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Abstract. Truth discovery networks evaluate the trustworthiness of sources (e.g.,
websites) and their claims (e.g., the severity of a virus). Intuitively, the more trust-
worthy the sources of a claim, the more believable the claim and vice versa. Single-
ton noted that bipolar abstract argumentation could be a natural way to reason about
these networks. We explain how this idea can be implemented naturally by quanti-
tative bipolar argumentation frameworks (QBAFs) that we call TD-QBAFs. While
most applications of QBAFs result in a (nearly) acyclic structure, TD-QBAFs have
bi-directional edges and can feature complex cycles. The stability (convergence be-
haviour) of QBAFs in cyclic graphs is currently not well understood. While patho-
logical examples of divergent QBAFs have been constructed, the problems seemed
unlikely to occur in practice. However, convergence problems seem to be the rule
rather than the exception for TD-QBAFs. We demonstrate how common QBAF se-
mantics can fail to converge for very simple TD-QBAFs and discuss some of the
potential causes. While this shows limitations of existing semantics, we also dis-
cuss how some previously proposed ideas can be used to mitigate the problems and
demonstrate their effectiveness empirically.
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1. Introduction

There is an increasing amount of information on the web and different actors make vari-
ous claims which are often incompatible. Low-quality information sources may mistak-
enly provide erroneous data for topics on which they lack expertise, or malicious sources
may try to deliberately deceive. Thus, trying to establish the true values associated to
various objects, and working out which sources are trustworthy becomes a major con-
cern. These two things are clearly inter-related. The more trustworthy a source is, the
more believable its claims are. Conversely, a source that claims believable facts should
be judged to be more trustworthy. Truth discovery [GH11] is concerned with rating and
ranking a set of sources and facts given, as input, a set of claims reported by the sources.
Application areas include real-time traffic navigation [DSH+19], drug side-effect dis-
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covery [MMX+17], and social sensing [ZHWH16]. Algorithms for truth discovery have
been based, for example, on iterative methods [PR10], neural networks [KT20,MAW17],
and voting [EEK23].

Singleton and Booth [SB22,Sin23] recently presented a general framework to com-
pare different truth discovery approaches formally. Its central ingredient is a truth discov-
ery operator that takes as input any truth discovery network (a graph-theoretic represen-
tation of the sources and claims) and provides as output an assignment of real numbers
to the sources (intuitively interpreted as trust scores) and to the possible claims (believ-
ability scores). Singleton [Sin20] noticed a possible way in which truth discovery net-
works can be interpreted as bipolar argumentation frameworks. Since the acceptability
of a claim lends support to the statement “s is trustworthy”, and vice versa, for every
source s that makes that claim, sources and claims could be represented as arguments
that support each other, while contradicting claims attack each other.

Singleton’s idea can be naturally implemented by quantitative bipolar argumenta-
tion frameworks (QBAFs) [BRT18] that we call TD-QBAFs. General QBAFs have vari-
ous applications, but their graphical structure is often acyclic due to a clear causal rela-
tionship between the arguments. Examples include product recommendation [RCT18],
review aggregation [CRT19], stance aggregation [KT19] and explaining neural networks
[APT23]. One notable exception that features cycles are the PageRank argumentation
frameworks (PRAFs) studied in [ABRT20]. PRAFs can be used to explain the PageRank
of websites. The problem setting bears some resemblance to our setting, but whereas ar-
guments (sources) in PRAFs can only support each other, arguments (sources and claims)
in TD-QBAFs can both support and attack each other. To the best of our knowledge, TD-
QBAFs are the first application of QBAFs that features complex cycles that contain both
attack and support edges. TD-QBAFs are therefore not only an interesting application of
QBAFs but also an ideal playground to study the stability of QBAF semantics.

In this paper, we take a somewhat unusual approach and start the investigation of
TD-QBAFs empirically. The reason is that when we started studying TD-QBAFs, we
noticed that common semantics fail to converge for a large number of examples. Since
stability is at the core of computing trust values/rankings with TD-QBAFs, our focus in
this paper will be on better understanding the problems and how they can be resolved.
However, to evidence the practical usefulness of TD-QBAFs, we will also make some
comments about formal properties and demonstrate that QBAFs will correctly identify
the true claims if they are identifiable (there is a sufficient number of correct sources).

