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ABSTRACT
A guitar tuning is the allocation of pitches to the open strings of
the guitar. A wide variety of guitar tunings are featured in genres
such as blues, classical, folk, and rock. Standard tuning provides
a convenient placing of intervals and a manageable selection of
fingerings. However, numerous other tunings are frequently used
as they offer different harmonic possibilities and playing methods.

A robust method for the acoustic classification of guitar tunings
would provide the following benefits for digital libraries for musi-
cology: (i) guitar tuning tags could be assigned to music recordings;
these tags could be used to better organise, retrieve, and analyse mu-
sic in digital libraries, (ii) tuning classification could be integrated
into an automatic music transcription system, thus facilitating the
production of more accurate and fine-grained symbolic represen-
tations of guitar recordings, (iii) insights acquired through guitar
tunings research, would be helpful when designing systems for
indexing, analysing, and transcribing other string instruments.

Neural networks offer a promising approach for the automated
identification of guitar tunings as they can learn useful features for
complex discriminative tasks. Furthermore, they can learn directly
from unstructured data, thereby reducing the need for elaborate
feature extraction techniques.

Thus, we evaluate the potential of neural networks for the acous-
tic classification of guitar tunings. A dataset of authentic song
recordings, which featured polyphonic acoustic guitar performances
in various tunings, was compiled and annotated. Additionally, a
dataset of synthetic polyphonic guitar audio in 5 different tunings
was generated with sample-based audio software and tablatures.
Using audio converted into log mel spectrograms and chromagrams
as input, convolutional neural networks were trained to classify
guitar tunings. The resulting models were tested using unseen data
from disparate recording conditions. The best performing systems
attained a classification accuracy of 97.5% (2 tuning classes) and
73.9% (5 tuning classes).

This research provides evidence that neural networks can classify
guitar tunings from music audio recordings; produces novel anno-
tated datasets that contain authentic and synthetic guitar audio,
which can serve as a benchmark for future guitar tuning research;
proposes new methods for the collection, annotation, processing,
and synthetic generation of guitar data.
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1 INTRODUCTION
Standard tuning1 for the six-string guitar was firmly established
by the 1800s and today it is the most frequently used tuning [18].
However, altered tunings are also used frequently—they have a
bearing on which notes can be produced using open strings,2 and
hence on the timbre and harmony of the guitar. They can provide
convenient fingerings and open chords that facilitate special guitar
techniques, enable distinctive sonorities that are integral to certain
guitar styles, inspire new compositions, and force one out of tradi-
tional performance habits. In this work, when the interval pattern
between the open strings of a guitar deviates from standard tuning,
the guitar is considered to be in an altered tuning [18].

Altered guitar tunings feature in genres such as blues, classical,
folk, and rock. For instance, in the maskanda music of South Africa,
the tuning used by guitarists “varies from standard tuning in that
the high string is tuned to d’ instead of e’ ”, and other tunings
exist, “some pertaining to specific styles and others ‘invented’ by
musicians to suit their individual characteristic styles” [10, p. 122].
Furthermore, altered tunings are present in the music of many
of the world’s most inventive guitarists such as Ali Farka Touré,
Elizabeth Cotten, João Pernambuco, Joni Mitchell, and Robert Fripp.

Many styles of guitar music are rooted in oral/aural traditions,
so reliable performance information—such as the guitar tuning
and capo position—and accurate transcriptions are not available for
most guitar recordings. Consequently, knowledge about the tunings
that are associated with certain guitar styles could be lost if methods
for identifying guitar tunings are not developed. Additionally, if
the tuning used on a guitar recording is unknown, transcriptions
are likely to be inaccurate.

It is also important to note that many guitarists learn music
by listening carefully to recordings; this approach allows them to
extract nuances from the music that notation fails to encapsulate.
1In standard tuning, the guitar is tuned to the following notes from low to high (6th to
1st string): 𝐸2 ,𝐴2 , 𝐷3 ,𝐺3 , 𝐵3 , 𝐸4 .
2Open string refers to the unobstructed full string, located between the bridge and nut.
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Thus, when a musician or musicologist is learning or analysing
a guitar recording, an accurate and succinct piece of information
about the tuning, may reveal more than a detailed transcription
(that wrongly presumes the guitar is in standard tuning).

Research related to the automatic identification of guitar tun-
ings is underdeveloped. To the best knowledge of the authors, no
publication has dealt with the classification of guitar tunings from
guitar audio recordings. Nevertheless, there is a wide body of re-
search devoted to tasks that are closely related to guitar tuning
classification, such as guitar string detection, chord estimation, and
automatic music transcription (AMT). Traditionally, approaches to
these tasks have involved the extraction of various acoustic features
(e.g., 𝑓0, inharmonicity coefficient) [2] to describe the tonal con-
tent of the signal, classical machine learning models (e.g., HMMs,
SVMs) [24] and/or constraint-based algorithms (e.g., heuristic cost
functions, plausibility filters) [3] to estimate string/chord/note can-
didates [11, 13, 21]. More recently, approaches to these tasks have
utilised neural networks (e.g., CNNs, RNNs, transformers) [22, 35]
with time-frequency representations of audio data (e.g., spectro-
grams, constant-Q transforms) [50] to learn a mapping directly
from audio to symbolic music [7, 9, 40]. It should be noted that the
research discussed above only considers guitars in standard tuning.
Nevertheless, the proposed methods could be adapted for altered
guitar tunings.

