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Highlights 

 HT qPCR detected all 73 targeted ARGs, while metagenomics detected 491 ARGs 

 HT qPCR was more sensitive to low abundance genes, detecting all target ARGs. 

 Both methods enabled the spatiotemporal separation of hospital and WWTP 

resistomes. 

 Metagenomics provided contextual data making it more suitable for risk assessment. 

 HT qPCR permitted more sensitive quantification of clinically relevant AMR genes. 
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Graphical abstract 

 

Abstract  

Wastewater serves as an important reservoir of antimicrobial resistance (AMR), and its 

surveillance can provide insights into population-level trends in AMR to inform public health 

policy. This study compared two common high-throughput screening approaches, namely (i) 

high-throughput quantitative PCR (HT qPCR), targeting 73 antimicrobial resistance genes, 

and (ii) metagenomic sequencing. Weekly composite samples of wastewater influent were 

taken from 47 wastewater treatment plants (WWTPs) across Wales, as part of a national 

AMR surveillance programme, alongside 4 weeks of daily wastewater effluent samples from 

a large municipal hospital. Metagenomic analysis provided more comprehensive resistome 

coverage, detecting 545 genes compared to the targeted 73 genes by HT qPCR. It further 

provided contextual information critical to risk assessment (i.e. potential bacterial hosts). In 

contrast, HT qPCR exhibited higher sensitivity, quantifying all targeted genes including those 

of clinical relevance present at low abundance. When limited to the HT qPCR target genes, 

both methods were able to reflect the spatiotemporal dynamics of the complete metagenomic 

resistome, distinguishing that of the hospital and the WWTPs. Both approaches revealed 

correlations between resistome compositional shifts and environmental variables like 

ammonium wastewater concentration, though differed in their interpretation of some 

potential influencing factors. Overall, metagenomics provides more comprehensive resistome 
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profiling, while qPCR permits sensitive quantification of genes significant to clinical 

resistance. We highlight the importance of selecting appropriate methodologies aligned to 

surveillance aims to guide the development of effective wastewater-based AMR monitoring 

programmes. 

 

Keywords: ARG; Environmental reservoir; One Health approach; Wastewater-based 

epidemiology; WBE strategy.

1 Introduction 

Antimicrobial resistance (AMR) is a complex problem whose impact traverses human, 

animal and environmental sectors. Reflecting its multifactorial nature, a greater emphasis has 

been placed on addressing the problem under the One Health perspective, in recognition that 

these sectors are fundamentally interconnected (McEwen, Collignon 2018). Urban 

wastewater represents a significant source of AMR pollution in the environment, but can 

offer a relatively unbiased estimate of antimicrobial resistance genes (ARGs) circulating in 

the population (Lai, Muziasari et al. 2021a, Munk, Brinch et al. 2022). As such, it presents a 

valuable means by which spatiotemporal patterns of AMR can be monitored, avoiding the 

practical and legal issues associated with public health surveillance when sampling directly 

from the population (Pruden, Vikesland et al. 2021). Since the predominant fraction of 

wastewater microbiota is cannot be cultivated by standard methods (Steen, Crits-Christoph et 

al. 2019), AMR surveillance studies increasingly rely on cultivation-independent methods, 

primarily quantitative PCR (qPCR) and metagenomic sequencing. Using target-specific 

primers, qPCR permits the detection and quantification of individual ARGs with prior known 

sequences. High-throughput qPCR (HT-qPCR) enables the screening of hundreds of such 

genes in parallel and has been used in numerous studies of AMR prevalence in wastewater 

and effluent-receiving environments (Karkman, Johnson et al. 2016, Lai, Muziasari et al. 
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2021a). Metagenomics involves sequencing the genetic material from a sample. Subsequent 

alignment of DNA reads against a reference database provides a compositional overview of 

the ARGs within wastewater microbial communities (Brinch, Leekitcharoenphon et al. 2020, 

Munk, Brinch et al. 2022). 

While national wastewater monitoring can further our understanding of AMR, the value of 

the resultant data depends on aligning a surveillance program’s objective with the most 

suitable approach (Robins, Leonard et al. 2022, Huijbers, Flach et al. 2019). Metagenomics 

being non-targeted offers the distinct advantage of providing broader coverage of the ARG 

profile, as previous studies have demonstrated (Ferreira, Otani et al. 2023, Liu, X., Xiao et al. 