2. Background

2.1. Truth Discovery Networks (TDNs)

We start by revisiting the idea of a truth discovery network (TDN) from [SB22,Sin23].

Definition 1 (TDN). A TDN is a quadruple N = (S ,O,D ,R) consisting of a finite set
of sources S , a finite set of objects O , a set D = {Do}o∈O of domains of the objects,
where each Do is a finite set of possible values for object o. We let V =

⋃
o∈O Do. Then

R ⊆ S ×O ×V is a set of reports such that (i) for each (s,o,v) ∈ R, we have v ∈ Do,
and (ii) if (s,o,v) ∈ R and (s,o,v′) ∈ R, then v = v′.
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Figure 1. Example of a TDN (left) and a QBAF (right). Sources are shown in green, claims about objects
in blue. The QBAF is the TD-QBAF associated with the TDN and all source and claim arguments have base
scores 0.5 and 0, respectively.

A claim in a TDN N is a pair c=(o,v), where o∈O and v∈Do. We write obj(c)= o,
val(c) = v in this case, and let C denote the set of all possible claims in a network N, i.e.
C = {(o,v) | o ∈ O,v ∈ Do}.

We can represent a TDN pictorially as a bipartite graph, with sources on one side
and claims on the other, and an edge between each source and every claim it makes. For
example, Figure 1 depicts a TDN with S = {s1,s2,s3,s4}, O = {Year,Place}, DYear =
{1958,1962}, DPlace = {Bath,London}. R contains eight reports (one for each pair of
source and claim), including, e.g., (s1,Year,1958) and (s4,Place,London). We can see
that s1 and s2 are in total agreement, while s3 and s4 are in total disagreement. Both s3
and s4 agree with s1 and s2 on one object but not the other.

The over-arching aim of truth discovery is to estimate the true value of each object,
on the basis of the reports. To this end, we define TD operators, which, for any given
TDN, return a real-numbered value for each source and claim in the network.

Definition 2 (TD Operator). A TD operator is a function T : S ∪C → R.

The works in [SB22,Sin23] were concerned, to a large part, on defining and investi-
gating different axioms which could be placed on the TD operators. These axioms were
less focussed on regulating the actual output numerical scores of the various sources and
claims in a TDN than on the rankings of trustworthiness (between sources) and believ-
ability (between claims) that the scores induced. For instance the Coherence axioms at-
tempted to reflect the mutual interdependency between the source rankings and claim
rankings (roughly, e.g., if the sources of claim c1 are ranked higher than those of c2 then
c1 should be ranked more believable than c2), while Symmetry captured some notion of
invariance of the output rankings under taking isomorphisms of the TDN (for example,
in the TDN of figure 1, s1 and s2 play identical roles in the network and so should be
ranked equally trustworthy). We refer to [SB22,Sin23] for a more detailed discussion.

2.2. Quantitative Bipolar Argumentation Frameworks (QBAFs)

QBAFs [BRT18,AD19] are abstract argumentation formalisms [Dun95] that consider
both attack and support [CLS13] relationships between arguments. They associate every
argument with a base score that can be seen as an a priori belief in the argument. The
main computational problem is to assign a final strength to every argument relative to the
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Figure 2. Evolution of strength values under quadratic energy semantics for the TD-QBAF in Figure 1. X-axis
shows iteration, Y-axis shows strength values in the iteration.

base score and the final strength of attackers and supporters. In general, strength values
can be from some arbitrary domain D. For concreteness, we will focus on D = [0,1] here.

Definition 3 (QBAF). A QBAF is a quadruple Q= (A ,Att,Sup,β ) consisting of a set of
arguments A , two binary relations Att and Sup called attack and support and a function
β : A → [0,1] that assigns a base score β (a) to every argument a ∈ A .

Figure 1 shows, on the right, a QBAF that encodes Singleton’s intuition of the TDN
on the left. We denote support relationships by dashed and attack relationships by solid
edges. The base scores of the source and claim arguments are 0.5 and 0, respectively. In
order to assign a final strength to the arguments, QBAF semantics commonly consider
an iterative procedure. The strength of every argument is initialized with its base score.
Then the following two steps are repeated until the strength values converge:

Aggregation: use an aggregation function to aggregate the strength values of attackers
and supporters.

