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Abstract 

Data science is playing an increasingly important role in the design and analysis of engineered biology. This has been fueled by the 
development of high-throughput methods like massively parallel reporter assays, data-rich microscopy techniques, computational 
protein structure prediction and design, and the development of whole-cell models able to generate huge volumes of data. Although 
the ability to apply data-centric analyses in these contexts is appealing and increasingly simple to do, it comes with potential risks. 
For example, how might biases in the underlying data affect the validity of a result and what might the environmental impact of large-
scale data analyses be? Here, we present a community-developed framework for assessing data hazards to help address these concerns 
and demonstrate its application to two synthetic biology case studies. We show the diversity of considerations that arise in common 
types of bioengineering projects and provide some guidelines and mitigating steps. Understanding potential issues and dangers when 
working with data and proactively addressing them will be essential for ensuring the appropriate use of emerging data-intensive AI 
methods and help increase the trustworthiness of their applications in synthetic biology.

Key words: data hazards; data science; AI; synthetic biology; ethics

© The Author(s) 2024. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which 
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction
Synthetic biology has seen a rapid expansion in the use of data-
centric approaches for biological design over the past decade (1–3). 
By employing methods like deep learning trained on the vast bio-
logical datasets that are now becoming available (4–8), researchers 
can predict the behavior of complex biological systems and design 
new biological parts and circuits with unprecedented precision 
and control (9–12). While these advances have the potential to 
revolutionize various aspects of biotechnology, they also present 
a number of challenges and potential risks that require careful 
consideration.

One of the primary challenges in this area is the quality and 
reliability of the data used to build and validate the models (13). 
The accuracy and utility of data-centric models depend heavily 
on the underlying data that are used to build them. Data can be 
prone to errors, biases, and inconsistencies (14–16). As a result, 
models based on flawed or incomplete data can lead to unex-
pected results, such as the creation of a genetic circuit or synthetic 
organism with unpredictable behavior, or the inference of erro-
neous biological insights that hamper progress in fundamental 
and applied research.

The increasing complexity of data-centric approaches in syn-
thetic biology also raises concerns about their interpretability and 
transparency (17). As models become more intricate and incorpo-
rate larger datasets [e.g. large neural networks (4, 9, 12) or whole 
cell models (18)], it becomes increasingly difficult for researchers 
to understand the underlying mechanisms driving their predic-
tions. This lack of transparency hinders efforts to validate and 
improve these models, which is essential for ensuring their safe 
and responsible application.

The potential misuse of data-centric approaches in synthetic 
biology poses a further significant risk. The ease of access to data 
science tools may enable nefarious actors to develop harmful bio-
logical agents for purposes such as bioterrorism or to disrupt eco-
logical systems intentionally. In addition, the rapid dissemination 
of synthetic biology techniques and knowledge, combined with 
a culture that fosters collaboration and innovation, could also 
increase the risk of an accidental (or willing) release of biological 
agents with unforeseen (or underestimated) consequences. Many 
of the models themselves also pose a significant environmental 
impact that is often unseen, with vast amounts of computing 
resources and electricity required to generate predictions or train 
models (19).
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More broadly, the increased use of data-centric approaches 
across all science and technology has also led to many ethical 
oversights and mistakes (20–22). These have often appeared avoid-
able retrospectively, with the general public and researchers from 
other disciplines raising alarms before the tools in question were 
deployed (23). However, data science and AI practitioners, who 
have the power to make decisions to improve the positive impact 
of their research, continue to find it difficult to engage with ethics 
work (24–26). In many cases they are disincentivized to do so, 
they often are not supported or trained appropriately, and many 
feel that ethics frameworks are either vague, unstructured, and 
difficult to apply, or worse still, just box ticking exercises that 
outsource the ethical judgment to committees who don’t always 
understand what their research can do. Some initiatives attempt 
to overcome these issues. For example, the “AI Blindspot” project 
(https://aiblindspot.media.mit.edu) aims to proactively uncover 
potential oversights as an AI project is developed, highlight-
ing potentially harmful unintended consequences. While hugely 
valuable for improving the safety of AI research, existing frame-
works like this are typically focused purely on impacts that would 
directly affect humans. The potential of AI systems to harm the 
environment and wider ecosystems is often neglected, but of 
paramount concern when dealing with AI applied to engineered 
biology.