2019). In contrast, conventional qPCR is typically more sensitive to low abundance genes 

(Ferreira, Otani et al. 2023); however, the reduced volumes required for high throughput 

analysis can decrease the method’s sensitivity (Stedtfeld, Guo et al. 2018). Overall, studies 

offering a comprehensive comparison regarding the merits, drawbacks and degree of 

concordance between these approaches remain limited, especially in the context of 

wastewater monitoring. 

The current study aimed to discern nationwide spatial and temporal variations in the AMR 

profile of wastewater, and further assess the appropriateness of HT qPCR and NovaSeq 

metagenomics for different surveillance objectives. To this end, weekly composite influent 

samples were collected from 47 Welsh wastewater treatment plants (WWTPs) and further 

effluent samples were taken from a large municipal hospital (Figure 1). The two methods 

were compared for their gene coverage, their capacity to monitor high risk ARGs —defined 

as those associated with mobile genetic elements (MGEs), pathogenic hosts, and 

anthropogenic impacts—and their ability to capture shifts in the resistome composition in 

relation to environmental variables and the microbial community. 
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2 Material and methods 

2.1 Wastewater sample collection and processing 

Samples were collected as part of the Welsh Government sponsored wastewater-based public 

health surveillance programme which has been in operation since September 2020. The 

programme collects influent wastewater from 47 urban WWTPs within Wales, capturing ca. 

66% of population connected to an urban sewer system (Fig. 1). The sites are operated by 

either Dŵr Cymru/Welsh Water or Hafren Dyfrdwy Cyfyngedig water companies. All sites 

are equipped with either S320H Aquacell (Aquamatic Ltd., Manchester, UK) or Bühler 4011 

(Hach UK Ltd, Manchester, UK) refrigerated autosamplers, positioned after the primary inlet 

screen which take samples every 15 min to form a daily composite. Samples are taken daily 

from Monday-Friday and the chilled samples couriered each day to processing laboratories 

located in Bangor and Cardiff. All WWTP samples were processed within 24 h and combined 

into weekly composite samples. In addition, untreated effluent samples were collected daily 

(Tuesday-Friday) from the main drain exiting one large municipal hospital (Ysbyty 

Gwynedd; Fig. 1) using an ISCO refrigerated autosampler. Both the WWTP and hospital 

sampling campaigns were conducted over a span of four weeks from March to April 2022. 

Upon arrival at the processing laboratories, all samples (50 ml aliquots) were centrifuged at 

10,000 x g for 30 min at 4℃, and the supernatant discarded. Wastewater biomass pellets 

were then pooled for each of the individual 47 WWTPs to represent weekly composite 

samples and suspended in 2 ml sodium phosphate buffer (MP Biomedicals), whereas the 

daily hospital samples were resuspended directly in 1 ml sodium phosphate buffer and stored 

at -20°C until required. For details on the measurement of physicochemical and 

anthropogenic variables, please see the Supplementary Information.  
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2.2 Wastewater DNA extraction 

Genomic DNA was extracted from wastewater samples (daily hospital or weekly WWTPs) 

using a modified FastDNA™ SPIN Kit for Soil (MP biomedicals) protocol used routinely for 

environmental samples (see the Supplementary Information for details) (Webster, Newberry 

et al. 2003). DNA samples were then stored at -20°C until required. 

 

2.3 High-throughput qPCR 

A total of 96 primer sets were used in the HT qPCR assay, targeting ARGs (73 genes), MGEs 

(10 genes), pathogens (5 genes), and 8 other genes including those for metal and biocide 

resistance. These targets were chosen based on a preliminary screening with 384 genes and 

advice from the Specialist Antimicrobial Chemotherapy Unit at Public Health Wales to cover 

Figure 1 Map showing the 47 urban wastewater treatment plants and hospital used for sample 

collection. 
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a wide range of clinically relevant ARGs. They were also verified in the MEGAres v3 

database for comparison with the metagenomic dataset. The 16S rRNA gene was also 

quantified to normalise the gene abundances. Aliquots of the DNA extracts were sent to 

Resistomap Oy (Helsinki, Finland) for gene quantification using the SmartChip™ Real-Time 

PCR system (TakaraBio, CA, USA). The qPCR cycling conditions and raw data processing 

have been previously described (Lai, Muziasari et al. 2021b, Muziasari, Pitkanen et al. 2017). 