Influence: use an influence function to set the new strength to a value based on the base
score and the aggregate.

The aggregation function is typically monotonically decreasing (increasing) with respect
to the strength of attackers (supporters). Popular instantiations are weighted sums as used
for the Euler-based [ABN17], quadratic energy [Pot18a] and MLP-based [Pot21] seman-
tics or a product-based definition as used in Df-QuAD [RTAB16]. The influence func-
tion is typically monotonically increasing with respect to the base score and the aggre-
gate. Roughly speaking, influence functions combine the base score and the aggregate
such that they fall into the strength domain (D = [0,1]) again. For example, Df-QuAD’s
product aggregation function yields an aggregate between −1 and 1 while sum-based ag-
gregation functions yield an unbounded result. To illustrate the process, Figure 2 shows
the evolution of the strength values of arguments for the QBAF from Figure 1 under
quadratic energy semantics. From a ranking perspective, sources 1 and 2 (light blue)
are strongest followed by the claims Year = 1958 and Place = London (yellow). The
sources 3 and 4 (dark blue) are ranked lower because their support is weaker. The re-
maining two claims (red) are ranked last. Notably, their strength is 0. The reason for this
is that their attackers (counterclaims) are stronger than their supporters (weaker sources).
Hence, their final strength should not be larger than their base score, which is already 0.
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Figure 3. Evolution of strength values under Euler- and MLP-based semantics (left) and Df-Quad semantics
(right) for the TD-QBAF in Figure 1.

When the update procedure of a typical semantics converges, it converges to a
fixed-point of the update function (the composition of aggregation and influence func-
tion) [MN18,Pot19] and the properties of semantics are usually studied by studying the
properties of these fixed-points. It is interesting to note that the axioms proposed in
[SB22,Sin23] are closely related to the properties of QBAF semantics. For example, the
Coherence axioms mentioned before are closely related to Monotonicity properties of
QBAF semantics [BRT18] and the Symmetry axiom corresponds to the Anonymity prop-
erty of QBAF semantics [ABN17]. We leave a deeper discussion of the exact relationship
to future work and focus on the more fundamental question of convergence of semantics
here because convergence is required to obtain well-defined strength values.

3. QBAFs for Truth Discovery (TD-QBAFs)

Singleton proposed encoding TDNs as bipolar argumentation frameworks to reason
about them [Sin20], but didn’t study this idea in more detail. Here, we will extend the
ideas to QBAFs to directly obtain a TD operator from the final strength values of the
arguments associated with sources and claims. Singleton suggested to introduce one ar-
gument for every source and claim. For each pair of contradictory claims (they claim
different values for the same object), a bi-directional attack relationship is introduced
between the claims. For every report, a bi-directional support relationship is introduced
between the source and the claim. In our setting, we need to assign base scores to the
arguments. We assign 0.5 to sources (apriori, we are ignorant about the trustworthiness
of sources) and 0 to claims (we do not believe anything without evidence).

Definition 4 (QBAF induced from a TDN). The QBAF induced from the TDN N =
(S ,O,D ,R) is defined as Q = (A ,Att,Sup,β ), where A = S ∪ {(o,v) | ∃s ∈ S :
(s,o,v) ∈ R}, Att = {(c,c′) ∈ A 2 ∩C2 | obj(c) = obj(c′),val(c) ̸= val(c′)}, Sup =
{(s,(o,v)),((o,v),s) | (s,o,v)∈R}. β (s) = 0.5 for all s ∈S and β (c) = 0 for all c ∈C.