The identification of guitar tunings from symbolic music has
been investigated by Khatri & Dillingham [25]. The authors pro-
posed deep learning (DL) and rule-based methods to predict the tun-
ing of a guitar piece from its MIDI transcription. The first method
employed supervised learning with a recurrent neural network
(RNN). The RNN model could successfully identify standard and
open C tunings, but had difficulty identifying open D and open G
tunings. The second method employed a dynamic programming al-
gorithm to determine the optimal note locations a song could have
in a given tuning. The dynamic programming algorithm performed
well on songs in open C and open D, but struggled with songs
in standard and open G. Khatri & Dillingham’s research provides
some evidence that both DL and rule-based methods can be used
to classify guitar tunings from symbolic music.

The primary aim of the work reported in the present paper is to
investigate the appropriateness of neural networks (NNs) for the
acoustic classification of guitar tunings. We define guitar tuning
classification (GTC) as the identification of a particular guitar tuning
from a recording that contains a guitar performance.

The work is driven by recent developments in deep learning. NNs
can learn useful features for discriminative tasks, when trained on
large amounts of data. They can learn directly from unstructured
data, thus reducing the need for more elaborate feature extraction
techniques. An overview of NNs is beyond the scope of this work—
for more information, see [15, 39]. DL methods are now frequently
used for music information retrieval tasks [4] and NNs are an in-
tegral part of current state-of-the-art AMT systems [19]. As NNs
have a proven track record for music information retrieval tasks, we
hypothesise that a neural network has the capacity to learn discrimi-
native musical features (e.g., harmony, key, pitch) and fine-grained
features (e.g., harmonic spectrum, inharmonicities) relevant to GTC
from labelled time-frequency representations of music recordings;

these features pertain to the tuning of the guitar, enabling the network
to distinguish between different guitar tunings.

The acoustic classification of guitar tunings is a nascent topic,
but research in this area is essential for the development of robust
systems for music audio tagging and AMT. Further information
regarding this work is available online.3

2 BACKGROUND
2.1 The Classification Task
The aim is to create a system that, when given a guitar audio clip,
returns a decision regarding the type of guitar tuning that is present
in the recording. A supervised learning approach is employed. A con-
volutional neural network (CNN) is trained on a corpus of labelled
guitar audio samples; the audio is converted into a log mel spectro-
gram or chromagram representation and inputted into the CNN.
The samples are correctly marked with guitar tuning labels. After
training, the model is given new samples, and it predicts which
categories the samples belong to. Authentic and synthetic guitar
tuning datasets have been created specifically for this task.

This work derives methods and adapts CNNs from the fields of
bird audio detection [47] and speech recognition [51]. In these tasks
an NN must learn to recognise and classify many different sound
event characteristics [26]—this is also true of GTC, so there are clear
parallels between the tasks. Furthermore, CNNs were chosen for
the task as evidence indicates they perform well on guitar-related
MIR tasks, and an established baseline model for guitar tablature
transcription (GTT) is CNN-based [50].

There are two methods for representing the tuning of a gui-
tar: (i) specifying the absolute pitch of each string, (ii) specifying
the intervals between strings. We investigate both methods for
determining the tuning. The first method identifies the tuning by
absolute pitch; this provides exactitude, but without certain con-
straints (e.g., the exclusion of recordings in which a capo is used
on the guitar) the number of tuning classes yielded could quickly
become unmanageable. The second method identifies the tuning
by interval profile; interval profile refers to the distance of the open
strings from each other as measured in semitones [43]. With this
method, the strings of two guitars could be tuned to different abso-
lute pitches, but if they shared the same interval profile, they would
also share the same tuning class. An advantage of this method
is that it provides flexibility and a manageable number of tuning
classes, when guitars are transposed via downtuning or the use of
a capo.

2.2 Notation
A robust GTC system could provide fine-grained and accurate tran-
scriptions for various types of notation (see Fig. 1), particularly for
tablatures. Tablature is a notational system that places numbers
on horizontal lines—the numbers represent the frets and the lines
represent the strings of the instrument. Tablature is highly intuitive
for guitarists as it resolves “the ambiguity between note pitch and
fretboard position” [37, page 26]. However, when the tuning of a
guitar is altered, the relationship between note pitch and fretboard

3https://github.com/edhulme/guitar-tuning-classification

https://github.com/edhulme/guitar-tuning-classification
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Figure 1: Staff, tab, and chord chart notations combined. Gui-
tar tuned to open G.

position changes. Therefore, it is necessary to know the tuning of
the guitar, if the tablature transcription is to be encoded correctly.

Regarding performance information, if someone wishes to learn
or analyse a guitar recording ‘by ear’, then information about the
tuning and/or capo position would facilitate these activities.

2.3 Guitar Characteristics
Inharmonicity. A simple analysis of the relationship between the
harmonic partials and the fundamental frequency of a vibrating
string—where 𝑓𝑛 is the frequency of the nth harmonic, 𝑓1 is the
frequency of the 1st harmonic, and 𝑛 is the harmonic number—can
be written as 𝑓𝑛 = 𝑛𝑓1;𝑛 ≥ 1. However, the harmonics in an actual
string are higher in frequency than predicted here. This phenome-
non is known as inharmonicity. The occurrence of inharmonicity
in strings, due to their internal stiffness, was first recognised by
Lord Rayleigh [42].

