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Abstract—The increasing penetration of intermittent 

renewable generators and the uncertainty of loads have brought 

significant challenges to the power system reliability assessment, 

as large numbers of optimal power flow (OPF) tasks need to be 

repetitively solved considering these uncertainties. To deal with 

that, this paper proposes a state-similarity-based (SS) approach 

to replace the computationally demanding AC OPF. It is 

observed that the active constraints related to the least load 

curtailment typically remain consistent across varying system 

states. Following this, the active constraints are used to represent 

the state similarity, and then nonlinear equations are derived to 

replace the original AC OPF problems. Thereafter, an 

alternating iterative approach is developed to obtain the minimal 

load curtailment instead of calculating the time-consuming 

optimization. An optimality criterion is developed to exclude the 

majority of mismatched solutions, thereby minimizing potential 

inaccuracies in the reliability assessment. Case studies conducted 

on the RTS-79, IEEE 118-bus, and Brazilian systems 

demonstrate that the proposed methods can significantly enhance 

computational efficiency with minimal errors. In some instances, 

these methods can outperform traditional reliability assessment 

methods by over 10 times. 

Index Terms—State similarity, active constraints, reliability 

assessment, optimal power flow, renewable energy. 

I. INTRODUCTION 

lectricity is universally acknowledged as a foundational 

pillar for national economic development and societal 

progression. A large-scale blackout would not only incur 

substantial societal impacts and immense economic losses, but 

could also threaten national security. In recent decades, the 

increasing penetration of renewable energy has brought more 

uncertainties and challenges to the security and stability of 

power system operations. Reliability assessment can quantify 

the system adequacy associated with these uncertainties, and 

therefore is indispensable for the planning and operation of 

power systems. 

Generally, the reliability assessment comprises three 

processes [1]: system state selection, system state analysis, 

and reliability indices computation. In the first step, two 

fundamental methods [2]: Monte Carlo Simulation (MCS) and 

State Enumeration (SE) are used to select system states and 

calculate their respective probabilities. Next, the impact of 

each state (e.g., the minimal load curtailment) is obtained 

through optimal power flow (OPF). Finally, reliability indices 

are computed by multiplying the probability and impact of 

states. However, with the growing expansion of power 

systems and integration of fluctuating renewable energy, the 

analysis of a large number of states has resulted in an 

efficiency challenge for reliability assessment.  

To deal with that, two main categories of approaches have 

been proposed. One is to reduce the number of systems states. 

Singh et al. [3] proposed a state-space pruning technique to 

reduce the number of samples, which can be implemented in 

Monte Carlo simulations. This is accomplished by removing 

coherent acceptance sets that have no loss of load states and 

performing proportional sampling over the other subspaces. In 

addition, several well-known variance reduction techniques 

have been employed to further accelerate the convergence of 

the MCS method [4], [5]. Compared with the MCS method, 

the SE method can reflect the relationship between system 

reliability and component reliability levels in a detailed 

manner [6]. However, it is prohibitive for SE to enumerate all 

possible system states and obtain accurate reliability indices. 

Therefore, most existing techniques reduce the number of 

system states in the SE method by only considering those 

states with significant contributions to reliability indices [7]. 

Jia et al. [8] proposed a fast contingency screening technique 

to search the most severe contingency states based on both 

probabilities and outage capacities. In our previous work [9], 

[10], Hou et al. proposed an impact-increment-based SE 

(IISE) approach to reduce the high-order contingency states 

implicitly. The partial contribution of higher-order 

contingencies can be transferred to the corresponding lower-

order contingencies. While these approaches effectively 

reduce the number of system states, they present challenges in 

maintaining a balance between accuracy and efficiency, 

especially in power systems with high variations of renewable 

generation and load. 

Another category of approaches is to accelerate OPF 

computations in the system state analysis. The AC OPF 

problem involves minimizing an objective function while 

subject to constraints. Since the 1960s, numerous optimization 

algorithms have been studied for efficient computations [11], 

[12]. However, these conventional model-based methods often 

encounter considerable computational challenges when 

repetitively analyzing a large number of states. 

Recently, deep learning (DL) methods are increasingly 
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recognized as a promising data-driven approach for OPF 

problems, providing an alternative to conventional 

optimization algorithms. These DL-based methods utilize 

neural networks to establish a model-free, end-to-end 

mapping, effectively transferring OPF computations to the 

offline training phase [13], [14]. Existing studies show that 

well-trained neural networks can deliver solutions with high 

precision, achieving speeds 100 to 1000 times faster than 

traditional model-driven approaches. However, these superior 

performances have been validated only on specific test sets, 

lacking guaranteed accuracy for scenarios not covered in these 

sets. This limitation is particularly critical in safety-sensitive 

applications, like reliability assessments [15]. Consequently, 

the black-box nature of data-driven methods restricts their 

verifiability and trustworthiness, limiting their practical 

applicability in power systems. Moreover, intensive data 

preparation and generalizability also present challenges [16]. 

For each system case, it is necessary to generate new training 

data through simulations using model-based approaches. 

Generally, the volume of such training data is considerably 

larger than that needed for traditional reliability assessments, 

inevitably leading to a greater computational burden in the 

offline phase. 

For numerous OPF computations in reliability assessment, 

further advancement in model-based methods remains crucial. 

Recognizing that OPF problems exhibit only minor variations 

with changes in generators or loads, a novel approach is being 

explored. This strategy aims to derive new solutions directly 

from those of similar OPF problems. Safdarian et al. [17] used 

the post optimal analysis to determine the solution by 

imposing differences concerning the base case, instead of 

optimizing all DC OPF problems independently. Yong et al. 

[18], [19] proposed a multi-parametric-linear-programming-

based method to reduce the calculations of DC OPF problems. 

The load variations are treated as MPLP parameters and 

massive system states can be analyzed efficiently by matching 

with their identical optimal basis. Deka et al. [20] utilized 

DNN to classify states based on their similarities, identifying 

the relationship between uncertain injection data and active 

constraint sets. Our previous work [21], [22] constructed a 

Lagrange-multipliers-based linear function to derive the 

relationship between the minimal load curtailment and the 

variations of system states. However, due to the nonlinearity 

of the AC OPF model, these methods are not applicable. 