The use of data-centric approaches in synthetic biology offers 
exciting prospects for advancing our ability to engineer biologi-
cal systems. However, it is crucial to proactively acknowledge and 
address the challenges, risks, and ethical considerations associ-
ated with these new methods. In this work, we present a com-
munity developed assessment framework called “Data Hazards” 
that aims to address some of these difficulties by supporting the 
more thorough consideration of potential data-related hazards 
that might exist as a project develops. While the framework is 
field agnostic, here we develop several extensions specific for syn-
thetic biology applications, present two case studies to illustrate 
how the framework might be applied to protein design and whole-
cell modeling tasks, and end by discussing potential mitigation 
strategies for issues that could arise. This work contributes to 
the ongoing conversations about responsible innovation in syn-
thetic biology (27, 28) and the challenges that applications of data 
science bring to the field.

2. Materials and methods
2.1 Data hazards resources
The Data Hazard labels (Figure 1a) are generally applied to projects 
through workshops or self-assessment and, following this, the 
label-specific safety precautions and cross-label hazard mitiga-

Figure 1. Overview of the data hazard labels. (a) Standard set of data hazard labels. Each label has been designed to clearly capture a core area of 
potential concern. One or many labels may apply to a piece of data science research. (b) Potential extensions to data hazard labels that address 
challenges common in synthetic biology research.

https://aiblindspot.media.mit.edu
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tion resources are used to identify potential interventions to 
mitigate risks. The Data Hazards website provides a user-guide 
for these common uses of the labels. This includes teaching 
materials (e.g. lesson plans and printable Hazard labels), work-
shops (e.g. checklists, timings, e-mail and feedback templates, 
slides, facilitating tips), a self-assessment guide, hazard mitigation 
resources, guides to displaying the labels, and finally case studies 
from users. All data hazard labels are available as Supplementary
Information.

3. Results
3.1 A community framework for assessing data 
hazards
Data Hazards is an open-source, Creative Commons Attribution 
(CC-BY) licensed resource that aims to support data science and 
AI practitioners in identifying the broad risks associated with their 
work such as environmental concerns, misuse and algorithmic 
bias, and allows the to consider practical processes and activ-
ities to mitigate these (29). The resource is centered around a 
community-generated and evolving vocabulary of ethical risks, 
presented as “hazard labels” that are inspired by chemical warn-
ing signs (Figure 1a). Each label consists of an image, name, 
description, examples of where it applies, and safety precautions 
(Table 1). These act to facilitate interdisciplinary conversations 
and individual reflection and it is expected that they will lead to 
mitigating actions to address any issues raised. Without such safe-
guards, these labels could cause more harm than good, acting 
as “attention hazards” in their own right. Hazard labels asso-
ciated with a project and mitigating actions can be displayed 
in posters, theses, ethical considerations sections of conference 
presentations and papers, or simply used as part of an internal 
process to identify necessary safeguards to improve the quality of 
research outputs. The hazard labels are relevant to any project 
that uses data, statistics, algorithms, machine learning, or AI, 
and have been applied to diverse projects spanning natural lan-
guage processing in social media (30, 31), molecular modeling of 
molecules in neurons (32), and the integration of medical data 
sets (29, 33). Furthermore, by extending an existing safety frame-
work that experimental scientists are already familiar with, and 
which covers both human and environmental impacts, we believe 
the barrier to adoption is lowered. When designing experiments 
in a laboratory, chemical hazards are assessed, and safeguards 
put in place; something that we feel should extend to the AI tools 
developed to support such research.

The project is managed through a website (https://data
hazards.com), which houses the most up-to-date information 
regarding the aims and origin of the project, how data haz-
ards can be best used, hints and tips for running workshops or 
self-assessing your own projects, options for contributing to the 
project, upcoming events, and examples of data hazard label use. 
The entire website and the associated resources are all stored in 
a public GitHub repository to allow for versioning control of all 
elements as the project develops.

3.2 Data hazards specific to synthetic biology 
research
The ability for data science to be applied to biological design 
means that all existing data hazards could potentially be appli-
cable to synthetic biology research. But does synthetic biology 
bring further hazards to the table? We assessed some of the core 
challenges faced when using data-centric approaches to engineer 
biology and found five new data hazards that, while being relevant 

to synthetic biology, also touched upon key aspects of biological 
data more broadly.