Briefly, an initial 10 min denaturation step at 95 °C was followed by 40 cycles of 30 s 

denaturation at 95 °C and 30 s annealing at 60 °C. All primer sets underwent melting curve 

analysis; amplicons with non-specific melting curves and multiple peaks were discarded from 

further analysis. A threshold cycle value (CT) of 27 was chosen as the limit of detection (Lai, 

Muziasari et al. 2021b, Muziasari, Pitkanen et al. 2017). Each DNA sample was analysed in 

triplicate; given a gene was detected in at least two technical replicates, the mean CT was 

calculated.  

 

2.4 Metagenomic library construction and sequencing 

Extracted DNA samples were diluted 1/10 in RSB resuspension buffer (Illumina) and 

quantified using a Qubit 4 Fluorometer with a Qubit High Sensitivity dsDNA Assay Kit 

(ThermoFisher Scientific). Library preparation was then carried out using the standard input 

workflow on 200 ng DNA per sample using the Illumina DNA PCR-Free Prep, Tagmentation 

Kit and IDT for Illumina DNA/RNA UD Indexes (Sets A-D) as described in the Illumina 

reference guide. Dual-indexed paired-end single-stranded DNA Libraries (450 bp average 

library size) were then quantified using the CollibriTM Library Quantification kit 

(ThermoFisher Scientific) on a LightCycler® 96 Instrument (Roche Diagnostics Ltd.), 

adjusted to 2.0 nM and pooled. The pooled library was further checked by sequencing on a 

MiSeq 300 cycle cartridge (Illumina MiSeq System) and the library adjusted to 1.5 nm based 
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on sequence reads before deep sequencing on an Illumina NovaSeq 6000 Sequencing System 

(paired end 2 x 150 bp flowcell) with NovaSeq S4 cartridge v1.5 (300 cycles) and 1% PhiX 

control at Wales Gene Park (www.walesgenepark.cardiff.ac.uk/). 

 

2.5 Bioinformatic analysis of sequence data 

Metagenomic sequence reads were converted to FASTQ files from base call files (BCL), 

demultiplexed and adapter trimmed using Illumina bcl2fastq2 conversion software v2.20. 

Sequence reads were quality filtered using fastp v 0.20 and checked with fastqc v 0.11.8 and 

compiled into a single report using MultiQC v1.9 (Ewels, Magnusson et al. 2016). Reads 

representing host (human) DNA were removed from all sequence files by mapping against 

the human genome using Samtools v 1.15.1 and Bowtie v2.3.5. High quality non host 

sequence reads were analysed for ARGs using the AMR++ v3.05 bioinformatic pipeline 

implemented with NextFlow v21.10. Essentially, reads were aligned to the MEGARes v3 

database and ARGs with at least 80% nucleotide coverage were considered present. ARGs 

requiring SNP confirmation were verified by the SNP confirmation tool. For taxonomic 

classification reads were also mapped against Kraken2 v2.1.2 (Wood, Lu et al. 2019).  

 

2.6 Statistical analysis 

ARG abundances were normalised by the recommended methods for each approach. The 

metagenomic data was expressed as Fragments Per Kilobase reference per Million bacterial 

fragments (Munk, Brinch et al. 2022). The HT qPCR data was expressed as ARG copy 

number /16S rRNA gene copy number (Lai, Muziasari et al. 2021b, Muziasari, Pitkanen et al. 

2017). All downstream statistical analyses and figure design was performed on R 4.2.1 (R 

Core Team 2022) using the vegan, phyloseq, ggplot2 and igraph packages. ARG richness was 

calculated on count matrices rarefied to the lowest sampling depth (12132 reads). The 
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number of unique ARGs was calculated using non-rarefied count data. NMDS and dbRDA 

were calculated based on Bray–Curtis dissimilarity matrices of Hellinger-transformed ARG 

relative abundances. The statistical difference between two groups was determined by a 

Welch's two-sample t test, a value of p < 0.05 was considered significant. Network analysis 

was performed on Spearman’s rank correlation coefficient values between the relative 

abundances of ARGs and bacteria genera. Strong, significant correlations (ρ > 0.7, p < 0.01) 

were visualised on Gephi 0.10.1 (Bastian, Heymann et al. 2009). Wastewater flow estimates 

used as an environmental variable in the diversity analyses was calculated using the 

methodology outlined by (Wilde, Perry et al. 2022). 