To deal with these issues, our study aims at exploiting the 

similarities among AC OPF problems to accelerate system 

state analysis. Typically, the minimal load curtailment serves 

as the optimization objective of AC OPF in reliability 

assessment. Interestingly, empirical evidence suggests that 

these load curtailments are usually induced by certain violated 

or active constraints. Moreover, these constraints often remain 

active despite changes in AC OPF parameters. Consequently, 

these consistently active constraints can be used to 

characterize the state similarity across various AC OPF 

problems. To this end, we propose a state-similarity-based 

approach (SS) that replaces the AC OPF with a system of 

nonlinear equations. This approach allows us to obtain the 

optimal load curtailment by solving a set of nonlinear 

equations rather than solving optimization problems, 

significantly enhancing the computational efficiency of 

reliability assessment. The main contributions are as follows: 

1) The active constraints are used as the state similarity to 

construct a system of nonlinear equations, and the state-

similarity-based approach is proposed to obtain the optimal 

solutions by solving equations, instead of cumbersome AC 

OPF optimizations. 

2) An alternating iterative approach is developed to derive 

solutions from the underdetermined system of nonlinear 

equations. Additionally, optimality criteria are carried out to 

guarantee the accuracy of reliability assessment. 

3) The proposed SS approach can be integrated with 

existing state reduction techniques, such as the impact-

increment and cross-entropy methods, to further enhance the 

efficiency of reliability assessment methods.  

The rest of the paper is organized as follows: Section II 

introduces the problem statement and solution framework. The 

proposed SS approach is described in Section III. Case studies 

are performed in Section IV and conclusions are drawn in 

Section V. 

II. PROBLEM STATEMENT AND SOLUTION FRAMEWORK 

A. Reliability Assessment of Power Systems 

Reliability assessment involves analyzing the impact of 

selected system states and providing quantified reliability 

indices. In this study, the framework of the proposed method 

is presented in Fig. 1 and explained as follows, 

1) System State Selection. Use either MCS or SE to create 

the system state set Ωs. The number of sampled system states 

NMCS and the maximum contingency order NT serve as the 

stopping criteria, respectively. 

Most power system contingencies can be represented by the 

system states in Ωs. Each system state s can be characterized 

by a vector as follows, 

 
min maxl g d g g

 =  s s s S S S  (1) 

where sl is the nl×1 vector of the status indicators of 

transmission lines; sg is the ng×1 vector of the status indicators 

of generators; Sd is the nb×1 vector of bus loads; Sgmin and 

Sgmax are the ng×1 vectors of the minimal and maximal outputs 

of generators; nb, ng, and nl are the numbers of buses, 

generators, and branches. Both conventional generators (CG) 

and renewable energy generators (REG) are incorporated in 

power systems, and the output values of the REGs are derived 

from their annual output curves. nt denotes the number of time 

periods for the load and the REG values, considering their 

time-dependent correlation.  

2) System State Analysis. The system state analysis is based 

on the OPF solutions, which assess whether load curtailment 

is required to maintain the system within operational 

constraints during contingencies, load variations, and REG 

fluctuations.  

The objective of AC OPF is to minimize the total load 

curtailment. This is formulated as follows, 
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Fig. 1.  The framework of the proposed reliability assessment method. 
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LC d 0 P P  (9) 

 
LC d 0 Q Q  (10) 

where fLC is the objective function; SLC is the nb×1 vector of 

the complex load curtailment, SLC = PLC + jQLC; Gb represents 

the bus power flow balance constraints; V is the nb×1 vector of 

the complex bus voltage, U and θ are the nb×1 vectors of the 

bus voltage magnitudes and angles, V = Ue jθ; Sd is the nb×1 

vector of the complex power load, Sd = Pd + jQd; Sg is the ng×1 

vector of the generator complex power output, Sg = Pg + jQg; 

Ybus is the bus admittance matrix; Cg is the generator 

connection matrix; (4) represents the branch flow limits; Yft is 

the branch admittance matrix; (5) and (6) represent the voltage 

magnitude and angle limits; (7) and (8) represent the generator 

real and reactive output limits, Sgmin = Pgmin + jQgmin, Sgmax = 

Pgmax + jQgmax. 

3) Reliability Indices Computation. The general formula for 

calculating reliability indices is, 

 ( ) ( )
s

R P I


= 
s

s s  (11) 

where R is the reliability index; P(s) is the probability of state 

s; I(s) represents the consequence of state s. Different forms of 

I(s) correspond to various reliability indices. 

In this study, the expected energy not supplied (EENS) and 

probability of load curtailments (PLC) are used as reliability 

indices, 

 ( ) ( )
s

EENS T P I


= 
s

s s  (12) 

 ( ) ( )
s

LCFPLC P I


= 
s

s s  (13) 

 
1, ( ) 0

( )
0, ( ) 0

LC

LCF

LC

I
I

I


= 

=

s
s

s
 (14) 

where ILC(s) and ILCF(s) are the load curtailment and load 

curtailment indicator of state s, respectively; T is the evaluated 

time, typically one year.  

B. Challenges and Proposed Solution Framework 

During Step 2, the most significant challenge for reliability 

assessment is evaluating numerous system states, because it 

requires repeatedly solving AC OPF problems with 

optimization algorithms. 

Generally, for reliability assessment, load curtailments of 

AC OPF problems primarily are driven by binding or active 

constraints, such as transmission and generation capacity 

limits. Furthermore, the minimal load curtailments of AC OPF 

problems corresponding to various states often share the same 

active constraints. Consequently, state similarity is defined as 

a condition in which different AC OPF problems exhibit 

identical sets of active constraints at their optimal solutions. 

These active constraints thus represent indicators of state 

similarity across diverse system states. 

As illustrated in Fig. 1, the proposed state similarity 

approach is used as an alternative way to the complex 

optimizations involved in AC OPF. This method is highly 

effective when a new state is similar to a previously analyzed 

one, i.e., they share the same active constraints for AC OPF.  

A fundamental component of this approach is the 

establishment of a state similarity set, denoted as Ωa. This set 

acts as a repository that collects active constraint sets 

identified during the reliability assessment. Each active 

constraint set in Ωa represents a specific category of similar 

states. When evaluating a new state, a crucial step involves 

searching through Ωa to find a set of active constraints that 

potentially align with the new state. It begins by sequentially 

applying each active constraint set from Ωa to formulate the 

state-similarity-based equations. The solutions derived from 

these equations are then verified through optimality criteria. 

This matching process continues until a solution satisfying the 

optimality criteria is found or all active constraint sets in Ωa 
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have been exhaustively tested. If the criteria are satisfied, it 

indicates that the new state is similar to a previously analyzed 

state. This allows for the calculation of optimal load 

curtailment based on the obtained solution. Conversely, if 

none of the active constraint sets in Ωa are applicable, it 

implies that the new state is unique and does not share 

similarities with any previously analyzed states. In such cases, 

OPF optimization algorithms are employed to determine the 

optimal load curtailment for these unmatched states. The 

active constraint set derived from the AC OPF optimization 

results is then added to Ωa, contributing a new pattern of state 

similarity.  