The inharmonicity coefficient 𝐵 is expressed from the radius of
the string 𝑟 , the string’s tension𝑇 , its lengh 𝐿, and Young’s modulus
𝑌 as: 𝐵 = 𝜋3𝑌𝑟4

4𝑇𝐿2
. An adjustment to 𝑓𝑛 = 𝑛𝑓1 produces the following

equation 𝑓𝑛 = 𝑛𝑓0
√
1+𝐵𝑛2, where 𝑓0 is the fundamental frequency in

the absence of inharmonicity i.e., when 𝐵 = 0. In reality 𝐵 > 0 as
there is always some internal stiffness in physical strings. Thus, the
new harmonic partials will be higher in frequency compared to the
corresponding partials in a string with no stiffness [38].

We can define the inharmonicity of a string as “the deviation
of the partials from integer multiples of the string’s fundamental
vibration frequency” [38]. Inharmonicities are inherent in vibrating
strings, and the inharmonicity of a guitar string is determined by its
radius, tension, length, and Young’s modulus. A hypothesis can be
derived from this information. The string tension and string length
required to produce a particular note on a guitar string change de-
pending on the open note the string is tuned to. The inharmonicity
of a string also changes depending on its length and tension. Thus,
a neural network may be able to learn distinct inharmonicity features
exhibited by different guitar tunings; the network could then use these
features to differentiate between guitar tunings.

Chord Voicing. “A chord voicing refers to the placement of notes
in a chord structure” [27, page 1]. When the order that the notes of a
chord appear in changes, or when the octaves that the notes appear
in change, different voicings of the chord tones are produced. The

Table 1: Open D chord in standard tuning and open D tuning.

Tuning String Number (x = no note)
6th 5th 4th 3rd 2nd 1st

Standard x x 𝐷3 𝐴3 𝐷4 𝐹#4
Open D 𝐷2 𝐴2 𝐷3 𝐹#3 𝐴3 𝐷4

voicings used in guitar music often vary as a result of the guitar
tuning. To illustrate this, we can compare an open D chord4 played
in standard and open D tuning (see Table 1). Although both voicings
contain the same three notes the voicings are clearly different:
6 notes are played in open D, whereas only 4 are played in standard;
the order the notes appear in varies; the octaves the notes appear
in are sometimes distinct (e.g., F#); the strings notes are played
on differ (except 𝐷3). This example highlights how altering the
tuning significantly changes the voicing of chords, even when the
chords are very simple. Guitar music generally features multiple
chords, and these chords can be much more complex than the D
chord presented above—this creates the potential for many distinct
voicings. Thus,we hypothesise that each guitar tuning has a collection
of signature voicings associated with it; a neural network can learn
these voicings as features and use them to identify guitar tunings
from audio.

Pitch Range. The lowest pitch that is playable on the guitar can
vary depending on the tuning.5 For instance, in open D the lowest
pitch is a tone lower than in standard tuning. In this type of scenario
it should be relatively easy to train an NN—or configure a pitch
estimation algorithm—to exclude certain tunings when pitches
below a given threshold occur. However, in real-world scenarios
certain attributes of the guitar make the task more complicated:
(i) a capo raises the lowest pitch that is playable, (ii) guitar tun-
ings do not always conform with the A440 pitch standard, and
(iii) a tuning maintains its interval profile when every string is
tuned up or down by an equal number of semitones. Abundant
evidence of guitarists utilising these attributes was found when
collecting acoustic guitar recordings and transcriptions for this
study. Dataset 1 (see Section 3.1.2)—which is comprised of song
recordings by Joni Mitchell—provides evidence regarding each of
the respective attributes: (i) a capo is used on 25 of the 49 songs,
(ii) the tuning deviates from A440 on various live recordings, (iii)
certain common tunings are downtuned e.g., on the ‘The Gallery’
from the album Clouds, the guitar has the interval profile of open
G, but the strings are downtuned by a semitone. Moreover, similar
evidence regarding these attributes was found when we analysed
official GuitarPro tablatures [41] by various artists, and amateur
acoustic guitar performances from the AudioSet dataset [14]. Thus,
since these attributes are frequently used by guitarists, it is impor-
tant to consider them if robust guitar transcription systems are to
be developed.

Harmonic Spectrum. A guitar produces notes when the strings
vibrate between the bridge and nut or bridge and frets. A recent
study [23] indicates that roughly 20% of the notes used by guitarists,

4An open chord is a chord that contains strings that are not fretted.
5The tuning can also vary the highest playable pitch, but guitarists use the upper
register of the guitar less frequently [23].
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playing in standard tuning without the use of a capo, are played on
the open strings (i.e., 20% of vibrations occur between the bridge and
nut). The harmonic spectrum differs between open and fretted notes.
These differences are perceived by humans as subtle variations in
timbre; experienced musicians can differentiate between open and
fretted notes by listening attentively. Thus, we hypothesise that
variations in the harmonic spectrum between open and fretted notes
can be learned as features by a neural network, and used to determine
the pitch of open strings. However, it is important to note that if a
capo is used on a guitar these, differences in the harmonic spectrum
would not occur as the strings could only vibrate between the
bridge and frets—although the capo might produce other distinct
variations in the harmonic spectrum in this scenario.