a unique ARG in HT qPCR refers to each targeted gene individually, while in metagenomics, 

unique ARGs are defined at the gene group level where sequences are clustered based on 

similarity. 
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3 Results 

3.1  Influence of high throughput approaches on quantifying the number and abundance of 

ARGs in wastewater 

For the NovaSeq metagenomic data analysis, the AMR++ v3.0 pipeline assigned an average 

252,599 reads per sample to resistance genes, 79% of which indicated resistance against 

antimicrobials. Aggregated by group, an average of 181 and 227 individual ARGs were 

observed in WWTP influent and hospital effluent, respectively (Figure 2.A). In total, 491 

unique ARGs were detected across all samples, 61 of which were also detected by HT qPCR 

(Figure 2.C). A unique ARG in HT qPCR refers to each individual target gene, while in 

metagenomics, they are defined as uniquely named ARGs at the “group” level of the 

MEGARes classification scheme  (Bonin, Doster et al. 2023). Though HT qPCR was limited 

to the 73 target ARGs, both methods concurred in detecting significantly higher richness in 

the hospital effluent samples (Welch’s t test: p < 0.01 for both datasets). Despite this, 

 

Figure 2 (A) Box plots displaying the distribution of ARG richness as determined by HT qPCR and 

metagenomics (note different y-axis scales) across all hospital and WWTP samples. (B) Venn 

diagrams showing the number of unique ARGs detected in hospital vs WWTP wastewater as 

determined by HT qPCR and metagenomics. (C) Venn diagram showing the total number of unique 

ARGs detected in all wastewater samples by HT qPCR vs metagenomics. Note that only 73 ARGs 

were targeted by HT qPCR. 
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metagenomic analysis detected a higher number of unique ARGs in the WWTP influent than 

the hospital effluent (Figure 2.B), likely on account of the greater number of WWTP 

sampling sites. 

The total relative abundance of ARGs was significantly lower in the WWTP influent samples 

compared to the hospital effluent, whether analysing either dataset (Welch’s t-test p < 0.01). 

ARGs for macrolide-lincosamide-streptogramin (MLS), tetracycline, beta lactam and 

aminoglycoside antimicrobial classes were dominant for both approaches (Figure 3.A and B). 

They were also concordant in observing a significantly greater relative abundance of 

glycopeptide resistant ARGs in the hospital effluent (Welch’s t-test p < 0.01). However, the 

metagenomic approach further revealed high abundances of ARGs for rifampicin (rifampin) 

and elfamycin antimicrobial classes, which were not targeted by HT qPCR. 

 

Within the scope of the 73 HT qPCR target ARGs, only mecA was undetected across the 

wastewater samples by HT qPCR (Figure 2.B). In comparison, metagenomics detected only 

Figure 3 Normalised relative abundances of (A) the targeted group of ARGs, as determined by HT 

qPCR and metagenomics and (B) the ARG classes in the full metagenomic dataset, averaged across 

all WWTPs and all timepoints for both wastewater sources.  
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54 and 58 of the HT qPCR target ARGs in WWTP influent and hospital effluent, 

respectively. Amongst those undetected were high risk ARGs, such as mdtL, blaNDM and 

blaVIM (Zhang, A., Gaston et al. 2021). Detection frequencies remained consistently low 

across the dataset, such that only 35 of the 73 targeted ARGs were observed in at least 20% 

of wastewater samples overall. Of these, 22 ARGs exhibited high correlations between the 

two analysis approaches (Spearman’s correlation coefficient r > 0.7, p < 0.01; Fig. S1). 

Consequently, when comparing ARG profiles (Figure 3.A), while certain genes (such as 

ermB and mrsE, tet39 and tetM) exhibited similarly high relative abundances and strong 

positive relationships across both approaches, others differed significantly. ARGs including 

aadA7, qepA and vanA, were observed at higher relative abundances by HT qPCR, whereas 

tetW, blaCTX and vanRA were more abundant by metagenomic analysis. 

Between sample types, the approaches were congruent in finding a significant increase in the 

relative abundance of msrE and tet39 in the WWTP influent compared to the hospital 

effluent, and converse was seen for ermB. The metagenomic approach further found a 

significantly greater relative abundance of ctx in the WWTP samples, and vanRA in the 

hospital samples. HT qPCR, in contrast, detected a significantly greater relative abundance of 

aadA7 in the hospital samples, and vanA in the WWTP samples. 