Due to slight variations in generators, loads, or REGs 

among the AC OPF problems of numerous states, only a few 

sets of active constraints exist in Ωa for the entire reliability 

assessment. The majority of system states are evaluated by the 

state-similarity-based equations, while the minority of states 

will be analyzed by the nonlinear optimization algorithms. In 

this way, the proposed approach can dramatically improve the 

computational efficiency of the reliability assessment. 

The framework of the proposed state-similarity-based 

reliability assessment method involves three key steps, which 

are explained in Section III. 

1) Transform AC OPF into a system of equations; 

2) Obtain a solution to the equations; 

3) Develop optimality criteria for the obtained solutions. 

III. PROPOSED STATE SIMILARITY-BASED APPROACH 

A. State Similarity in the AC OPF Model 

In the reliability assessment, the AC OPF with the minimum 

load curtailment (2) - (10) is a nonlinear programming (NLP) 

problem [23], which can be described in a general form, 

 

( )

2 1

max

2 8 4 1

min    ( )

{ ( )}
. . ( )

{ ( )}

( )
( )

b

l b g

b

b n

ft

I I n n n

f

G
s t G

G

H
H



+ + 

 
= = 

 

− 
=  

− 

0

0

X

X

X

X

X F
X

A X B

 (15) 

 
T

g g LC LC
 =  X θ U P Q P Q  (16) 

where f is the objective function; G and H are the equality and 

inequality constraints, respectively; X is the variables;   and 

  represent the real and imaginary parts; Hft(X) represents the 

branch complex power flow in (4); AI and BI represent the 

coefficient matrices of the variables limits in (5) - (10).  

In the AC OPF problem (15) - (16), an active constraint is a 

constraint that is tightly bound or exactly satisfied at the 

optimal solution point. Equality constraints are invariably 

active, as they must be exactly satisfied in any feasible 

solution. On the other hand, an inequality constraint is 

considered active at the optimal solution when it is satisfied as 

an equality. This means that the solution is precisely on the 

boundary defined by that constraint. Consequently, the set of 

active constraints  consists of all equality constraints and 

those inequality constraints that are binding at the optimal 

solution, 

    *( ) 0i iG H H= =X  (17) 

where X* is the optimal solution; Hi represents the ith 

inequality constraint, and each inequality constraint must be 

either: (a) active: Hi(X
*) = 0, or (b) inactive: Hi(X

*) < 0. In 

terms of the AC OPF problem, it has been demonstrated that 

the active constraints are relatively insensitive to variations in 

loads and REGs [24]. Moreover, most inequality constraints 

are inactive in numerous cases [25]. Therefore, various AC 

OPF problems usually exhibit state similarity, regardless of the 

differences in loads and REG outputs. 

For example, state similarity is observed between the two 

states in a 3-bus system, as shown in Fig. 2. Bus 1 is the slack 

bus with an angle of 0, G2 is a REG, and the impedance of all 

three lines is 0.02 + j0.06 (p.u.). The loads and generation 

capabilities of the two states are given in Table 1. 

TABLE I 

THREE-BUS SYSTEM STATES 

State 

Load 

(MW + jMvar) 

Generation Capability 

(MW + jMvar) 

1 2 3 G1 G2 

S1 100 + j50 100 + j50 100 + j50 200 ± j100 90 ± j100 

S2 90 + j45 50 + j25 90 + j45 200 ± j100 45 ± j50 

 

(a)  AC OPF problem for S1. 

 

(b)  AC OPF problem for S2. 

Fig. 2.  An example of state similarity for two states in the 3-bus system. 

As illustrated in Fig. 2, states S1 and S2 demonstrate state 

similarity because they activate identical constraints, 

indicating that these constraints have reached their respective 

limits, 
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X
 (18) 

It should be noted that the same active constraints do not 

necessarily mean that identical limit values are reached. For 

example, despite the differing output values of Pg2 in the two 

states, Pg2 reaches its maximum output in both states. This 
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indicates the activation of identical constraints. The variation 

in constraint values denotes the distinction between states, 

while the activation of identical constraints underscores their 

underlying similarity. In the 3-bus system, this similarity 

implies that both generators, G1 and G2, are operating at their 

maximum active power output. Simultaneously, the voltage at 

Bus 1 is sustained at its upper limit, and the load curtailment 

constraints are active. 

Variables subjected to these active constraints are referred 

to as active variables, denoted as X
a
. As active variables 

having predetermined values, they can be treated as known 

constants within the variable vector X. Then, the other 

variables that do not reach their respective limits are termed as 

non-active variables, denoted as X
n
. 

Upon substituting (18) into the AC OPF problem, we obtain 

a system of equations, 

 
( ) 

( ) 

ˆ,
ˆ ˆ( , ) ( , )

ˆ,

n a

b
a a n a

n a

b

G
F F

G

 
 

= = = =
 
  

0

X X

X X X X X

X X
 (19) 

 2 3 2 3 1 2 3 1 2

n

g g LC LC LCU U Q Q P Q Q  =  X  (20) 

 1 1 1 2 1 2 3

a

g g LC LC LCU P P P P Q =  X  (21) 

 1max 1max 2max 1min 2min 3max
ˆ 0a

g g LC LC LCU P P P P Q =  X  (22) 

where ˆ a
X  represents the values of active variables X

a
. 

The active constraints of one state are determined by 

optimizing the solution to the AC OPF problem. Subsequently, 

these identified active constraints enable the transformation of 

the AC OPF for a different state into a system of equations.  

Based on the general form of AC OPF problem (15) - (16), 

the state-similarity-based equations ˆ( , )n aF X X can be 

represented as follows,  
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 (23) 

 
T

n n n n n n n

g g LC LC
 =  X θ U P Q P Q  (24) 

 ˆ ˆ ˆˆ ˆ ˆ ˆ
T

a a a a a a a a

g g LC LC
 = =
 

X X θ U P Q P Q  (25) 

where H
a 

ft (X
n, ˆ a

X ) – F
a 

max represents the active constraints of 

branch power flow; al and ax represent the number of active 

branch constraints and active variables, respectively.  

If the active constraints match the states, then the optimal 

solution to AC OPF is the solution to equations (23) - (25). 

Nevertheless, since the number of variables (4nb + 2ng - ax) is 

significantly greater than (2nb + al), the system of equations 

has an infinite number of solutions. To address this, Section 

III.B proposes an alternating iterative approach aimed at 

finding a solution that closely approximates the optimal 

solution to AC OPF. Furthermore, acknowledging that the 

obtained solution may not always be the optimal solution to 

AC OPF due to the disregarded inequality constraints or 

mismatched active constraints, an optimality criterion is 

developed in Section III.C. to filter out the incorrect solutions. 