Two such hazards relate to the nature of data typically 
collected from biological systems. Firstly, available biological 
datasets often have high levels of uncertainty associated with 
their measurements and may also be incomplete, providing only a 
limited picture of the underlying system. Both of these difficulties 
stem from biological processes being challenging to measure due 
to their complexity and dynamic nature, as well as an inability to 
observe these processes directly, meaning that proxies are com-
monly used (e.g. fluorescent reporter proteins used to measure 
gene expression). These factors result in inaccurate or incom-
plete datasets, which may have significant consequences when 
applying data science methods without an understanding of these 
limitations.

The interdisciplinary nature of synthetic biology can also lead 
to risks, as data of different types and from different sources may 
need to be integrated as part of data science pipelines. Further-
more, reproducibility of results across the life sciences remains 
a major challenge, and while there are efforts to improve the 
situation through the use of calibrants (34, 35) and minimal infor-
mation standards (36, 37), large variations in measurements of 
even identical biological processes between different labs means 
that data scientists need to be keenly aware of possible incom-
patibilities in the data they use (e.g. measurements in different 
units). Perhaps even more difficult to catch are genetic differ-
ences in supposedly identical cell lines (38, 39), batch-to-batch 
variation in reagents (e.g. chemicals and media) (40), or the unin-
tended variation in environmental factors when repeating exper-
iments performed by other labs. Such information is often not 
captured during experiments and places questions over the qual-
ity and validity of the data produced and can potenitally impact 
downstream uses (e.g. for parameter fitting during modeling).

Finally, while the existing data hazard “capable of direct harm” 
(Figure 1a) captures impacts on other human-beings, synthetic 
biology opens up the potential for harm to be caused to other 
organisms and ecosystems more broadly [e.g. gene drives (41)], 
as well as the opportunity for experimental hazards that arise 
in the laboratory, but stem from data informed decisions with 
unexpected consequences (e.g. the accidental design of a new-to-
nature enzyme that catalyzes an unknown ecologically harmful 
reaction).

For each of these cases, we developed new hazard labels that 
aim to capture their core features and act as an extension to 
the current library and recommendations (Figure 1b; Table 2; 
Supplementary Material). 

3.3 Case study 1: de novo protein design
To demonstrate how the data hazards framework applies to dif-
ferent areas of synthetic biology, we began by exploring the use 
of data-centric approaches for de novo protein design (Figure 2a). 
The ability to effectively design new proteins has tremendous 
potential for applications across numerous fields: from cataly-
sis via novel or engineered enzymes to the sensing of molecules 
and synthesis of new materials. Due to the many degrees of free-
dom within protein chains and the complexity of the interactions 
involved, computational methods have been entrenched in the 
protein design field as early as the 1980s, first based on physic-
ochemical principles (such as molecular dynamics) and requiring 
a high level of expertise to execute. The turn of the century saw 
the usage of optimization algorithms combining constraints and 

https://datahazards.com
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Table 1. Descriptions of data hazards with synthetic biology examples

Data hazard Description Synthetic biology examples Potential safeguards

General data hazard Data science is being used and leading 
to negative outcomes. This hazard 
applies to all data science research 
outputs.

All areas that make use of data science 
approaches.

Proactively explore potentially neg-
ative applications and implement 
mitigating actions.

Lacks community 
involvement

Technology is being produced without 
sufficient input from the community 
it is designed to serve.

Proprietary ML-based algorithms devel-
oped to support a synthetic biology 
based therapeutic with no Patient and 
Public Involvement and Engagement 
(PPIE).

Engage with community stakehold-
ers through consultations and 
participatory design processes.

Reinforces existing 
bias

Reinforces unfair treatment of indi-
viduals and groups. This may be due 
to input data, algorithm or software 
design choices, or society at large.

Focus on data collection for a limited 
set of model organisms. May mean 
our understanding and models do not 
translate to biology at large and lead 
to poor decisions when engineering 
non-model species.

Apply algorithms to detect bias 
in datasets and model outputs, 
helping guide new data collec-
tion/generation to alleviate found 
biases.

Difficult to under-
stand

Danger that the technology is difficult 
to understand. This could arise due 
to a lack of interpretability (e.g. neu-
ral nets), lack of documentation, or 
problems with implementation details 
that are difficult to spot.