 

3.2 Influence of high throughput approaches on evaluating ARG compositional shifts in 

wastewater 

NDMS was used to compare ARG compositions in the hospital and WWTP wastewater 

samples over time, revealing resistomes to cluster distinctly by site, whether profiled by 

either approach (Figure 4) (PERMANOVA p < 0.01 for all comparisons). This clustering was 

influenced by dispersion for the metagenomic dataset, though only when limited to the 

targeted ARG profile (PERMDISP p < 0.01). Assessing the effect of temporal change, 
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Figure 4 NMDS ordination plots of Bray–Curtis dissimilarity matrices based on Hellinger-

transformed ARG relative abundances, showing ARG composition differences over time and between 

sampling Hospital and WWTP sampling sites. Determined by (A) HT qPCR and metagenomics based 

on the (B) qPCR targeted ARGs and (C) full dataset.  

sampling week displayed no discernible impact on the ARG composition in the WWTP 

influent samples. In contrast, assessment of the NMDS plots indicated an apparent 

compositional shift across the month in the hospital effluent samples. The temporal variation 

was most apparent for the metagenomic analysis on the targeted dataset, with genes such as 

tetO and tetS increasing in relative abundance in the latter half of the month (Fig. S2). 

 

 

 

 

3.3 Influence of high throughput approaches on determining the impact of environmental 

and anthropogenic factors on the wastewater resistome 

Assessing the impact of sampling site on the compositional profile of the WWTP influent 

resistome, NMDS analysis found composition to cluster by geographical region (Fig. S3), as 

defined in Figure 1 (PERMANOVA p < 0.01 for all comparisons). This effect was explained, 

to some degree, by dispersion (PERMDISP p < 0.01). Of the three regions, the resistomes 

from North and South Wales were the most distinct from one another. The total abundance of 

ARGs relative to the 16S rRNA gene copy number also differed by sampling site (Fig. S4), 

such that the average total relative abundance of ARGs, as determined using the HT qPCR 

                  



15 

 

dataset, was significantly lower in South Wales compared to North Wales (Welch’s t-test p < 

0.01).  

Distance-based redundancy analysis (dbRDA) revealed that a significant, albeit modest, 

overall explanatory effect was issued by the anthropogenic and environmental variables on 

the WWTP influent resistome, with an adjusted R2 of 0.285 (p < 0.01) and 0.207 (p < 0.01) 

for HT qPCR and metagenomics, respectively (Figure 5). The two approaches concordantly 

found the environmental variables to explain a greater percentage of variation in the ARG 

profile, with ammonium having contributed the largest influence (R2 = 0. 182, p < 0.01 and 

R2 = 0.102 p < 0.01 for HT qPCR and metagenomics, respectively). There were, however, 

some minor discrepancies between results concerning the impact of certain variables. For 

example, the percentage of variation explained by electrical conductivity was found to be 

significant by metagenomic analysis on the full dataset (Table S1). This significance was, 

however, not observed in the analysis of the HT qPCR data (p = 0. 359). Regarding the 

anthropogenic variables, while their individual influences were significant across the three 

datasets, the percentage of variation explained by each variable was only low (Table S1). 

3.4 Influence of high throughput approaches on the relationship of ARGs and bacterial 

genera 

The composition of the microbial community reflected that of the resistome, being distinct 

between the WWTP and hospital wastewater (PERMANOVA p < 0.01, PERMDISP p > 

0.05) and shifting over time in the latter of the two sample types (Fig. S5). Pseudomonadota 

the dominant phylum across all samples, boasting the three most abundant genera, 

Acidovorax, Acinetobacter and Pseudomonas (Fig. S6). 

As an indication for potential host bacteria, co-occurrence patterns between bacterial genera 

and ARGs were explored by network analysis, based on strong (ρ > 0.7) and significant (p < 

0.01) correlations (Figure 6. A and B). Of the ARGs explored, those indicating resistance to 
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tetracyclines displayed the highest number of correlations with different genera. For example, 

both approaches found tetO and tetW to exhibit especially strong relationships (ρ > 0.9) with 

two highly abundant Bacillota genera, Blautia and Faecalibacterium. Metagenomics 

identified further correlations which HT qPCR did not, including relationships between 

Pseudomonas and the MLS ARGs mefA and msrD (Figure 5.B). However, it is also worth 

noting that the majority of abundant ARGs did not display any significant correlations with 

any bacterial genera, whether analysing the dataset from either approach. 