As a result, it can accelerate the analysis of numerous similar 

states, eliminating the need to solve each similar AC OPF 

problem independently. 

B. Proposed Alternating Iterative Approach to Solving 

Equations 

The Newton method is one of the most popular approaches 

to approximate solutions to nonlinear systems when the 

number of unknowns equals the number of equations. 

Considering a system of nonlinear equations F(X) = 0, we can 

calculate the solution X, 

 
1

( ) ( ) ( )( ) ( )i i iF
−

  = − X J X X  (26) 

 ( 1) ( ) ( )i i i+ = +X X X  (27) 

where i is the iteration counter; J is the Jacobi matrix. 

Given the underdetermined nature of the state-similarity-

based equations (23) - (25), resulting in ΔX(i) possessing 

infinite solutions, we propose an alternating iterative 

approach. This method involves dividing the system of 

equations (23) into two parts, 

 

( ) max

{[ ] } { }

ˆ( , , ) {[ ] } { }

ˆ,

bus b d

n n a

bus b d

a n a a

ft

F

H

 

   

 





 
 −  − + 

 =  −  − + =
 
 −
 

0

V Y V G G S S

X X X V Y V G G S S

X X F

(28) 

where Gα and Gβ denote the respective parts of the Gb(X
n
). 

The first part is a system of nonlinear equations Fα,  

 

( ) max
(2 ) (2 )

{[ ] }

ˆ( , , ) {[ ] }

ˆ,
b l b

bus

n n a

bus

a n a a

ft
n a n a

F

H




    

 





+  −

 
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 

0
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 (29) 

 
T

n n n


 =  X θ U  (30) 

 ˆˆ ˆ
T

a a a


 =
 

X θ U  (31) 

where V = Uejθ; U and θ are each divided into non-active 

( n
U , n

θ ) and active ( ˆ a
U , ˆa

θ ) components; aa represents the 

number of active variables.  

Another part is a system of linear equations Fβ, 

 
(2 ) (2 )

{ }ˆ( , , )
{ }

b b

n n a b d

b d n a n a

F

 


   

 −  −

  − +
= = 

 − + 
0

G S S
X X X

G S S
 (32) 

 
T

n n n

b b
 =  X P Q  (33) 

 ˆˆ ˆ
T

a a a

b b
 =
 

X P Q  (34) 

where Sb = Pb + jQb = CgSg + SLC is the vector of bus power 

injection; Pb and Qb, comprising both non-active and active 

components, represent the real and reactive bus power 

injections, respectively; aβ represents the number of active 

variables in them.  

Then, we update the two unknowns X
n 

α  and X
n 

β  iteratively, 
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 ( )
1

( ) ( ) ( ) ( 1) ˆ( , )n i i n i n i aF ,     

−
+ = −X J X X X  (35) 

 ( 1) ( ) ( )n i n i n i

  

+ = +X X X  (36) 

where ( )i

J  is denoted by 

 

( ) ( 1) ( ) ( 1)

, ,

( ) ( ) ( 1) ( ) ( 1)

, ,

( ) ( )

, ,

ˆ ˆ{ ( , )} { ( , )}

ˆ ˆ{ ( , )} { ( , )}

ˆ ˆ( , ) ( , )

n i n i a s n i n i a

b b U

i n i n i a s n i n i a

b b U

a n i a a n i a

ft ft U

G , G ,

G , G ,

H H

      

       

    

+ +

+ +

  
 

=   
 
  

X X X X X X

J X X X X X X

X X X X

(37) 

Since (35) is an overdetermined system with more 

equations than unknowns, the least squares approach is 

utilized to find an approximate solution for ΔX
n(i) 

α  [26]. 

Similarly, 

 ( )
1

( ) ( ) ( ) ( ) ˆ( , )n i i n i n i aF ,     

−

 = −X J X X X  (38) 

 ( 1) ( ) ( )n i n i n i

  

+ = +X X X  (39) 

where ( )i

J  is denoted by 

 ( )

(2 ) (2 )b b

i

n a n a  −  −= −J I  (40) 

It is clear that (38) is a system of linear equations with an 

equal number of equations and unknowns, allowing us to 

directly obtain a unique solution for ΔX
n(i) 

β .  

Equations (35) - (37) and (38) - (40) are alternated 

iteratively until either the maximum number of iterations Nmax 

is reached, or the acceptable tolerance tol is achieved, 

 
maxi N  (41) 

 ( ) ( ) ˆ( , , )n i n i aF tol 

X X X  (42) 

Following this iterative process, the derived solution is then 

evaluated against the feasibility criterion,  

 ( ) ( ) ˆ( , , ) 0n i n i aH   X X X  (43) 

If the solution is feasible, we obtain a solution to the state-

similarity-based equations (23) - (25). If not, the solution 

process is considered failed, indicating that the selected active 

constraints are not suitable for this state.  

C. Optimality Criteria of Solutions 

The optimality criteria are developed to check the 

optimality of the obtained solution X
s. If it fails, the erroneous 

solution is filtered out to improve computational precision. 
If the load curtailment of the obtained solution Xs equals 

zero, then Xs is an optimal solution. When the load curtailment 

is non-zero, the Kraush-Kuhn-Tucker (KKT) condition is used 

to judge whether the feasible solution Xs is an optimal 

solution. If Xs is the optimal solution X*, then there exists 

( )* * *

1 2, ,
bn  =  and ( )* * *

1 ( ), ,
l xa a  + =  such that 

 ( ) ( ) ( )
2

* * * * *

1 1

0
b l xn a a

j j k k

j k

f G H
+

= =

 +  +  = X X X  (44) 

 * 0 1,2, ,( )k l xk a a = +  (45) 

Theorem 1 [27]: Consider the system Am×nxn×1 = bn×1, with 

coefficient A and augmented matrix [A|b]. The possibilities for 

solving the system are 

(i) Ax = b is inconsistent (i.e., no solution exists) if and only 

if rank[A] < rank[A|b]. 

(ii) Ax = b has a unique solution if and only if rank[A] = 

rank[A|b] = n. 

(iii) Ax = b has infinitely many solutions if and only if 

rank[A] = rank[A|b] < n.  