Pitch Classes, Scales, and Keys. Evidence suggests that there are
tuning-specific preferred pitch classes, scales, and keys. In [23], a
diverse corpus of 1022 professionally transcribed guitar tablatures
was analysed to determine the most common string, fret, and hand
positions used by guitarists playing in standard tuning, without the
use of a capo. The pitch classes that occurred most frequently in the
corpus were E, G, A, B, C, and D. These notes are used in the keys
of C major, G major, A minor, and E minor, and also feature in their
corresponding heptatonic and pentatonic scales; this indicates that
these keys and scales are likely to occur frequently in standard tun-
ing. When an open tuning is used, the chord produced by the open
strings may be an indicator of the key—an analysis of 40 songs in 5
different tunings supports this theory,3 but a larger sample needs
to be analysed to provide more conclusive evidence.We hypothe-
sise that a neural network can learn tuning-specific preferred pitch
classes, scales, and keys as features for guitar tuning classification.
Key changes, consonance/dissonance, and chromaticism may also
be more common in certain tunings.

3 METHODS
3.1 Data
3.1.1 Labels. A label, indicating the guitar tuning used on a song,
was assigned to every audio file. The main references used to de-
termine the guitar tuning featured on a particular recording were
The Joni Mitchell Complete—Guitar Songbook Edition [5] and offi-
cial GuitarPro transcriptions [41]—these were reliable sources as
the transcriptions were made by professional musicians (if multi-
ple tunings were featured the file was discarded). In many of the
recordings/transcriptions, a capo is used on the guitar. Therefore,
we devised a flexible labelling system that enables the tuning classes
to be determined by absolute pitch or interval profile. The dataset
labelling method is described below:

Example: x75435_EBEG#BE_C2_Cactus_Tree_StaS_12

• x75435: Denotes the interval profile. The x represents the
6th string, and the numbers represent the intervals between
strings in semitones e.g., x7 indicates that the 5th string is
7 semitones above the 6th string in pitch, 75 indicates that
the 4th string is 5 semitones above the 5th string etc.

• EBEG#BE: Shows the note each string is tuned to (6th to 1st
string)

• C2: This indicates the capo position. The number after C
denotes the fret position of the capo. 𝑁𝑜 𝑐𝑎𝑝𝑜 = C0

• Cactus_Tree: The name of the song (sometimes abbreviated
in all caps)

• StaS: Indicates the album (when abbreviated uppercase and
lowercase letters are used)

• 12: Clip number (only relevant to files in the training set)

3.1.2 Dataset 1: Joni Mitchell Song Recordings. Dataset 1 consists
of 49 WAV files (44.1 kHz, 16 bit, stereo). The files contain audio of
variable length (≈ 3 min). The guitars in the audio are in various
different tunings and are labelled accordingly.3 The audio con-
tent of the dataset was derived from Joni Mitchell song recordings.
Mitchell’s songs feature steel string acoustic guitar performances
in altered tunings, making them suitable for GTC tasks. Moreover,
using Mitchell’s songs seems apt as her music marks a compelling
moment in the history of guitar tunings. Altered tunings were
an integral part of her sound. Mitchell’s popularity in the sixties
and seventies introduced listeners to an array of unfamiliar chord
voicings, and her guitar playing inspired guitarists to experiment
with altered tunings [43]. The songs were recorded between 1968
and 1972. They were taken from 5 studio albums [30–34] and 2
live albums [28, 29]. The guitar performances on the recordings
consist predominantly of chord progressions that are fingerpicked
or strummed; 14 different tunings are used by Mitchell. All the
recordings featured vocals, and sometimes instruments other than
the guitar were also present. Thus, the source separation algorithm
Spleeter 2.4.0 [20] was applied to isolate the guitar signal. In pre-
liminary tests, models were trained independently on unprocessed
audio and source separated audio. When these models were eval-
uated, the results indicated that source separation was beneficial
to classification performance (see Section 4.1). Therefore, source
separation was applied in all the subsequent tests. Spleeter is a
powerful tool, but it does produce artifacts (e.g., extraneous filter-
ing, distortion). Furthermore, the Spleeter model had no explicit
‘guitar’ stem, so the ‘other’ stem from the model output was con-
sidered to contain the guitar parts. Thus, while the model removed
vocals, speech, piano, bass, and drums from the audio, any other
instrumentation remained in the audio along with the guitar. How-
ever, the use of other instruments was relatively infrequent, so the
detrimental effect this could have on model performance is thought
to be low; when the instrumentation of a song was considered to
be problematic for the Spleeter model, it was discarded from the
dataset. On some of the studio recordings, two guitars in different
tunings were present simultaneously. These recordings could not be
labelled accurately, so they were removed from the dataset. To the
best knowledge of the authors, an algorithm that can disentangle
multiple guitar parts from recordings is not available at the time of
writing. Mitchell’s live recordings contained sections in which she
was tuning her guitar. The audio could not be correctly labelled for
these sections, so they were removed with an audio editor. The live
recordings also contained sections in which Mitchell was talking
to the audience. However, after the guitar had been isolated, these
sections contained silence; these sections were also removed.