Figure 1 shows, on the right, the TD-QBAF associated with the TDN on the left.
We already showed the strength values under quadratic energy semantics in Figure 2.
Figure 3 shows, on the left, the evolution of strength values under Euler- and MLP-based
semantics. Both Euler- and MLP-based semantics are unable to adjust base scores 0 or 1
and are therefore not particularly interesting for our encoding. On the right, we can see
the strength values under Df-QuAD semantics. We were surprised to find that they start
cycling after about 33 iterations. While [MN18] already demonstrated that semantics
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Figure 4. A TDN (left) and corresponding TD-QBAF (right) causing convergence problems for Df-QuAD.

can fail to converge, the examples were carefully designed for this purpose and have a
complicated structure that is unlikely to occur in practice. The TD-QBAF in Figure 2 is
relatively simple. Similar to the examples from [MN18], it also features a relatively large
degree of symmetry, but we will see in the next section that QBAF semantics can fail to
converge for even simpler examples of TD-QBAFs.

4. Stability of TD-QBAFs

When constructing simple examples of TD-QBAFs, we were surprised to find that con-
vergence problems occured quite frequently. We conjecture that one reason is that all
edges in TD-QBAFs are bi-directional, which can cause a high degree of symmetry. In
Figure 4, we show the simplest example that we found that causes the Df-QuAD seman-
tics to cycle. Notably, its graphical structure is just a bi-directional chain.

In order to evaluate how likely convergence problems are for TD-QBAFs, we created
a random generator, which roughly works as follows:

1. Create n
2 sources and n

2 objects.
2. Every source has a correctness probability that determines the probability that

one of its claims is correct. The probability is chosen uniformly at random from
the interval [0.5,1].

3. For every object, we create a domain of size between 2 and 4 chosen uniformly
at random. We assume that the first value is the correct value.

4. For every source, we iterate over all claims. With probability 0.5, the source
will make a claim about the object. The correctness probability of the source
determines the probability that the claim is correct. If the claim is not correct, the
value is chosen uniformly at random from the remaining values in the domain.

To understand the convergence behaviour better, we created 100 TD-QBAFs for each n=
10,20, . . . ,80. Since the strength values typically converge quickly when they converge,
we set an iteration limit of 100 iterations. It can happen that the strength values did not
start cycling but simply did not converge within the iteration limit. To take account of
this if the limit is reached, we take the last vector of strength values v and perform two
more iterations to obtain the next two strength vectors v1 and v2. We call the fraction
ρ = ∥v−v1∥

∥v−v2∥
the Divergence Ratio. If the strength values did not cycle, we should have

∥v − v1∥ ≈ ∥v − v2∥ and ρ should be approximately 1. If the strength values started
to cycle (with period 2), we should have ∥v− v2∥ ≈ 0 and ρ should be very large or
even ∞ if v = v2. We found that in many cases ρ was ∞ and, in all cases where the
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iteration limit was reached, ρ was larger than 90, that is, ∥v− v1∥> 90 · ∥v− v2∥, which
is strong evidence that the strength values were oscillating. Since there is a chance that
the oscillations fade away when the divergence ratio is smaller than ∞ and Df-QuAD
failed to converge for almost all examples, we tested it again with an iteration limit of
10,000 but obtained the same convergence percentage and the minimal divergence ratio
increased to more than 104.

The first two sections of Table 1 show our experimental results for Df-QuAD (DfQ)
and the quadratic energy model (QE). We first show the percentage of TD-QBAFs for
which the strength values converged. Next, we show the mean runtime2 that was con-
sistently below one millisecond. It is followed by the mean number of iterations for
TD-QBAFs that converged. For the non-convergent examples, we report the minimal di-
vergence ratio (the mean divergence ratio was ∞ because there was always at least one
example where the strength values cycled perfectly). Finally, to give first evidence that
TD-QBAFs are useful for truth discovery, we evaluate the correct evaluation of claims
for convergent and non-convergent cases. We say that an object is evaluated correctly
if the strength of the true value (the first value in our experiments) is at least as high as
all other values. This value has to be considered with care because the true value may
be non-identifiable, that is, there may be too many incorrect sources. Note that since the
probability that a source makes a claim about an object is 0.5, the expected number of
sources for the true claim is n

4 . The expected correctness probability of a source is 0.75
(because it is chosen uniformly at random from [0.5,1]). Since everything is sampled uni-
formly at random, we assume that the probability that the true value does not receive the
majority of supporters (at least n

8 ) resembles a binomial distribution B( n
4 ,0.75). Under

this assumption, the probability that the true source is non-identifiable should be about
15% for n = 10 and gradually go to 0 as n increases. This explains why the correctness
probability is relatively low for n = 10. However, we can see that it quickly goes to 1
as the size of the TD-QBAF (and thus the chance that the correct claim is identifiable)
increases.