Considering the determination of the specific values of *  

and *  is not required, and that merely confirming the 

existence of a solution is sufficient, we employ the following 

condition to determine whether it satisfies the optimality 

criteria (44) and (45), 

 
( ) ( )

( ) ( ) ( )

* * * *

* * * * *

rank G H

rank G H f

  +  =
 

  +  −
 

 

 

X X

X X X

 

 
 (46) 

The AC OPF problem is inherently non-convex due to its 

nonlinear power flow equations and various operational 

constraints. This non-convexity implies that the KKT 

conditions are necessary but not sufficient for determining 

optimality in AC OPF problems. Therefore, a solution that 

satisfies the KKT conditions may only represent a local 

optimum rather than a global one [28]. Currently, no 

universally applicable method can consistently guarantee 

finding the global optimum in all scenarios. A large number of 

KKT-based methods have been widely employed to solve AC 

OPF problems, though they may yield locally optimal 

solutions [29], [30]. In practical applications, the solution 

provided by optimization solvers often exhibits a negligible 

gap from the optimum.  As a result, these solutions are usually 

accepted as global solutions, despite the inherent limitations of 

the KKT conditions. 

In this study, the active constraints are derived from the 

globally optimal solutions of the base states, which are 

obtained through optimization solvers. Therefore, a feasible 

solution that satisfies the same active constraints and the KKT 

condition is highly likely to be an optimal solution. Moreover, 

when considering a large number of system states, 

misjudgments rarely occur, and their impact can be 

disregarded for reliability assessment. The validity of this 

assumption will also be discussed in Section IV. 

D. Overall Process of the Proposed Method 

The overall reliability assessment process of the proposed 

SS approach is shown in Fig. 3 and elaborated as follows: 

Step 1:  Input system data, annual curves, and preset 

parameters, including Nmax (maximum iterations), tol 

(convergence accuracy), NMCS (the number of sampled system 

states), and NT (maximum contingency order).  

Step 2:  Create the system state set Ωs by MCS or SE. 

Step 3:  Choose a system state s from Ωs and construct the 

AC OPF model (2) - (10) accordingly.  

Step 4: Choose a set of active constraints from Ωa. 

Step 5:  Use the active constraints set to transform the AC 

OPF problem of state s into the state-similarity-based 

equations (23) - (25). 

Step 6:  Use the proposed alternating iterative approach to 

solve the equations. 

Step 7:  Evaluate the derived solution against the feasibility 
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criterion (43). If it satisfies the criterion, obtain the solution 

Xs, and go to Step 8; otherwise, go to Step 9B. 

Step 8:  Evaluate the solution Xs against the optimality 

criteria (44) - (45). If it meets these criteria, go to Step 9A; 

otherwise, go to Step 9B. 

Step 9A: The solution Xs is the optimal solution, and we 

can determine the optimal load curtailment. 

Step 9B: Check if all active constraint sets in the state 

similarity set Ωa have been used. If so, optimize the AC OPF 

problem to calculate the optimal load curtailment, incorporate 

its active constraints into Ωa, and go to Step 9; otherwise, 

return to Step 4.  

Step 10: Check if all s in the Ωs have been evaluated. If so, 

go to Step 11; otherwise, go back to Step 3. 

Step 11: Calculate reliability indices. 

 

Fig. 3.  The overall process of the proposed SS-based reliability assessment. 

IV. NUMERICAL RESULTS 

The proposed SS approach is utilized to assess the 

reliability of the RTS-79 [31], IEEE 118-bus [32], and 

Brazilian [33] systems. The performance of the SS approach is 

also investigated in power systems integrated with renewable 

energy. Annual load curves and renewable energy output 

curves are from Alberta [34] and NREL [35], [36], 

respectively. 100 load levels and REGs outputs are employed 

to characterize the fluctuations of loads and REGs. The 

unavailability data for branches and generators are presented 

in [21]. The IPOPT 3.12.9 is used as the optimization solver. 

The experiments are conducted using MATLAB® R2020b on a 

standard PC equipped with dual Intel® Xeon® Platinum 8180 

CPU (ES) 28×1.8 GHz and 128 GB RAM. 

A. Case I: Results on the RTS-79 System 

RTS-79 system [31] is a composite power system with 24 

buses, 33 generator units, and 38 branches. The total 

generation capacity is 3405 MW and the peak load is 2850 

MW. The renewable generation penetration, denoted as ζre, is 

defined as the ratio of renewable generation to total generation 

capacity. The RTS-79 system is examined with specific levels 

of renewable generation penetration, which are 0%, 15%, and 

30%. A specific portion of the capacity of each conventional 

generator is replaced with renewable energy sources. The ratio 

of this replacement is equal to the renewable generation 

penetration. Specifically, at each generator node, wind 

turbines and photovoltaics are integrated with a capacity ratio 

of 1:1. It is noted that when the penetration rate reaches 30%, 

the total generation capacity is expanded by 30% to 

accommodate this high level of renewable energy penetration 

and ensure system reliability. 

The reliability assessment results of the SS approach 

combined with MCS, CEMCS, SE, and IISE methods (i.e., 

SSMCS, SSCEMCS, SSSE, and SSIISE methods) are used to 

show the excellent performance of the proposed SS method in 

Table V. The baseline of reliability results is determined by 

1×108 sampled states. In general, this estimate can be regarded 

as the actual value, given the extensive number of samples 

involved. The preset parameters are given as follows: Nmax = 

10, tol = 0.1, NT = 5, and β (the coefficient of variation for 

MCS) = 1%. The system states above third-order are only 

generation contingencies, which can cover 98.7778 % of 

system states for the SE method.  

1) Efficiency and Accuracy 

As shown in Table II, when ζre = 0%, the computation speed 

of the SS approach is approximately 20 times faster than that 

of the MCS, SE, and IISE methods. This is because only 

1.54% of states in the MCS method and 3.21% of states in the 

SE or IISE method are analyzed by IPOPT independently. The 

optimal load curtailments of the remaining system states are 

solved by the state-similarity-based equations, which require 

minimal effort. Also, the approach error of SS is roughly 1%, 

which is generally considered negligible in the reliability 

assessment. This implies that the majority of the obtained 

solutions can be regarded as the optimal solutions to the 

System State Analysis
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original AC OPF problems, given that most states follow the 

same active constraints. Consequently, state similarity emerges 

as a highly effective heuristic strategy for accelerating AC 

OPF computations. 

Moreover, the CE-based sampling technique can 

significantly reduce the number of states, while it requires a 

complex pre-simulation to change the probability of system 

states and hasten the convergence. When coupled with the SS 

approach, the SSCEMCS method can achieve a substantial 

improvement in the efficiency of reliability assessment.  