Deep learning models of gene reg-
ulatory sequence and proteins. 
Large-scale models of cellular pro-
cesses (e.g. whole-cell models, 
metabolic models, regulatory models)

Use standardized data formats 
(e.g. SBOL) and seek domain 
expertise to apply explainable AI 
approaches.

High environmental 
impact

Methodologies are energy-hungry, 
data-hungry (requiring increasing 
amounts of computation), or require 
special hardware that require rare 
materials and resources that are 
non-sustainable.

Large deep-learning-based models 
require huge amounts of compute 
for training and often significant com-
pute for prediction, which typically 
has a hidden environmental impact. 
Similarly whole-cell models can take 
days to run and generate huge data 
sets that require significant storage.

Explore the use of surrogate mod-
eling to reduce computational 
resources required, optimize code 
and hardware used.

Risk to privacy Possible risk to the privacy of individu-
als whose data is processed.

Engineering of personalized medicine 
applications (e.g. CAR T cell engineer-
ing).

Anonymize data where possible.

Lacks informed 
consent

Datasets or algorithms use data 
which have not been provided with 
the explicit consent of the data 
owner/creator. These type of data 
often lack other contextual informa-
tion, which can also make it difficult 
to understand potential biases.

Bioprospecting studies of large 
genomic data bases often make use of 
sequenced samples where consent of 
local people may not have been given.

Develop clear guidelines for obtain-
ing informed consent and ensure 
transparency in data usage.

Automates decision-
making

Automated decision-making can be 
hazardous in many different ways. 
Important to ask: whose decisions 
are being automated, what automa-
tion can bring to the process, and 
who benefits or is harmed by this 
automation?

Increasing use of automation and 
design of experiment approaches 
when screening libraries and perform-
ing complex laboratory tasks. Errors 
in data could result in poor decisions 
being automatically made.

Identify areas where decisions are 
being automated and adapt exist-
ing safety frameworks to increase 
testing/validation of design 
choices, prior to deployment.

Capable of direct 
harm

The application area of this technology 
means that it is capable of causing 
direct physical or psychological harm 
to someone even if used correctly.

Many areas of synthetic biology have 
dual-use (e.g. toxin production, 
synthetic viruses, etc.)

Assess level of harm and ensure suf-
ficient containment is in place to 
avoid harm.

Danger of misuse There is a danger of misusing the 
algorithm, technology, or data 
collected.

Synthetic biology often has dual-use 
and considering new-to-nature bio-
logical parts and systems can have 
difficult to predict unintended con-
sequences (e.g. gene drives, toxin 
production, engineering of viruses).

Ensure thorough testing of models 
prior to release including the iden-
tification of potential “emergent 
abilities” in neural network-based 
generative models.

Classifies and ranks 
people

Ranking and classifications of peo-
ple should be handled with care. We 
should ask what happens when the 
ranking/classification is inaccurate, 
when people disagree with how they 
are ranked/classified, as well as who it 
serves and how it could be gamed.

Less common in synthetic biology, but 
may become an issue if personalized 
medicine becomes established.

Seek engagement with society about 
how classifications might cause 
negative outcomes and aim to 
build broader agreement on how 
issues are best handled.
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Table 2. Descriptions of additional data hazards relevant for synthetic biology

Data hazard Description Synthetic biology examples Potential safeguards

Uncertain accuracy 
of source data

The accuracy of the underlying data is 
not known and so its use may lead to 
erroneous results or introduce bias.

Metabolic modeling where inaccurately 
labeled conversions (e.g. due to com-
putational prediction) might lead to 
unexpected products being produced 
by engineered pathways.

Attempt to classify uncertainty if 
possible to better inform deci-
sions and understand the range 
of possible outcomes.

Uncertain com-
pleteness of source 
data

Underlying data are of an uncertain 
completeness and have missing 
values that causes biased results.

Whole-cell models which attempt to 
use all the data available, but which 
may be limited. Protein design often 
builds on sequences on those proteins 
so far seen, which may bias design 
software.

Enrich data sets with missing data 
or attempt to correct for known 
biases.

Integration of 
incompatible data

Data of different types and/or sources 
are being used together that may not 
be compatible with each other.

Models that need to integrate informa-
tion about many different processes 
in a cell.

Convert data to compatible for-
mat where possible of collect 
complementary data that is 
compatible.