3.1.3 Dataset 2: Multi-artist Song Recordings. Dataset 2 consists of
54WAV files (44.1 kHz, 16 bit, stereo). The files contain audio of vari-
able length (≈ 3min). There are 5 tuning classes in the dataset: stan-
dard, drop D, DADGAD, open D, open G. The recordings are mainly
by singer-songwriters. All recordings feature steel string acoustic
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guitar. When labelling the audio, official GuitarPro tablatures were
used to determine the tuning and capo position [41]. Most songs
are studio recordings, but live recordings are also present. Dataset
2 was created after Dataset 1, when a more advanced source sep-
aration algorithm—Demucs 4.1.0a1 [44]—was available. Demucs
featured an experimental model with an explicit ‘guitar’ stem. Two
expert listeners compared the Demucs ‘guitar’ and Spleeter ‘other’
outputs. The Demucs output was judged to provide superior audio
quality. It also removed a wider variety of instruments from record-
ings (although it could be temperamental in this respect); this made
Demucs more flexible and helped to streamline the audio editing
process. Additionally, Dataset 2 was created so trained models could
be tested using data from disparate conditions. Thus, applying a
different source separation algorithm had the desirable effect of
increasing the disparity between datasets.

3.1.4 Dataset 3: Multi-artist Synthetic Audio. Dataset 3 consists
of 245 WAV files (44.1 kHz, 16 bit, mono). The files contain high-
quality sample-based guitar audio renderings of song tablature
transcriptions. The audio is of variable length (≈ 3 min). There
are five tuning classes—standard (90 songs), drop D (86), open D
(39), DADGAD (18), open G (12). The audio in Dataset 3 was cre-
ated by rendering tablatures as audio with Ample Sound AGT [45],
a sample-based acoustic guitar Virtual Studio Technology (VST)
instrument. AGT includes a ‘tuner’, which allows the user to down-
tune each string by 1 or 2 semitones. This functionality makes it
possible to tune the guitar to various common tunings—analysis
of the downtuned audio produced by the VST indicated that the
guitar samples were recorded at the pitches they corresponded
to (i.e., resampling or sample rate pitch shifting was not applied).
The tablatures used were professionally transcribed, so the tun-
ing information and note/string combinations in the transcriptions
were accurate. The synthetic data was generated by loading the
tablatures in the VST and exporting them as audio renderings; this
process was automated with Dawdreamer (a Python-based audio
framework that emulates a DAW) [6]. Regarding the settings in
the VST: the data was rendered in mono; a ‘neutral’ guitar timbre
was employed (i.e., no audio effects were applied) using a single
VST steel string acoustic guitar model; the playing style was set to
‘fingerstyle’. In this work, the experiments conducted using Dataset
3 investigated an NNs capacity to learn useful features related to
pitch, scale, and key for the acoustic classifcation of guitar tunings.
Thus, a diverse range of timbres was not a priority. However, us-
ing the framework developed in this study, a large synthetic audio
dataset, with a diverse range of timbres and VST guitar models, will
be created—this will be used to study guitar tuning characteristics
such as inharmonicity and the harmonic spectrum.

Dataset 3 was used to investigate the ability of a CNN to classify
tunings by absolute pitch; to simplify the problem the use of a capo
was not permitted. However, many of the transcriptions featured a
capo. Therefore, we transposed the tablatures by setting the capo
parameter to 0 (i.e., no capo) before rendering. Furthermore some
tablatures featured ‘downtuning’ or ‘uptuning’; these transcriptions
had to be assigned to an appropriate pitch range. Both of these
procedures were automated with PyGuitarPro [1].

While a synthetic guitar dataset already exists [52], to the best
knowledge of the authors, Dataset 3 is the first sample-based guitar

dataset that features a variety of altered tunings. Furthermore, a
different method was used to render the symbolic music as au-
dio. In [52], string level MIDI is rendered individually and the
string-level audio signals are then mixed by averaging. Instead, we
loaded each tablature via Dawdreamer in the VST and rendered the
string-level MIDI data jointly using the VST’s specialised TabPlayer
functionality. With this highly efficient approach the GuitarPro
tablature format preserves the note/string combinations, and the
joint string-level rendering produces synthetic guitar audio that
sounds cohesive and dynamic.

3.2 Experiments
The use of a capo on the guitar in various recordings is likely to
make the classification task considerably more challenging. There-
fore, interval profile data partitions were made that featured a capo
(3.2.1–3.2.2), they were used in 2 class experiments (4.1, 4.2, and 4.3). In
these partitions and experiments the terms open D and open G refer
to the tuning type (e.g., 𝑜𝑝𝑒𝑛 𝐷 = 𝑥75435) and not the absolute pitch.
Additionally, an absolute pitch data partition was made that featured
no capo (3.2.3), it was used in 5 class experiments (4.4)—here, the
class names refer to the absolute pitch (e.g., 𝑜𝑝𝑒𝑛 𝐷 = 𝐷𝐴𝐷𝐹#𝐴𝐷).