TABLE II 

RELIABILITY ASSESSMENT RESULTS OF EIGHT METHODS (RTS-79) 

ζre (%) Method 

EENS(MWh/y) 
OPF 

Number‡ 
CPU Time(s) 

Value 
Relative 

Error* (%) 

Approach 

Error† (%) 

0 

Baseline 655.12 - - - - 

MCS 662.68  1.15  - 24790000 40458  
SSMCS 669.39  2.18  1.01  381382 1396  

CEMCS 660.39  0.80  - 306000 543  

SSCEMCS 667.20  1.84  1.03  72102 160  

SE 395.57  39.62  - 24478200 36852 

SSSE 398.41  39.19  0.72  785244 2265 

IISE 605.66  7.55  - 24478200 36860 
SSIISE 609.64  6.94  0.66  785244 2272 

15 

Baseline 5757.06  - - - - 

MCS 5760.52  0.06  - 3090000 5229 

SSMCS 5594.73  2.82  2.88  135540 362 
CEMCS 5729.04  0.49  - 121000 200 

SSCEMCS 5593.21  2.85  2.37  50751 109 

SE 4197.30  27.09  - 24478200 37168 

SSSE 4207.35  26.92  0.24  1300826 3715 
IISE 5132.34  10.85  - 24478200 37176 

SSIISE 5250.88  8.79  2.31  1300826 3724 

30 

Baseline 809.49  - - - - 

MCS 815.32  0.72  - 20833000 40230 
SSMCS 807.47  0.25  0.96  361964 1502 

CEMCS 794.61  1.84  - 404000 758 
SSCEMCS 790.59  2.34  0.51  88565 211 

SE 536.40  33.74  - 24478200 49352 

SSSE 542.85  32.94  1.20  469721 1931 

IISE 769.06  4.99  - 24478200 49357 
SSIISE 774.44  4.33  0.70  469721 1938 

*Relative Error is the difference between the results and the baseline.  
†Approach Error is the difference in results when using methods with and without SS. 
‡OPF number refers to the count of instances where optimization algorithms are 

employed to solve AC OPF problems.  

 

Fig. 4.  Computational efficiencies of eight methods (RTS-79). 

In addition, it is inappropriate to employ the SE method for 

the evaluation of larger systems due to the relative error in 

comparison to the baseline. To address this, the IISE method 

[9] has been developed to transfer the partial impacts of 

higher-order states to the corresponding lower-order ones. 

Therefore, the influence of the ignored higher-order ones is 

reduced, and the accuracy of IISE is significantly improved, as 

shown in Fig. 4. Notably, by integrating with the SS approach, 

SSIISE outperforms the conventional SE method in terms of 

both computing time and accuracy. 

To illustrate the applicability of the proposed methods in 

systems with renewable energy, we conducted several cases 

with renewable generation penetrations of 5%, 15%, and 30%. 

As the ζre increases, a corresponding proportion of 

conventional generation capacity is replaced by renewable 

sources. Given the constant total generation capacity and load 

demand, the stochastic nature of renewable energy 

significantly reduces the system load supply capability. 

Consequently, with higher renewable penetrations, the power 

system reliability decreases, as indicated by the increase in 

reliability indices. Notably, when ζre reaches 30%, the 

increased generation capacity begins to counterbalance the 

supply uncertainty introduced by renewable energy, restoring 

the system reliability to levels nearly equivalent to those 

observed at ζre = 0%. Table II shows that the OPF number is 

larger than that of the system without renewable energy. This 

suggests that more state similarities (i.e., the set of active 

constraints) occur in the system due to intermittent renewable 

energy. Despite a slight decrease in accuracy and efficiency, 

the SS approach can still improve the computation speed at 

least 10 times. As a result, it can also achieve a preferable 

performance for the reliability assessment of power systems 

with renewable generators. 

2) Verification of Accuracy Using One Load Curve Case  

A single load curve for the RTS-79 system [31] is employed 

to validate the accuracy of the proposed reliability assessment 

methods. In this case, variable loads are represented by this 

load curve. Table III provides a comparative overview, 

illustrating that the reliability results from the SS methods 

align closely with those from the previous study [9]. The 

minor discrepancy can be attributed to the calculation error of 

the SS approach and the variance in MCS sampling. 

Moreover, as expected, the results from [37] and [38], which 

employ the DC OPF model, are lower than those calculated 

using the AC OPF model. Consequently, these comparisons 

demonstrate the reliable accuracy of the proposed SS methods. 

TABLE III 

RELIABILITY ASSESSMENT RESULTS OF ONE LOAD CURVE CASE (RTS-79) 

Method 

EENS(MWh/y) 
OPF 

Number 
CPU Time(s) 

Value 
Relative 

Error (%) 

Approach 

Error (%) 

Baseline 1570.27 - - - - 

[9] AC OPF 1573.23 0.19 - - - 

[37] DC OPF 1203.00 23.39 - - - 

[38] DC OPF 1360.02 13.39 - - - 

MCS 1589.02 1.19 - 12700000 19215 
SSMCS 1595.53 1.61 0.41 249081 634 

CEMCS 1592.61 1.42 - 496000 754 

SSCEMCS 1595.43 1.60 0.18 91906 178 

IISE 1302.57 17.05 - 24478200 36959 

SSIISE 1303.45 16.99 0.07 143396 3348 

SE 1576.30 0.38 - 24478200 36973 
SSSE 1577.41 0.45 0.07 143396 3357 

Baseline SSMCS SSSE SSIISESSCEMCS

MCS SE IISECEMCS
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3) Impacts of Parameters Nmax and tol  

The convergence accuracy and speed of SS depend on the 

maximum iterations Nmax and acceptable tolerance tol. Table 

IV presents the impact of these parameters on the SSIISE and 

SSCEMCS methods. When tol is reduced to 0.1 or lower, the 

error is about 1% or less. Additionally, when tol exceeds 

0.001, all solutions obtained by SS closely approximate the 

optimal solutions. On the other hand, Nmax has a slight impact 

on the precision, especially when Nmax > 10. It indicated that 

the proposed approach typically achieves desirable solutions 

within about 10 iterations for reliability assessment. If Nmax is 

lower than 10, the iteratively obtained solutions often fail to 

meet the optimality criteria, making it challenging to achieve 

optimal solutions that could replace those derived from OPF 

computations. Therefore, as Nmax increases, a great number of 

states can be evaluated by the state-similarity-based equations 

instead of OPF optimizations, thereby shortening the 

computational time. Additionally, when Nmax exceeds 10, the 

computational time tends to stabilize. This indicates that the 

potential for further reducing the number of OPF calculations 

is nearly at its minimum and closely corresponds to the 

number of state similarity categories. Consequently, tol is set 

at 0.1 and Nmax is available between 10 and 25 in this study. 