Capable of ecologi-
cal harm

This technology has the potential to 
cause broad ecological harm, even if 
used correctly.

Gene drives used to cause extinction 
events and in situ engineering of 
microbiomes.

Ensure sufficient physical contain-
ment to avoid unexpected release 
and barriers in place if deployed.

Potential experi-
mental hazard

Translating technology into experi-
mental practice can require safety 
precautions

Toxin production, virus-like particles, 
work with potentially pathogenic 
microbes.

Assess possible safety issues and 
put in place necessary safety 
measures.

Figure 2. Data hazards identified for the synthetic biology case studies. (a) Data hazards associated with de novo protein design. Protein design is 
intrinsically affected by the data used to inform models and approaches, particularly from ‘incompleteness of data’: proteins that work are largely the 
ones selected by evolution, which are only a small fraction of what is possible. Traditional design methods rely on physical description of proteins as 
three-dimensional objects, but more recent data-intensive approaches operate on a much less intuitive level, i.e. often ‘harder to understand for 
non-experts’. These methods can also involve millions of parameters, resulting in a ‘high environmental energy cost’ for training. As proteins are some 
of the most versatile molecules in biology and medicine, there is a great ‘potential for misuse’ of data and design outcomes, and, for certain designs, 
care should be taken to ‘evaluate experimental risks’ when moving from the digital world to the laboratory. (b) Data hazards associated with 
whole-cell models for engineering biology. Whole-cell models rely on ‘integrating diverse and potentially incompatible data’, as well as battling with 
‘gaps in the data’ that is available. The scale of these models means that they often have a ‘high environmental cost’, both in terms of their 
computational execution and the storage of results. This scale and complexity also makes it ‘impossible to fully understand’ how they work, making 
verification of their predictions and results difficult; especially as many of the modeled processes cannot be directly observed. With human whole-cell 
models a long-term goal of the field, their future use could open up ‘privacy concerns’ whereby models are tailored using personal information and 
potentially then used to ‘automate decisions’ related to treatment of disease. Furthermore, whole-cell models have been so-far been developed by a 
relatively ‘small community with little community input’, while their use is potentially broad with wide impact across the entire field.

statistics-based terms. While these methods were more accessi-
ble than physics-based methods, they were often slow and didn’t 
capture all the relevant features of proteins (42).

Recently, as with many other areas of synthetic biology, 
there has been a surge in the application of machine learning 
approaches. The need for faster and more accurate design pro-
tocols, and the large protein datasets now available because of 
high-throughput sequencing and structural biology techniques 
has provided the impetus for data-centric approaches in nearly all 
aspects of protein design. Neural networks, such as AlphaFold (12) 
and RoseTTAFold (43), and language models, such as OmegaFold 
(44) and ESMFold (45), initially developed for protein structure 

prediction, have led to the development of new protocols with 
increased speed and accuracy for protein–protein and protein–
ligand interaction. The availability of such tools coupled with the 
accessibility of cloud-based computing resources is leading to the 
democratization of various aspects of protein design (46). While 
this democratization is overwhelmingly positive for the scientific 
community and society at large, we should be mindful of the 
potential risks that this ease of use brings.

One extreme example of potential misuse is the design of pro-
tein toxins, which prompted calls for regulation already in the 
early 2000s (47). Protein toxins that occur naturally are highly 
effective at interfering with cell activity. These toxins can alter the 
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production or breakdown of molecules involved in metabolism, 
degrade enzymes, or cause cell lysis by creating unregulated pores 
(48). The difficulty of extracting toxin samples at a scale has 
prevented potential misuse. However, with the aforementioned 
methods, one can, in principle, not only design de novo toxins that 
could readily be synthesized at a scale, but also optimize them 
for greater affinity and specificity. For example, having access to 
how various protein complexes form in humans and different pro-
teins interact in such complexes (49) could be used to identify 
candidates. One can then design a toxin that interferes with the 
natural life cycle of those candidates. Depending on the strategy, 
a combination of readily available deep learning toolkits can be 
used [e.g. quick design of protein degraders (50)]. It is precisely 
due to this wide availability of easy-to-use tools that we must 
carefully consider the potential for misuse and how it can be
mitigated.