We were surprised to find that Df-QuAD did not converge for any TD-QBAF of size
n ≥ 20. Interestingly, even though it did not converge, the states (at least the termina-
tion state) between which it cycled are reasonable states in that they rank the true claim
stronger than its counterclaims. The correctness for the non-converged examples for the
Quadratic Energy semantics is sometimes higher than the one for the convergent exam-
ples. However, we probably shouldn’t draw the conclusion that oscillating states are bet-
ter than fixed-points from this observation. We believe that a more plausible explanation
is that for TD-QBAFs where the true claim is identifiable, there is a higher risk of oscil-
lations (at least in our experiments). The reader may wonder if the unstable states can be
seen as reasonable alternatives similar to extensions in classical argumentation. To see
that this is not the case let us look at the unstable states of Df-QuAD in Figure 4. The
strength of s1 (violet) oscillates between 0.5 and 1 and the strength of its claim o1 = 0
(green) between 0 and 1. However, s1 takes its maximum (is accepted) when o1 = 0 takes
its minimum (is rejected) and vice versa, while we should expect that they take their
maximum/minimum simultaneously in reasonable alternatives. This is indeed the reason
why the semantics does not converge (the strength values have to be adapted to make the
state more plausible).

2All experiments ran on a Windows 11 laptop with Intel i7-13700H 2.4Ghz processor and 16 GB RAM.
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10 20 30 40 50 60 70 80

DfQ % Converged 14 0 0 0 0 0 0 0
Runtime (ms) < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1
Iterations (C) 9.5 - - - - - - -

Min. Div. Ratio > 1015 > 91 > 103 > 103 > 103 > 103 > 104 > 104

Correctness (C) 0.93 - - - - - - -
Correctness (N) 0.87 0.97 0.98 0.99 0.99 0.99 0.99 0.99

QE % Converged 92 94 96 100 95 89 81 72
Runtime (ms) < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1
Iterations (C) 18 14 13 15 16 17 17 17

Min. Div. Ratio 132 ∞ ∞ - > 1015 333 269 247
Correctness (C) 0.8 0.92 0.95 0.97 0.99 0.99 0.99 0.99
Correctness (N) 0.7 0.97 0.95 - 0.99 0.99 0.99 1

DfQ(2) % Converged 97 9 76 32 16 5 8 3
Runtime (ms) < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1
Iterations (C) 21.7 29.3 31.2 30.1 36.1 61.6 95.5 84.6

Min. Div. Ratio 22 5 21 19 18 17 17 19
Correctness (C) 0.81 0.91 0.95 0.98 0.99 0.98 1 0.99
Correctness (N) 0.47 0.93 0.96 0.98 0.99 0.99 0.99 0.99

DfQ(3) % Converged 100 100 100 100 100 100 100 100
Runtime (ms) < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1

Iterations 9.4 13.5 15.2 18.5 19.5 20.7 20.2 20.3
Correctness 0.8 0.92 0.95 0.98 0.99 0.99 0.99 0.99

QE(2) % Converged 100 100 100 100 100 100 100 100
Runtime (ms) < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1
Iterations (C) 9.58 12.91 11.56 10.28 10.3 10.49 10.87 11.48
Correctness 0.8 0.92 0.95 0.98 0.99 0.99 0.99 0.99
S-Distance 1.05 1.01 1.00 1.07 1.22 1.32 1.44 1.53

cDfQ % Converged 100 97 86 89 92 96 100 100
Runtime (ms) 0.84 2.4 5.79 6.66 6.49 7.81 7.3 9.26
Iterations (C) 11.94 22.82 31.71 23.38 16.81 17.43 15.32 15.17

Min. Div. Ratio - 0.5 0.5 0.5 0.5 0.5 - -
Correctness (C) 0.8 0.92 0.95 0.98 0.99 0.99 0.99 0.99
Correctness (N) - 0.87 0.93 0.97 0.99 0.98 - -

cQE % Converged 100 100 100 100 100 100 100 100
Runtime (ms) 0.83 0.93 1.08 1.62 2.19 3.02 3.44 4.3