 
Figure 5 Distance-based redundancy analysis (dbRDA) showing the influence of environmental and 

anthropogenic variables on the ARG profile in WWTP influent samples. Determined by (A) HT 

qPCR and metagenomics based on the (B) qPCR targeted ARGs and (C) full dataset. 

                  



17 

 

 

  

Figure 6 Network analysis showing the relationships between the top 40 most abundant ARGs and 

the top 20 most abundant bacterial genera, determined by (A) HT qPCR and (B) Metagenomics. 

Connections represent strong, significant correlations (Spearman’s correlation coefficient ρ > 0.7, p < 

0.01). 
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4 Discussion 

AMR wastewater surveillance programs have great potential to monitor emerging health 

threats, inform public health policy development and support future research. The current 

study presents a comprehensive comparison of two high throughput approaches which can be 

applied in such initiatives, as summarised in Table 1.  

The results demonstrate that the key factor underpinning the differences between the two 

methodologies is their distinction in being targeted and untargeted approaches. HT qPCR 

demonstrated higher sensitivity, detecting all target ARGs, including those present at low 

abundance. Amongst those were the mobile metallo-β-lactamase, blaNDM and the multi-drug 

resistance gene, mdtL, both recognised to pose a high risk to human health (Zhang, A., 

Gaston et al. 2021). In the context of wastewater surveillance, the ability of HT qPCR to 

monitor genes at low abundances would aid the early detection of outbreaks involving 

established high-risk ARGs and ensures the continuity of data for routine monitoring. 

Previous studies on wastewater and manure also found conventional PCR better distinguished 

smaller deviations in ARG relative abundance patterns (Ferreira, Otani et al. 2023, Crossette, 

Gumm et al. 2021). However, these studies only assessed a limited number of ARGs and thus 

could not compare this quality at a compositional level. Here, the results demonstrated that 

HT qPCR, with enough targets, can effectively reflect the compositional dynamics of the full 

ARG profile seen by metagenomics. Both approaches distinguished the wastewater influent 

resistome from that of the hospital effluent. When limited to the same target ARGs, both also 

captured temporal shifts in the hospital effluent resistome, whereas this effect was slightly 

obscured when the metagenomic data was broadened to the full dataset. This underlines the 

importance of determining how best to handle the volume of data generated by metagenomic 

sequencing. It requires the considered design of appropriate analytical strategies to ensure the 
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extraction of meaningful results. The data generated by HT qPCR, by comparison, requires a 

comparatively lower level of expertise to interpret. 

On the other hand, given HT qPCR was limited to the predetermined set of 73 genes, 

metagenomics better captured the diversity within the wastewater resistome. It's worth noting 

that each qPCR SmartChip has the capacity to measure up to 384 genes; however, a higher 

number of targets translates to fewer samples which can be analysed on each chip. This 

greatly increases the cost per sample, making it prohibitive to large scale routine surveillance. 

Unrestrained to predefined targets, metagenomics is thus better suited to evaluating the 

overall ARG burden. This could apply to, for example, studies aiming to assess the impact of 

wastewater release on the diversity and composition of the environmental resistome. It should 

be acknowledged that gene coverage was also restricted for the metagenomic analysis, 

though to a far lesser degree, constrained within the scope of the MEGARes database. 

However, new bioinformatic tools, such as machine learning models (Behling, Wilson et al. 

2023) could allow the dataset to be mined for novel ARGs. Furthermore, upon the future 

discovery of novel ARGs, the data could undergo retrospective analysis to reveal historical 

trends and evolutionary insights. PCR primer specificity has the additional disadvantage of 

imposing a bias in ARG quantification (Wei, Feng et al. 2018). This may be further 

confounded by the running of all PCR reactions in parallel, as some primers might not have 

performed under optimal conditions. Though to what degree this impacts the accuracy of 

quantification has not been well explored. 