3.2.1 Data Partition 1: Open D/Other. This partition only features
data from Dataset 1. It was used to (i) evaluate how well CNN 1
(3.2.6) could differentiate between the open D type tuning and vari-
ous other tunings, (ii) determine a suitable sample length for CNN 1,
(iii) evaluate how audio processing techniques affected performance.
Regarding the final point, only in preliminary experiments (4.1) was
a subset of Data Partition 1 used that did not have audio processing ap-
plied (e.g., source separation, removal of extraneous material). Isolated
guitar audio was used in all subsequent experiments. The labelled
and edited song files were divided into a training set (≈ 80%) and
a test set (≈ 20%). In each set there were 2 classes: (i) the positive
class x75435 (open D type), and (ii) the negative class other (tun-
ings not matching x75435). The song files were randomly selected
for each set. The selection process was random, aside from the
following conditions: different recordings of the same song could
not appear in both the training set and test set; studio recordings
and live recordings should appear in both the training set and test
set. These conditions were enforced to prevent the model from
overfitting on characteristics that were not related to the guitar
tuning. Although Dataset 1 is relatively small, and only features one
artist, the audio recordings that it is comprised of were recorded
with a variety of different tools in various different locations, so a
catalogue of varied data is spread across the partitions. This should
help to constrain a model, so it disregards extraneous features such
as recording conditions, and focuses instead on features related
to the guitar tuning. GTC is a novel and complex task, so limiting
some early experiments to the work of a single artist and 2 tun-
ing classes, helps to provide some consistency and simplify the
problem. The training set contained 15 song files from the x75435
class, and 14 song files from the other class. The test set contained
the 4 song files from the x75435 class, and 4 song files from the
other class.3 Songs were sliced into 1s/3s/9s clips prior to input
into CNN 1. The clips from the training set were randomly split into
2 subsets—𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = 80%, 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 = 20% (this also occurred in
the subsequent partitions/experiments).
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3.2.2 Data Partition 2: Open D/Open G. This partition features 23
recordings from Dataset 1 and 8 recordings from Dataset 2. It was
used to evaluate the ability of a CNN to classify guitar tunings as
x75435 (open D type) or x57543 (open G type). Furthermore, it was
used to compare model performance on authentic test data from
similar conditions with a Joni Mitchell (JM) test set, and disparate
conditions with a multi-artist (MA) test set. The files in Dataset 1
were divided into a training set (≈ 80%) and a JM test set (≈ 20%).
A sample of 8 suitable songs was taken from Dataset 2, for the MA
test set. In each set there were two classes: (i) x75435 (open D type),
and (ii) x57543 (open G). The training set contained 11 song files
from the x75435 class, and 8 song files from the x57543 class. The
JM test set contained 2 song files from each class. The MA test set
contained 4 songs from each class.3 Songs were sliced into 9s clips
prior to input into CNN 1.

3.2.3 Data Partition 3:Multiclass. This partition features 245 record-
ings from Dataset 3 and 46 recordings from Dataset 2. It was used
to evaluate how well a CNN could differentiate between 5 tun-
ing classes (3.1.4), when trained on synthetic data and tested on
synthetic data from similar conditions and authentic data from dis-
parate conditions. It is the only data partition in which a capo is not
present in any of the guitar audio; this was done so that we could
more easily investigate the ability of an NN to learn features related
to pitch class for tuning classification. The files in Dataset 3 were
divided into a training set (≈ 80%) and a test set (≈ 20%). A sample
of 46 suitable songs was taken from Dataset 2, so the trained model
could be evaluated using authentic data from disparate conditions.
Songs were sliced into 30s clips (preliminary tests indicated this
was an effective length) prior to input into CNN 2.

3.2.4 Audio Pre-processing. To preserve the high frequency con-
tent and the dynamic range, the sample rate was set at 44.1 kHz and
the bit depth at 16-bit, with the log mel spectrogram input. These
features were deemed to be less vital for the chromagram input,
so the audio was downsampled to 22.5 kHz. Normalisation was ap-
plied to ensure the amplitude was consistent. To retain the dynamic
range of the music, song files were normalised in their entirety. The
alignment level was set at -18 dBFS as the EBU recommends this as
the maximum alignment level in digital systems [48]. Models may
learn different features depending on the sample length; to provide
insights into the effect sample length has on model performance,
the CNN was trained and tested independently on samples of 1s, 3s,
9s, 30s in length. Song files were sliced into samples of the desired
length; zero padding was automatically applied to samples that
were too short, and samples that were too long were automatically
cropped. If clips were multichannel, the first audio channel was
used as input and any additional channels were ignored.

3.2.5 Input Representations. The input representations used in the
experiments were spectrograms (4.1), log mel spectrograms (4.2–4.3),
and chromagrams (4.4) (see Fig. 2–3). Perceptually relevant repre-
sentations of audio data can improve the performance of DL models
designed for MIR tasks [4]. The log mel spectrogram was chosen as
an input representation as it models human perception of loudness
and pitch, and it is “efficient in its size while preserving the most
perceptually important information” [8]. Log mel spectrograms are
also used effectively in DL frameworks for tasks such as generative

Figure 2: Log mel spectrogram sample from Dataset 1.

Figure 3: Chromagram sample from Dataset 2.

audio modelling [12] and AMT [19]. To produce the log mel spec-
trogram: the audio was transformed to the frequency domain by
STFT. The STFT was converted into a mel-frequency STFT with 128
mel-filterbanks. Window size for the FFT was set to 512 samples.
The Hann window function was applied to the FFT windows. The
hop length between STFT windows was set to 256 samples. The
decibel scale was applied to the mel spectrogram tensor with the
minimum negative cutoff set to -80 dB.