TABLE IV 

THE IMPACT OF NMAX AND TOL ON RELIABILITY ASSESSMENT METHODS 

(RTS-79 ζre = 0%) 

Method tol Nmax 

EENS(MWh/y) 
OPF 

Number 
CPU Time(s) 

Value 
Approach 

Error (%) 

IISE 0.1 10 605.66 0 24478200 36860 

SSIISE 

0.5 

5 805.78 33.04 744847 1788 

10 805.78 33.04 744847 1792 

20 805.78 33.04 744847 1803 

0.1 
5 609.64 0.66 785416 2244 

10 609.64 0.66 785244 2272 

20 609.64 0.66 785225 2284 

0.01 
5 606.68  0.16 3016681 6439 

10 606.99  0.22 787687 2968 

20 607.18 0.25 784796 2961 

CEMCS 0.1 10 660.39 0 306000 543 

SSCEMCS 

0.5 
5 864.55 30.92 61016 128 

10 864.55 30.92 61016 129 

20 864.55 30.92 61016 126 

0.1 

5 667.20 1.03 72138 168 

10 667.20 1.03 72102 160 
20 667.20 1.03 72093 156 

0.01 

5 661.46 0.16 96732 221 

10 661.59 0.18 71856 187 

20 661.68 0.20 71560 179 

4) Analysis of Optimality Criteria 

Since the active constraints between states may be different, 

the optimality criteria are crucial rules to ensure the accuracy 

of reliability assessment results. The minimal load curtailment 

of the new state is calculated through each set of active 

constraints from the state similarity set, and only the solutions 

that satisfy the optimality criteria are eligible for computing 

reliability indices.  

The methods without optimality criteria may result in the 

acceptance of suboptimal solutions, potentially affecting the 

accuracy of reliability assessments. As shown in Table V, the 

optimality criteria have been utilized to correct 16779, 7154, 

and 41988 states for SSMCS, SSCEMCS, and SSIISE 

methods, respectively. These solutions that did not meet the 

criteria have been filtered out to enhance accuracy. 

Furthermore, Tables II and V also show that the optimality 

criteria can significantly enhance computational accuracy, 

albeit with a slight increase in computational time.  

TABLE V 

THE IMPACT OF OPTIMALITY CRITERIA ON THE PROPOSED SS METHODS 

(RTS-79 ζre = 0%) 

Method 

EENS(MWh/y) 
OPF 

Number 

Optimality 
Criteria 

Correction 

CPU Time(s) 
Value 

Relative 

Error† (%) 

SSMCS 669.39  0 381382 16779 1396  

SSMCS (-)* 1628.60  143.30  370971 - 1340  

SSCEMCS 667.2 0 72102 7154 160  

SSCEMCS (-) 1613.89  141.89 59903 - 122  

SSIISE 609.64 0 785244 41988 2272  

SSIISE (-) 1480.36 142.83  690554 - 2171  
*(-) denotes methods without verifying the optimality criteria (44) and (45). 
†Relative Error is the difference between methods with and without optimality criteria. 

5) Reliability Assessment Results of PLC 

Table VI presents the PLC results for the RTS-79 system 

with ζre values at 0% and 30%. Like the EENS results, the 

proposed SS methods can yield PLC values with low relative 

and approach errors, indicating their effectiveness in 

calculating PLC indices. Furthermore, the relative errors for 

PLC are usually lower than those for EENS. This is attributed 

to the faster convergence of PLC in MCS methods. 

TABLE VI 

RELIABILITY ASSESSMENT RESULTS OF PLC (RTS-79) 

Method 
ζre  

(%) 

PLC (×10-3) 
ζre  

(%) 

PLC (×10-3) 

Value 
Relative 

Error (%) 
Approach 
Error (%) 

Value 
Relative 

Error (%) 
Approach 
Error (%) 

Baseline 

0 

0.757 - - 

30 

0.912  - - 

MCS 0.756  0.11  - 0.916  0.44  - 
SSMCS 0.776  2.55  2.67  0.907  0.55  0.99  

CEMCS 0.751  0.75  - 0.902  1.08  - 

SSCEMCS 0.770  1.71  2.48  0.892  2.21  1.15  
SE 0.505  33.21  - 0.661  27.52  - 

SSSE 0.515  31.96  1.88  0.672  26.37  1.59  

IISE 0.708  6.38  - 0.878  3.70  - 
SSIISE 0.722  4.63  1.86  0.884  3.04  0.68  

6) Examples of State-Similarity-based Solving Process 

To analyze the iterative solution process of the SS approach, 

the following three states are considered. The contingency 

scenario and active constraints of the base state are shown in 

Fig. 5. In this case, bus 3 becomes a terminal bus due to the 

failure of branches 3-24 and 3-1. The active constraints exhibit 

a pattern that aims to minimize load curtailment through 

several strategies: shedding the load at Bus 3, elevating the 

voltages of several buses to their upper limits, and operating 

branch 3-9 at maximum capacity. The maximum power supply 

of bus 3 is primarily constrained by transmission capacity, 

with load variations having a marginal impact. Therefore, this 

pattern can be regarded as a physical representation of state 

similarity. In the following states, the state 1 (S1) exhibits 

state similarity with the base state, while the state 2 (S2) does 

not. The solutions of these two states through the SS approach 

are presented in Table VII. 

The base state and S1 have the same active constraints, and 
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the solution to S1 can be regarded as the optimal solution with 

acceptable error. Fig. 6 shows the iterative process of S1 using 

SS and IP. The SS approach seeks the solution in the vicinity 

of the optimum, with the solution from the first iteration being 

very close to the optimal values. In contrast, the IP method 

iterates toward an optimal solution along the interior of the 

feasible region, initially moving away and then rapidly 

converging to the optimum. Both the SS and IP solutions 

satisfy the optimality criteria within an acceptable margin of 

numerical error. 

 
Fig. 5.  AC OPF results for RTS-79 system with branch failures 1-3 and 3-24. 

The active constraints of the base state are highlighted in red.  

TABLE VII 

THE RESULTS OF SS AND IP FOR TWO EXAMPLES 

State 
Bus 3 
Load 

(MW) 

System 
Load 

(MW) 

Methods 
Load Curtailment 

of Bus 3 (MW) 

Iterations 

Number 

Optimality 

Criteria 

Base 216 2445 IP* 52.7697 21 - 

S1 169 2292 
IP 5.7547 16 - 

SS 5.7539 4 true 

S2 163 2068 
IP 0 22 - 

SS 0.0682 2 false 
*IP is the Interior Point method implemented by the IPOPT solver. The solution of the 

base state is used as the original variables to solve the AC OPF problems of S1 and S2. 

 
Fig. 6.  The iteration process of S1.  