While different data-centric protein design projects may 
require bespoke mitigation strategies, it is also crucial to adopt 
general strategies (51). One of the most important is the awareness 
of the problem. On an individual level, this could mean adding a 
brief summary of the data hazards in the data availability section 
of manuscripts. For a more concerted effort, we should use any 
conference opportunities to discuss effective long-term solutions. 
This would be necessary to solve any implementation details of 
a practical strategy such as putting any data, including model 
parameters, behind access schemes. Such a strategy may require 
new technological infrastructure to be built and maintained to 
maximize the accessibility of good faith individuals whilst limiting 
any potential misuse.

3.4 Case study 2: whole-cell models for 
engineering biology
During the first decade of the 21st century, the total amount of 
genome sequence data being produced doubled approximately 
every 7 months (52). This trend has since continued, making 
genomics one of the largest domains within data science, with 
between 2 and 40 billion gigabytes of data expected to be pro-
duced annually by 2025 (52). Unlike other big data domains, 
which involve mostly centralized data, genome data acquisi-
tion is highly distributed across different countries, universities, 
and other research laboratories. This has resulted in large quan-
tities of often heterogeneous data, which may not always be
compatible.

Whole-cell computational models (WCMs) have emerged as 
state-of-the-art tools for integrating vast quantities of heteroge-
neous sequence data, generated by high-throughput measure-
ment techniques, into a single knowledge base for a given organ-
ism (53). This unification process involves the curation of decades’ 
worth of primary literature and experimental databases for deter-
mining parameter values, including protein half-lives, translation 
efficiencies and metabolic reaction constraints, to name just a 
few. The first model of this type was developed for Mycoplasma 
genitalium (18). More recently, work utilizing a more advanced 
WCM of Escherichia coli, which encompasses 19 119 parameters 
linked mechanistically by more than 10 000 interdependent math-
ematical equations (54). These parameters were extracted via a 
“deep curation” process that used over 400 publications spanning 
six decades and covering three lab strains of E. coli. The model 
comprises several sub-models, each focusing on distinct cellular 
processes, that are interconnected through shared resources and 
parameters, enabling a holistic representation of cellular dynam-
ics under different environmental conditions. Simulating this 

model involves solving several types of mathematical equations 
simultaneously, such as ordinary differential equations, stochastic 
processes, and statistical models, producing over 200 000 time-
series as output. The complexity of the model requires high-
performance computing for execution, which may cause inequal-
ity of access, but may also beneficially act as a barrier against 
misuse. The intricacy of WCMs also complicates comprehension 
and interpretation of their output, which may discourage or limit 
community involvement. However, efforts to aid interpretability 
and visualization are being developed (55).

Within this complexity lies valuable predictive power that 
is being harnessed to design and conduct experiments in silico, 
accelerating scientific discovery (56–58). As WCMs become more 
complete and accurate, and genome engineering and synthe-
sis become widely accessible, model-based genome design opens 
tremendous opportunities for the rapid engineering of biology for 
numerous types of application (59, 60). Utilizing WCMs in this 
way, however, has the potential to reinforce existing biases in the 
data used for their derivation, making experimental validation
crucial.

The increased predictive power of WCMs compared to smaller-
scale models, along with their ability to describe emergent behav-
ior, facilitates more complex bioengineering tasks and could sig-
nificantly accelerate synthetic biology design cycles. However, 
automated decision-making in this context may inadvertently 
introduce biases, potentially compromising the safety and effi-
cacy of engineered biological systems. For example, the engi-
neering of immune cells is currently being explored as a possible 
route toward novel cancer therapeutics (61). Whole-cell models 
of human cells (62, 63) could provide a foundation on which to 
build this technology by enabling efficient in silico assessment 
of different cellular reprogramming strategies. However, as high-
lighted in numerous medical case studies of automated decision-
making using AI, the inherent biases present in medical datasets 
commonly used to train models or fit parameters are often not 
representative of the full range of demographics on which the 
therapeutic may be used (64). This bias could lead to the devel-
opment of WCMs that aid the automated design of personalized 
therapies with a narrow operating window that have the poten-
tial to cause harm to subsets of the population. In addition to 
issues related to the application of WCMs, the high computa-
tional cost of running these large-scale simulations also has major 
environmental implications. For this reason, there are currently 
efforts to develop surrogate models which could help reduce com-
putational burden and environmental impacts of such models
(65).