The second input representation was a chromagram. Pitch can
be divided into two elements, tone height and chroma. “The tone
height refers to the octave number and the chroma to the respec-
tive pitch spelling attribute contained in the set {𝐶,𝐶#, 𝐷, . . . , 𝐵}...
A pitch class is defined as the set of all pitches that share the same
chroma” [36, p. 123]. Chroma features aggregate all spectral in-
formation that pertain to a given pitch class into one coefficient.
A chromagram can be derived from a pitch-based log-frequency
spectrogram by summing all pitch coefficients that are part of the
same chroma [36]. While a large amount of information is lost in a
chroma representation, for certain tasks, “this loss in information is
desired since it introduces a high degree of robustness to variations
in timbre” [36, p. 124]. Additionally, it is more compact than many
other input representations, and it allows us to discard tone height
as a feature; this is useful when studying the ability of an NN to use
key and scale as features, while ignoring other pertinent features
that can be easily detected by less complex algorithms (e.g., a basic
pitch estimation algorithm could be used to determine the lowest
pitch that is playable in a given tuning).

3.2.6 CNNs. Two relatively small CNNs were chosen to ensure
the systems were economical and to reduce overfitting. CNN 1
was adapted from an architecture designed for bird audio detec-
tion [17, 26]; in preliminary tests it performed well when trained
on spectrograms, outperforming a much larger CNN, and an NN
comprised only of dense layers. It was used in the 2 class experi-
ments with spectrograms (4.1) and log mel spectrograms (4.2–4.3).
CNN 2 was adapted from an architecture designed for keyword
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spotting [49, 51]. It was used in the 5 class experiment (4.4). In
preliminary tests it performed well when trained on synthetic data.
The model was originally designed to take MFCCs as input, but var-
ious inputs were tried in our preliminary tests—a chromagram was
chosen as input, since the performance of models trained on chro-
magrams was comparable with models trained on more complex
and memory intensive representations (e.g., CQTs, spectrograms).
Additionally, most information related to the harmonic spectrum,
pitch range, and inharmonicity is not present in the chromagram,
which enabled us to make inferences about how the CNNmay learn
features such as pitch classes, scales, and key.

CNN 13 was comprised of 4 convolutional layers, followed by
3 dense layers. A sequence of 4 combinations of convolution and
pooling condensed the input into 16 feature maps. The condensed
features were classified by 3 dense layers with 256, 32 and 1 unit(s).
A Leaky ReLU activation function was used for hidden layers and
a sigmoid function for the output layer. Batch normalisation was
applied after every layer, and dropout was applied after every dense
layer [46]. The total number of trainable network parameters was
679,889 with 9s samples as input. Training was carried out over 25–
50 epochs; learning curves were used to select a suitable number of
training epochs. The batch size was 16. Data was shuffled to ensure
the network was unaffected by the order in which samples were
presented to it. A binary-crossentropy loss function calculated the
difference between the network output and the expected output.
The learning rate was set to 0.001 and the Adam optimisation algo-
rithm updated the network weights. Most models could be trained
within minutes using an NVIDIA GeForce RTX 3060 Ti GPU, due to
the relatively small size of the datasets/networks. Trained models
were tested using independent test sets. Inputted test samples re-
turned probability outputs between 0 and 1 in a continuous range.
This output data was used to plot ROC curves and determine AUC
scores. The probability outputs were also used to make nominal
predictions (e.g., “open D”, “other”) on samples and songs.

CNN 23 was comprised of 3 convolutional layers, followed by
2 dense layers. A sequence of 3 combinations of convolution and
pooling condensed the input into 64 feature maps. The condensed
features were classified by 2 dense layers with 64 and 5 units. A ReLu
activation function was used for the hidden layers and a softmax
function for the output layer. Batch normalisation was applied to
the convolutional layers and dropout was applied after the first
dense layer. The total number of trainable network parameters was
353,605 with 30s samples as input. Training and testing was the
same as with CNN 1, except the batch size was 32 and the sparse
categorical crossentropy loss function was used.

4 RESULTS AND DISCUSSION
Models were trained and tested 5 times with different random seeds
(e.g., random weight initialisation, random training/validation split
etc.). Receiver operating characteristic (ROC) curve and area under
the curve (AUC) were used to evaluate performance in the 2 class
studies (see Sections 4.1, 4.2, and 4.3). The ROC curve shows the true
positive rate against the false positive rate at all classification thresh-
olds. AUC gives an aggregate measure of the 2D area under the
ROC curve; an advantage of AUC is its classification-threshold in-
variance [16]. F-score was used in the 5 class study (see Section 4.4).

Table 2: AUC for CNN 1 models with audio processing.

Model AUC
Mean SD

Source sep + edit 0.771 (0.06)
Source sep 0.749 (0.04)
No processing 0.698 (0.03)

The F-scores were calculated for each label and their weighted av-
erage was found—this approach was appropriate for the multiclass
targets and accounted for label imbalance. Accuracy was also used
(Sample Classification = ACC 1, Song Classification = ACC 2). In
preliminary tests (see Section 4.1) a spectrogram was used as input;
the best performing model in these tests attained an AUC of 0.771.
In Sections 4.2 and 4.3 a log mel spectrogram was used as input.
This improved performance—the best performing model attained
an AUC of 0.893. Section 4.4 was the only experiment that used
CNN 2, chromagrams, synthetic data, and 5 tuning classes; the best
performing model achieved a classification accuracy of 73.9% on
the synthetic test set and 67.4% on the authentic test set.