Neither method found the composition of the WWTP influent resistome to vary considerably 

over the course of the sampling period (ca. one month). In concordance, past longitudinal 

studies investigating the resistome of influent and activated sludge found the composition to 

remain relatively stable over time, subject to little seasonal change (Zheng, Huyan et al. 2020, 

Brinch, Leekitcharoenphon et al. 2020). However, at the level of individual ARGs, temporal 
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 HT qPCR Metagenomics 

Sensitivity + High sensitivity 

- Lower sensitivity 

- Requires spike-ins to establish LOD 
+ Can be more sensitive to divergent 
genes 

Bioinformatic 
requirements 

+ Data storage and analysis require     
minimal computational resources 
+ Data analysis requires a lower 
bioinformatics skill level 

- Datasets and analysis require high (TB) 
storage and computational power 
- Data analysis requires high 
bioinformatic expertise 

Quantification 

▫ Mostly used to report relative 
abundance data 
▫ Absolute abundance can be derived 
from normalisation to the 16S rRNA 
gene, but introduces bias 
+ The standard curve method permits 
absolute quantification  

▫ Produces relative abundance data 
- Auxiliary quantification of the 16S rRNA 
gene allows derivation of absolute 
abundance, but introduces bias 
- Internal standard spike-ins enables 
derivation of absolute abundance 

Cost 
+ Lower cost per sample 
- The cost per sample increase with the 
number of target ARGs 

- Higher cost per sample, but is falling 
with technological advancements 
- Higher read coverage increases cost 
+ Lower cost per ARG  
+ Higher cost effectiveness when 
monitoring large sample numbers 

Turnaround 
time 

▫ Sample preparation: DNA extraction 
and PCR setup 
+ Can process many samples in parallel 
+ Data analysis is relatively simple and 
fast  

▫ Sample preparation: DNA extraction, 
library construction and sequencing 
preparation 
+ Can sequence many samples in 
parallel 
- Data analysis requires extensive 
bioinformatic processing 

Quantification 
bias 

- Primer specificity imposes biases 
- Simultaneous qPCR reactions may 
restrict amplification optimisation, 
introducing bias 
- PCR inhibitors may impose bias 

- Cluster amplification may introduce bias 
- Bioinformatic workflows can introduce 
bias, e.g., choice of database 

Coverage 
- ARG coverage limited to the number of 
genes targeted 

+ Nontargeted, provides a 
comprehensive profile of the resistome 

Novel gene 
discovery 

- Extremely limited capability for novel 
gene discovery 

+ Methods like deepARG and fARGene 
can identify novel ARGs directly from 
sequence reads 
+ Existing datasets can be reanalysed for 
later discovered ARGs 

Contextual 
information 

- Can target specific taxa and other 
genes of interest (i.e. MGEs) but overall 
provides little contextual information 

+ Provides taxonomic data and can 
identify potential host bacteria through 
MAG analysis 
+ Identification of neighbouring genes 
can provide contextual information, e.g. 
mobility potential 

Retrospective 
analysis 

- Incapable 
+ Datasets can be reanalysed with 
updated tools and databases 

Table 1 A table comparing the advantages (Green / +), disadvantages (Red / -) and marginal 

differences (Amber / ▫) of HT qPCR and metagenomics for monitoring AMR in wastewater.  
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dynamics can become more apparent (Joseph, Battaglia et al. 2019, Sims, Kannan et al. 

2023). Additionally, while the current study only compared ARG relative abundances 

between methods, quantifying absolute abundances is important for assessing true temporal 

and spatial ARG variations. Absolute abundances can be derived from the 16S rRNA gene 

copy number, though this can only be considered a rough estimate. Quantitative 

metagenomics is possible with the use of internal standard spike-ins (Crossette, Gumm et al. 

2021); however, this introduces bias. HT qPCR analysis can achieve more accurate 

quantification, especially with the inclusion of standard curves for each ARG, albeit at the 

expense of reduced throughput. Nevertheless, when considered in conjunction with its greater 

sensitivity, HT qPCR presents as the more suitable approach for surveillance programs 

demanding precise quantification. This might include those aiming to compare ARG 

abundances between populations or environments. For example, HT qPCR was the choice 

method to compare the ARGs abundances in wastewater against clinical levels (Parnanen, 

Narciso-da-Rocha et al. 2019). Regarding clinical wastewater, both methods found the 

hospital effluent to harbour a substantially richer and more abundant resistome than that of 

the WWTP influent. Although this is unsurprising, existing literature provides no strong 

consensus on the impact of hospital wastewater as a source of ARGs in WWTP influent 

(Buelow, Bayjanov et al. 2018, Lepper, Perry et al. 2023, Sims, Kannan et al. 2023), 

supporting the need for AMR monitoring programs involving both hospitals and WWTPs.  