Despite there only being a few WCMs created to date, the 
decreasing cost of genome sequencing, coupled with the exponen-
tial growth in computational power, is driving the development 
of WCMs for a variety of organisms. Recently developed kinetic 
WCMs developed for artificial cells aim to capture spatial features 
(e.g. they can account for cell geometry and ribosome distribu-
tion) (66). Such a variety of models may facilitate the design of 
pathogens or drug-resistant organisms for nefarious purposes. It 
is therefore essential that we adapt and extend existing synthetic 
biology safety frameworks to cater for the more predictive and 
capable design that WCMs support.

The Synthetic Biology Open Language (SBOL) serves as a prime 
example of a framework designed for standardizing the exchange 
of information related to biological designs (67). SBOL allows a 
user to more explicitly capture, not only structural data cov-
ering the DNA, RNA, proteins, and other chemical components 
within a design, but also information related to the functional 
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interactions between these elements. The functional information 
is crucial for automating the development of models and in the 
context of WCMs, enables our knowledge of how biological pro-
cesses are interwoven to be explicitly embedded. In the context of 
biosafety, capturing this information ensures that anyone assess-
ing a design can more clearly see the potential for issues as less 
domain specific knowledge is hidden, allowing for more thorough 
testing of a model for potentially undesirable phenotypes. Further-
more, testing is assisted by simplified exchange of this information 
(68, 69). Beyond the underlying data, a sister standard called SBOL 
Visual (70) also offers a means to visualize biological designs in 
an explicit way, more clearly conveying information embedded 
within the SBOL data files (71). By improving the communica-
tion of intent in engineered biological designs, it is possible for 
potential issues to be more easily captured as less domain-specific 
knowledge is left with the designer. Extending both the SBOL data 
and visual standards to simplify the description of WCMs and the 
diverse processes they are required to include (e.g. making it easier 
to capture spatial elements and interactions between processes) 
would support many of these benefits.

Another example of an existing framework that could be 
adapted or expanded to enhance the safety of deploying WCM-
designed organisms is the set of safety policies laid out by the 
International Genetically Engineered Machine (iGEM) Founda-
tion (https://responsibility.igem.org/safety-policies/introduction). 
These focus on how teams should work during the iGEM com-
petition (72, 73), but could provide broader guidelines that the 
entire synthetic biology community could choose to follow. In rela-
tion to WCMs, a new step could be introduced before the “release 
beyond containment” policy. This additional step would require 
that proper and rigorous analysis of in-silico-designed organisms 
had been performed to ensure their safety and functionality in 
controlled environments prior to any deployment into the phys-
ical world. Such screening is becoming common place for DNA 
synthesis, but has yet to be adapted more broadly for other areas 
of design in synthetic biology.

Constructing a whole-cell dynamical model for human cells is 
a central goal within systems biology (63). Developing and utilizing 
such models, however, raises privacy concerns, as they will likely 
necessitate the processing and storage of human genetic infor-
mation, potentially exposing individuals to risks of unauthorized 
access, misuse, or discrimination. As an extreme example, such 
models could inadvertently publicize a given population’s genetic 
information, enabling someone to develop biological agents able 
to target specific genetic profiles. Transparency and interpretabil-
ity within existing whole-cell modeling techniques, coupled with 
rigorous data privacy measures, will lay the foundations for safer 
and more reliable practices in the future by fostering a compre-
hensive understanding of the underlying assumptions, method-
ologies, and limitations of these models, as well as facilitating 
open and constructive scientific dialogue.

A summary of all of the hazards highlighted for using WCMs 
to engineer biology is shown in Figure 2b.

4. Discussion
Data science and AI have become increasingly popular in the field 
of synthetic biology as they enable new solutions to complex bio-
logical problems that would be difficult to solve otherwise. In this 
work, we have introduced the “Data Hazards” framework, which 
aims to broaden engagement in the responsible and ethical use 
of data science in the context of synthetic biology (Figure 1). Data 
Hazards is a relatively new initiative and as such is still evolving as 

it becomes established across different areas of science, engineer-
ing, and the humanities. Here, we identified five additional data 
hazards that are common in data-centric approaches to synthetic 
biology and used case studies covering de novo protein design and 
WCMs as a means to demonstrate how these hazards apply to 
emerging areas of biological engineering.