Iterations 12.03 9.02 8.35 8.38 8.45 8.74 8.85 8.84
Correctness 0.79 0.92 0.95 0.98 0.99 0.99 0.99 0.99
S-Distance 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Table 1. Statistics for trials with TD-QBAFs of increasing size (100 TD-QBAFs per size): percentage of
converging TD-QBAFs, Mean Runtime, Mean number of iterations until convergence (if converged), Minimal
Divergence Ratio, Mean correctness for converged (C) and non-converged (N) frameworks. For QE, we also
show the mean Euclidean distance between the strength values under the original semantics and its conservative
(QE(2)) and continuous counterpart (cQE) for the convergent examples. Decimals are rounded to two digits,
but no digit is rounded up to 1 (so 1 means exactly 100%).
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5. Improving Stability with Conservative Semantics

One way to improve the convergence guarantees of QBAF semantics is to make them
more conservative [Pot19]. For the modular semantics that we discussed here, this can
be achieved by dividing the result of the aggregation function by a constant κ , which is
called the conservativeness parameter [Pot19]. Intuitively, this will make the semantics
more conservative in the sense that it will hold on more strongly to the initial beliefs
given by the base scores. The relevance of κ can be explained by the following result.

[Pot19, Corollary 3.5]: Consider a QBAF such that the indegree of every argument is
at most D. Then the strength values are guaranteed to converge under

• DF-Quad semantics with conservativeness κ > D,
• quadratic energy semantics with conservativeness κ > 2 ·D.

Hence, in principle, for every finite QBAF, there is a semantics that guarantees conver-
gence. However, the semantics may be very conservative. As discussed in [Pot19], there
is a tradeoff between conservativeness and open-mindedness, that is, a semantic’s ability
to move away from the initial beliefs (the base score). We will not go deeper into this
discussion here because it is of less relevance when only focussing on the ranking of
arguments (finding the most believable claim about an object). Let us also note that the
result above is a sufficient and not a necessary condition. While a conservativeness pa-
rameter of 100 for Df-Quad guarantees that it will converge for all QBAFs with indegree
less than 100, a significantly smaller parameter can be sufficient.

To understand the magnitude of the required conservativeness better, we repeated
our experiments with conservativeness 2 and 3 and report the results in sections 3 -
5 in Table 1. Conservativeness 2 was sufficient for convergence of all examples under
quadratic energy semantics and the number of convergent examples under Df-QuAD in-
creased significantly. The minimal divergence ratio was also significantly smaller. We
again increased the iteration limit for Df-QuAD to 10,000 to see if the non-convergent
examples will converge eventually. While this increased the number of convergent ex-
amples, there was still a large number of non-convergent examples (up to 29%) and the
minimal divergence ratio increased to ∞, so all non-convergent examples started indeed
cycling. However, Df-Quad converges for all examples when we increase the conserva-
tiveness to 3. We can see in Table 1 that the conservative semantics still provide meaning-
ful states in the sense that the true claims are ranked highest when they are identifiable.
However, the actual strength values under conservative semantics typically differ from
those under the original semantics (they tend to stay closer to the base scores). To quan-
tify this, we also show the mean Euclidean distance between the original strength vectors
and the conservative strength vectors (for examples that converged under the original
semantics) in the QE(2) section (S-distance).

6. Improving Stability with Continuous Semantics

Making semantics more conservative improves stability but reduces open-mindedness.
There is a less invasive method to improve stability that maintains the open-mindedness
of semantics called continuization [Pot18a,Pot19]. The term continuization is motivated
by the following result: under mild conditions that are met for all semantics considered
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Figure 5. Discrete QE (left) vs. conservative QE(2) (middle) vs. continuous QE (right) semantics.