 

Concerning the spatial dynamics of wastewater influent resistome, both approaches found a 

modest effect of geographic region on composition, with it being most distinct between North 

and South Wales. Both methods attributed a greater percentage of compositional variation to 

environmental variables compared to anthropogenic variables, with ammonium and 

phosphorus concentrations issuing the strongest influence. Acting as nutritional sources, this 
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may suggest an indirect impact through their influence on the microbial community (Guo, Ni 

et al. 2017). There was otherwise some discrepancy between methods as to which variables 

explained a greater degree of variance. Therefore, despite having revealed similar 

spatiotemporal dynamics in the resistome composition, differences in ARGs relative 

abundances did affect the interpretation of influencing factors. These results contrast the 

conclusions drawn by Liu, Xiao (2019), who suggested the impact of the two approaches was 

negligible when profiling reservoir water. However, they only found one of the tested 

variables, pH, to correlate with the ARG profile. Determining the most suitable method for 

investigating potential selective agents depends on the insights desired from the data. 

Correlating variables against ARG abundances would benefit from the sensitive 

quantification achieved by HT qPCR, whereas metagenomics could provide genetic context 

for underlying mechanisms, as discussed below. 

Given human pathogens present a greater risk than commensal or environmental bacteria, 

ARG host identification should be considered a priority of AMR surveillance. Though HT 

qPCR can quantify targeted taxa, metagenomics offers comprehensive microbial community 

data, as used in this study. Correlation analysis linked tetracycline resistance genes to the 

highest number bacteria genera, found concurrently by both approaches. For example, tetW 

and tetO correlated with the Firmicutes genera, Blautia and Faecalibacterium, identified as 

potential hosts in past studies (Li, Yang et al. 2015, Liu, L., Zhang et al. 2022). The 

metagenomic data network also revealed relationships between bacteria genera and ARGs 

outside the HT qPCR target set. But otherwise, there was a strong degree of congruence 

between the results, indicating that the choice of method would not greatly affect the 

prediction of potential host bacteria by correlation analysis. However, it is important to note 

that such correlations cannot be considered causative without further validation. This is only 

feasible when working with metagenomic data, as it can produce composite contig 
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assemblies or metagenome-assembled genomes (MAGs). Through their co-location to 

phylogenetic markers, ARGs can be linked to specific taxa (Zhang, Z., Zhang et al. 2022). 

Though it must be noted that as composite assemblies, they are not reflective of a true 

singular microbe, and many ARGs carried on MGEs cannot be assigned to a host.  

Nonetheless, the assembly of metagenomic data can be applied towards associating ARGs 

with host bacteria, MGEs and co-located resistance genes. As such, metagenomic data is 

favourable for delivering on objectives such as human health risk evaluation and evolutionary 

analysis. 

Beyond the technical differences explored here, the practical requirements must also be 

considered when deciding on an appropriate monitoring strategy. In terms of the expertise 

required, the increasing availability of commercial kits and companies offering services in 

metagenomics and HT qPCR has made both methods more accessible to researchers. 

Concerning bioinformatic analysis, HT qPCR data benefits from requiring lower 

computational power and bioinformatic expertise, and quicker turnaround times. However, 

the advancements in user-friendly pipelines are lowering the barrier for metagenomic 

analysis. HT qPCR currently costs less per sample, as explored by Liu, X., Xiao et al. (2019). 

That said, metagenomics might be considered more cost effective given the amount of data 

generated, and as advancements in sequencing technologies continue, the costs are likely to 

improve.  

 

5 Conclusion 

This study is the first to compare the use of HT qPCR and metagenomics for AMR 

monitoring in wastewater at a national scale. It provides valuable guidance for researchers 

seeking to design effective AMR wastewater surveillance strategies. Metagenomics permitted 

a comprehensive overview of the resistome and has the potential to provide critical 

                  



24 

 

contextual information for ARG risk evaluation. Together with exhibiting greater sensitivity, 

HT qPCR was shown capable of reflecting the compositional spatiotemporal dynamics of the 

full ARG profile. Nonetheless, differences in sensitivity and coverage between 

methodologies did impact the ARGs detected and their relative abundances, affecting how 

the data was interpreted regarding influencing factors. The insights gained into the 

capabilities and resource requirements of each method will help fashion surveillance efforts 

towards specific goals, strengthening the impact of future AMR monitoring initiatives.  
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