The case studies highlighted in this work (Figure 2) are only 
a few arbitrary examples and a much broader exercise would 
be needed to cover the full spectrum of potential synthetic biol-
ogy research. To stimulate this process, we believe it would be 
valuable to consider how the use of data hazard labels could be 
integrated into existing scientific activities. For example, it becom-
ing standard practice to display data hazard labels on posters 
at conferences or as part of graphical abstracts in papers with 
explanations for how these hazards have been mitigated. Such 
publicity would help to drive adoption and have the added ben-
efit of establishing new ethical dialogs on research that are often 
lacking. Moreover, it could be beneficial to consider these hazards 
as research proposals are being developed to reduce the chance 
of misuse early on. Inclusion of a “Data Hazards Checklist” that 
must be completed as part of a grant application would highlight 
areas of concern before a project starts and ensure financial sup-
port is available to put safeguards in place or weed out research 
that should not be pursued due to issues that cannot be mitigated.

More broadly, the need to build a community within synthetic 
biology around data hazards and approaches to overcome data 
science risks is something that we believe could greatly benefit 
the field. Synthetic biology has historically been proactive about 
ethical considerations to ensure the benefits engineering biology 
offers are acceptable and understood by society and benefits and 
risks are discussed in a balanced way (74, 75). Considering the 
role of data science in these broader activities would be a valu-
able exercise moving forward. It is also important to note that 
while the new data hazard labels we have developed were done 
so with synthetic biology in mind, the often application agnostic 
use of data-centric methods means they may also be of relevance 
to other areas of science and engineering.

An interesting future direction for this work will be to explore 
how the integration of data hazards into synthetic biology design 
and implementation workflows can link to existing regulatory 
frameworks and initiatives. For example, there is growing activity 
in the area of sequence screening to ensure the synthesis of DNA 
with the potential for harm is avoided (76, 77) and the applica-
tion of genomics surveillance is becoming more widely considered 
after the COVID-19 pandemic and rise of antimicrobial resistance 
(78). Biofoundries are also likely to play a key role in this area, due 
to their ability to generate the large data sets needed for data-
centric biological design, and their central role in many projects 
as they scale beyond proof-of-concept studies in a research lab 
(79). This flexibility is essential as bioengineers battle with finding 
the most appropriate design methodology for the problem at hand 
(80).

Three of the data hazards we highlighted for synthetic biology 
that biofoundry capabilities could provide immediate mitigating 
actions include: uncertain accuracy and completeness of source 
data, as well as integration of incompatible data. Biofoundries 
require that experiments are explicitly described in a machine-
readable format. This helps to support better reproducibility and 
improves overall accuracy of the data produced. Biofoundries are 
also ideally placed to implement the complex protocols often 
needed to provide more detailed and extensive measurements of 
an engineered biological system. The parallel application of highly 
quantitative sequencing, metabolomics and proteomics methods 
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is necessary to gain a more complete picture of a biological sys-
tem’s inner workings. However, this is rarely done due to the costs 
involved, difficulties in processing the biological material, and the 
overall complexity of the various methods applied. Biofoundries 
could potentially alleviate this burden and provide validated work-
flows where missing data are avoided and measurements are 
taken in absolute (35, 81) or calibrated units (34, 82, 83) that can be 
easily integrated. Furthermore, the ability to run experiments in 
high throughput also enables better estimation of both technical 
and biological variability, helping to quantify uncertainty as part 
of the measurement process.

Incentivizing the use of such facilities and rigorous metrol-
ogy remains a challenge; partly due to often limited access, but 
also because of the perceived additional effort they impose. These 
hurdles could be alleviated through automation within the bio-
foundries themselves, funding agencies pressing for facilities to 
support wider synthetic biology communities outside of their host 
institutions, and enforcing a requirement to meet minimal data 
collection standards for awarded grant funding. Together, these 
actions would not only improve the quality of research (i.e. repro-
ducibility due to more explicit protocols that are run by machines), 
but would also provide a source of high-quality data able to sup-
port advanced modeling and for secondary use by wider research 
communities.

In summary, data science is sure to play a crucial role as 
synthetic biology develops. Using hazard labels can be a use-
ful exercise for practitioners in this field as they help to proac-
tively identify potential risks and stimulate discussions on ways 
to mitigate them. By encouraging open dialogue and promoting 
transparency, these labels can build trust between scientists, pol-
icymakers, and the public, ultimately leading to better-informed 
decisions on the use of data science and AI when engineering 
biological systems.
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