4.1 Open D/Other: Data Processing Study
Table 2 indicates how differently processed versions of Data Parti-
tion 1 affected performance. CNN 1 performance increased notice-
ably when source separation was applied. Model performance also
increased as a result of audio editing (see Section 3.1.2).

4.2 Open D/Other: Sample Length Study
Figure 4 and Table 3 show that the model trained on 9s samples was
most effective, and performance deteriorated with shorter samples.
We could infer from this that, for GTC, fine-grained features (e.g.,
inharmonicity, harmonic spectrum) are less useful than longer term
temporal features (e.g., chord voicings, transitions between chords).
However, it is also possible that the model was unable to learn these
fine-grained features due to other factors such as the small size of
the dataset and extensive capo usage. Additionally, the CNNwas not
originally designed to receive samples of less than 3s, so it is possible
that an NN that is specially designed to extract fine-grained features
could derive information that is equally useful from shorter samples,
and the improved performance with longer samples is simply an
attribute of this particular architecture. Table 3 shows that models
trained on 9s and 3s clips achieved high AUC and accuracy scores.
The 9s models achieved an average song classification accuracy of
97.5%. This result is very promising, especially as the model had to
make classification decisions irrespective of the position of the capo
on the guitar. The results suggests that CNNs can be used effectively
for GTC. However there are a number of caveats that should be
considered when assessing this result: (i) there were only 8 songs
in the test set, (ii) the task of multiclass tunings classification is
likely to be considerably harder, (iii) the data in the train and test
sets was derived from a single artist.

4.3 Open D/Open G Study
Table 4 shows that the model performs well on test data from
similar conditions, achieving a song classification accuracy of 95.0%.
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Figure 4: ROC plots (selected) for Open D/Other models.

Table 3: AUC and ACC for CNN 1/Data Partition 1.

Model AUC ACC 1 ACC 2
Mean SD Mean SD Mean SD

9s 0.893 (0.03) 81.8% (2.30) 97.5% (5.00)
3s 0.823 (0.06) 74.2% (5.37) 87.5% (13.69)
1s 0.627 (0.12) 57.4% (10.15) 52.5% (14.58)

Table 4: AUC and ACC scores for CNN1/Data Partition 2.

Model AUC ACC 1 ACC 2
Mean SD Mean SD Mean SD

JM 0.867 (0.05) 80.0% (4.58) 95.0% (10.0)
MA 0.577 (0.05) 57.3% (4.30) 65.0% (5.0)

This result, which is comparable with the results in Section 4.2, is
encouraging; it provides further evidence that NNs can be used
effectively for GTC. However, while the model exhibited skill when
tested with data from disparate conditions, accuracy decreased
markedly (-30%).

4.4 Multiclass Study
Table 5 and Table 6 show that the model performed reasonably well
on the synthetic test set, attaining an average F-score of 0.67 across
the 5 classes. The model did not perform as well on the authentic
test set, with an average F-score of 0.52. Nevertheless, this is a
reasonable result if we consider the following factors: the model
had to differentiate between five tuning classes; the chromagram
input does not include lowest pitch range information which is
likely to have made the identification of standard tuning much
easier; the model was trained on an imbalanced synthetic dataset;
the authentic test set featured noisy real-world data from disparate
conditions. Figure 5 shows tuning predictions from a selected model
that was tested on real songs from Dataset 2.

Figure 5: Predictions on an independent test set of real songs.

Table 5: Average F-score for five tuning class models.

Test Set 𝐹1 Clips 𝐹1 Songs
Mean SD Mean SD

Synthetic 0.649 (0.03) 0.666 (0.05)
Authentic 0.474 (0.06) 0.516 (0.10)

Table 6: Average accuracy for five tuning class models.

Test Set ACC Clips ACC Songs
Mean SD Mean SD

Synthetic 65.4% (0.03) 67.8% (0.05)
Authentic 43.4% (0.07) 48.3% (0.11)

5 CONCLUSION AND FUTUREWORK
This research provides evidence that neural networks can classify
guitar tunings from audio. Future work will investigate capo and
open string detection with spectrograms/CQTs. The modelling and
generalisation proficiency of DL models improves significantly
with more data. Therefore, a priority in future work will be the
creation of a large synthetic GTC dataset with a diverse range of
timbres and time alignment between audio and tablature; this can
be easily achieved with the approach proposed in Section 3.1.4.
An algorithm that outputs a separate tuning prediction for each
string would provide greater flexibility for GTC. It could enable the
identification of tunings not present in the training data. However,
the creation of such an algorithm is likely to be challenging, so the
feasibility of this approach requires investigation. Traditional DSP
and ML methods may be more appropriate for certain GTC tasks,
so they require investigation. Audio segmentation in this work
did not account for the onset of notes/chords/bars. Future work,
will investigate onset detection techniques for GTC, so individual
chords, notes, and bars can be isolated, before input into a model.
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