in this paper, the semantic’s update function can be associated with a system of differen-
tial equations such that the fixed-points of the update function correspond to the equilib-
rium solutions of the system of differential equations [Pot19, Proposition 4.1]. Since the
semantical properties of QBAF semantics are studied over fixed-points, the continuized
semantics satisfies the exact same properties as the original (discrete) semantics. In fact,
in cases where we can prove convergence of discrete semantics, the fixed-point is unique
and thus coincides with the equilibrium solution [Pot19, Proposition 3.3 and 4.1]. What
is more, the discrete update procedures that are used to compute the final strength val-
ues under discrete semantics can actually be seen as a naive algorithm to approximate
an equilibrium solution of a system of differential equations [Pot18a]. This algorithm is
called Euler’s method with step size 1. In the context of differential equations, Euler’s
method would hardly ever be applied with step size 1 because this step size is so large
that it is likely to cause stability problems. By decreasing the step size (say to 0.01), we
continuize the process and improve stability. We refer to [Pot19, Section 4] for a thor-
ough discussion of the relationship between discrete and continuous semantics and to
[Pot18a] (paragraph after Remark 1) for a discussion of alternatives to Euler’s method
that can find an equilibrium solution more efficiently.

To understand the behaviour of continuous semantics better, we repeated the experi-
ments for the semantics’ continuous counterparts and report the results in sections 6 and
7 of Table 1. While the continuous quadratic energy model converged for all examples,
continuous Df-QuAD failed to converge within the iteration limit in some cases. How-
ever, we can see that the minimal divergence ratio is very small. We therefore increased
the time limit to 500 and found that the semantics does indeed converge for all examples
in less than 300 iterations. Recall that we increased the time limit for discrete Df-QuAD
to 10,000 and only found that the divergence ratio increased significantly. This gives fur-
ther evidence that continuization can increase the stability of QBAF semantics signifi-
cantly. Indeed, all known divergence cases for discrete semantics can be solved by con-
tinuizing the semantics and there are no known examples where a continuous semantics
cycles. However, it remains an open question if this is always the case. To strengthen our
conjecture that continuization maintains the original semantics, we again show the mean
Euclidean distance between the original strength vectors and the continuous strength
vectors (for examples that converged under the original semantics) in the cQE section.
As opposed to QE(2), the mean distance for cQE was consistently smaller than 0.01 ev-
idencing that continuization indeed preserves the original semantics well. To illustrate
this, we plot the evolution of strength values of the first TD-QBAF in our benchmark
under discrete QE, QE(2) and continuous QE semantics in Figure 5. Even though con-
tinuization comes at a higher computational cost because it has to perform dozens of
steps for each discrete step (iteration) that discrete semantics perform, the runtime still
remains in the low millisecond range. As demonstrated in [Pot18a], even QBAFs with
thousands of arguments can be evaluated in seconds under continuous semantics.
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7. Conclusions and Future Work

Truth discovery is an interesting and natural application of QBAFs. While discrete se-
mantics can suffer from stability problems in this setting, we can avoid these problems
by using conservative and continuous semantics. All semantics seem to be able to iden-
tify the correct claims when they are identifiable. However, we believe that continuous
semantics are the preferred solution for TD-QBAFs as they converge for all examples
that we generated, do not require fine-tuning of the conservativeness parameter and seem
to preserve the original semantics.

More analytical studies are necessary to understand the stability and the formal prop-
erties of TD-QBAFs better, but we believe that the experiments and the benchmark pro-
vided in this work are useful to enhance the understanding of TD-QBAFs and QBAFs
in general. For example, [ASSV24] recently proposed using graph neural networks to
approximate QBAFs, but were only able to evaluate their approach on acyclic graphs for
lack of a benchmark containing cyclic QBAFs. TD-QBAFs provide a challenging and
application-driven benchmark and the results for conservative and continuous semantics
provide a strong baseline for evaluating the stability and semantical preservation of ap-
proximation approaches as proposed in [ASSV24]. Our benchmark and the source code
for all experiments are available in the Java library Attractor3 [Pot18b,Pot22].

Our next step is to study TD-QBAFs more formally by analyzing which properties
from [SB22,Sin23] they satisfy when understanding their semantics as truth-discovery
operators. It may also be interesting to look into other encodings that allow attacks of
sources, for example, by adding attack relationships between sources that make contra-
dictory claims. Furthermore, recently a number of interesting explanation approaches for
QBAFs have been proposed [CKW22,YPT23,KCR23,YPT24] and it would be interest-
ing to explore what additional insights they can give in the truth discovery setting.
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