5A and MUCS5B.Ciliated cell function is linked to protection against
inhaled particles and microbes, and their dysfunction is recorded in many respiratory
diseases like asthma, COPD and cystic fibrosis (Davis and Wypych 2021). In humans,
goblet cells are some of the most abundant secretory cell types in the proximal
airways, though this is not the case in mice where their appearance is more rare (Fig
1.3 C) (Hewitt and Lloyd 2021).

Aside from these main four cell types in the proximal lung, there are relatively
misunderstood and under-researched cell types that contribute to lung epithelial
function in mice and humans. Tuft cells are a poorly understood, rare chemosensory
cell, located primarily in the trachea, but can be found in the proximal airways of
rodents and humans (Davis and Wypych 2021; Hewitt and Lloyd 2021). They are
believed to play a role in mediating communication between neuronal and immune
pathways as they do in the gut (Davis and Wypych 2021). Pulmonary neuroendocrine
cells (PNECs) are another rare cell type in the lung, but their function is clearer than
tuft cells. They serve as resident epithelial-nerve cells that respond to airway signals
to stimulate immune responses (Davis and Wypych 2021). They can be identified
based on their expression of calcitonin gene-related peptide (CGRP) and are known
to secrete various chemicals that interact with epithelial and immune cell types. They
are present in airways as single cells or clustered masses known as neuroepithelial
bodies which are usually found adjacent to the BADJ (Noguchi et al. 2020). The final
rare cell type is the recently identified pulmonary ionocyte, which express high levels
of cystic fibrosis transmembrane conductance regulator gene (CFTR) (Meng et al.
2023). They were found to be present in 1-2% of cells isolated from human bronchial
epithelial cells and present in mouse tracheal epithelial cells (Plasschaert et al. 2018),
and are believed to play key roles in regulating lung fluid pH, viscosity and clearance

rate from the airways (Yuan et al. 2023).



1.1.3.2. Alveolar epithelial cells.

The alveolar epithelium comprises of two main cell types: the large, flat,
squamous epithelial type 1 pneumocytes (ATI), and the small cuboidal type 2
pneumocytes (ATIl; Fig 1.3 D). ATI cells make up the vital structure known as the
primary gas exchange surface. They make up the bulk of the alveolar tissue, covering
over 95% of the surface area of the alveoli (Chan and Liu 2022). ATI cells are closely
associated to the endothelial plexus on their basal side, in order to provide a short
distance for gas exchange (Meng et al. 2023). ATl cells on the other hand are nestled
between ATI cells and have been shown to present multiple apical surfaces into
alveolar spaces (Konkimalla et al. 2022). ATII cells cover only around 5% of the gas
exchange surface but make up around 60% of the cells in the lung alveoli (Wang et
al. 2007).The primary function of ATl cells under homeostasis is to produce surfactant
that maintains inflation of alveoli, however, there are now many articles that show a
role for ATII cells in restoring alveolar cell populations in response to injury and repair
(Desai et al. 2014; Xie et al. 2022), and that they exhibit remarkable migratory abilities
to replenish injured regions (Chioccioli et al. 2024).

There are several cell markers which can be utilised to distinguish ATl and
ATIl cells. ATI cells can be identified by high expression of Pdpn, Ager, Hopx, and
Cav1, whereas ATII cells can be identified broadly by expression of Pro-surfactant
protein C (Pro-SPC) and LAMP3 (Choi et al. 2020; Juul et al. 2023). These are

conserved markers in the lung epithelium of humans and mice.
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Figure 1. 3 Distribution of cell types define regions of the lung epithelium.

Lungs are patterned along the proximal-distal axis based on the expression of
numerous cell types that relate to the function and requirement of the anatomy. A)
Mice and humans have most similarity in the trachea and human large airways,
containing bulk of basal cell populations, more mucus producing cells, and ciliated
cells to form the mucociliary escalator. B, C) Divergence in patterning in medium-
small airways as mice do not possess basal cells here and club cells become the
predominant cell type in mice. (D) Epithelia at the alveolus are similar, except for the
scale of which cells form the gas exchange surface.



1.1.4. Homeostasis and lung stem cell populations.

Lungs have a relatively slow turnover rate of cells in homeostasis; however,
they are extremely responsive to epithelial injury and utilise resident epithelial cells to
restore the airway epithelium. As was alluded to in the previous section, basal cells
appear to be the hierarchical cell of the proximal airway