In S2, the results with no load curtailment suggest that the 

active constraints in S2 differ from those in the base state. As 

shown in Table VII, the SS solution, derived from the active 

constraints of the base state, is a suboptimal solution to the AC 

OPF problem. Since the optimality criteria (44) and (45) are 

not satisfied, there is no state similarity between S2 and the 

base state. Therefore, this SS solution should be rejected. 

Subsequently, S2 will be resolved using other active 

constraints. If S2 fails to match any set of active constraints, 

its accurate solution must be analyzed using the IP method. 

TABLE VIII 

RELIABILITY ASSESSMENT RESULTS OF EIGHT METHODS (IEEE 118-BUS) 

ζre (%) Method 

EENS(MWh/y) 
OPF 

Number 
CPU Time(s) 

Value 
Relative 

Error (%) 
Approach 
Error (%) 

0 

Baseline 261.40  - - - - 

MCS 260.96  0.17  - 13240000 52547  

SSMCS 265.06  1.40  1.57  403533 2107  
CEMCS 262.67  0.49  - 1490000 5771  

SSCEMCS 264.93  1.35  0.86  489725 2403  

SE 157.62  39.70  - 2892100 8709  
SSSE 159.61  38.94  1.27  64866 609  

IISE 239.99  8.19  - 2892100 8710  

SSIISE 244.12  6.61  1.72  64866 609  

15 

Baseline 458.21  - - - - 

MCS 464.95  1.47  - 8550000 31851  

SSMCS 459.09  0.19  1.26  329566 1490  

CEMCS 455.86  0.51  - 636000 2671  

SSCEMCS 450.46  1.69  1.18  244131 1132  

SE 247.20  46.05  - 2892100 8856  

SSSE 251.33  45.15  1.67  74834 845  

IISE 417.88  8.80  - 2892100 8856  

SSIISE 418.52  8.66  0.15  74834 846  

30 

Baseline 268.29  -  - - 

MCS 267.58  0.27  - 13290000 46804  

SSMCS 266.86  0.53  0.27  428185 2147  

CEMCS 269.89  0.60  - 1510000 6247 
SSCEMCS 266.86  0.53  1.12  445727 2066  

SE 158.95  40.75  - 2892100 8918  

SSSE 161.00  39.99  1.28  103550 678  
IISE 237.86  11.34  - 2892100 8919  

SSIISE 234.66  12.53  1.34  103550 678  

 

Fig. 7.  Computational efficiencies of six methods (IEEE-118). 

B. Case II: Results on the IEEE 118-Bus System 

IEEE 118-bus system [32] consists of 118 buses, 54 

generation units, and 186 branches. The total generation 

capacity is 99 662 MW and the peak load is 42 420 MW. The 

maximum contingency order for SE is 2, and the other 

parameters are the same as those in Case I.  

1) Accuracy and Efficiency 

As shown in Table VIII, the computation speed of MCS and 
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SE can be accelerated over 10 times by utilizing the SS 

approach within the IEEE 118-bus system. Fig. 7 demonstrates 

that both SSMCS and SSCEMCS display superior 

computational speed and accuracy, while CEMCS holds a 

relatively high level of computational precision. The proposed 

SS approach can yield relatively accurate results, with an error 

margin of approximately 2% for MCS and less than 10% for 

SE. CEMCS serves as a beneficial method for enhancing MCS 

efficiency, which can be further improved by the SS approach. 

Consequently, the proposed SS approach has the potential to 

improve the efficiency of reliability assessment for the IEEE 

118-bus system. Similar to Case I, the increasing renewable 

energy results in the reliability degradation for the IEEE 118-

bus system. 

2) Analysis of optimality criteria 

Table IX shows the reliability assessment results from the 

proposed SS methods with and without optimality criteria. 

These criteria can be used to match the state with the 

appropriate active constraints, thereby ensuring the precision 

of reliability evaluation. Compared with MCS methods, states 

up to the second order in SSIISE more efficiently align with 

active constraints, resulting in fewer corrective actions by the 

optimality criteria. Consequently, the proposed method with 

optimality criteria can significantly enhance the overall 

computational efficiency of reliability assessment.  

TABLE IX 

THE IMPACT OF OPTIMALITY CRITERIA ON THE PROPOSED SS METHODS 

(IEEE 118-BUS ζre = 0%) 

Method 

EENS(MWh/y) 
OPF 

Number 

Optimality 

Criteria 
Correction 

CPU Time(s) 
Value 

Relative 
Error† (%) 

SSMCS 265.06  0 403533 4241 2107  

SSMCS (-)* 650.33  145.35 396559 - 1944  

SSCEMCS 264.93 0 489725 19438 2403  
SSCEMCS (-) 597.55  125.55 450368 - 2011  

SSIISE 244.12  0 64866 43 609  

SSIISE (-) 293.09  20.06 64669 - 473  

C. Case III: Results on the Brazilian System 

Brazilian system [33], an equivalent network of the 

southern region of Brazil, consists of 242 buses, 52 generation 

units, and 489 branches. The total generation capacity is 206 

023 MW and the peak load is 185 276 MW. The results of 

2×108 sampled states are used as the baselines with ζre at 0% 

and 30%, and NT = 3. The other parameters are consistent with 

those in Case I, and the reliability results of the Brazilian 

system are listed in Table X. 

The SSMCS and SSCEMCS methods demonstrate 

significant efficiency in reducing computational time while 

maintaining high accuracy. For instance, at ζre = 0%, the 

computational time for SSMCS is approximately 25 times 

faster than that of the MCS method, with only a minimal 

approach error for EENS. Compared to traditional SE 

methods, the proposed SS method significantly reduces 

computation time by over 10 times. However, the SE and IISE 

methods exhibit considerable deviations in EENS values 

compared to the baseline. This indicates that these methods 

may not be sufficiently accurate for assessing system 

reliability in complex systems like the Brazilian system, likely 

due to their inability to analyze higher-order states. Table X 

also shows a wide variety of state similarities, attributed to the 

numerous topological changes caused by component failures. 

Future improvements will focus on enhancing the applicability 

to identify state similarities across different component failure 

states. 

TABLE X 

RELIABILITY ASSESSMENT RESULTS OF EIGHT METHODS (BRAZILIAN) 

ζre (%) Method 

EENS(MWh/y) 
OPF 

Number 
CPU Time(s) 

Value 
Relative 

Error (%) 

Approach 

Error (%) 

0 

Baseline 170.05 - - - - 

MCS 169.77 0.21 - 186300000 1165106 
SSMCS 169.56 0.33 0.13 7317665 50564 

CEMCS 166.64 2.05 - 18830000 120988 

SSCEMCS 166.99 1.84 0.21 3828739 35642 

SE 15.37 90.96 - 14225500 87984 
SSSE 15.54 90.87 1.05 655734 6683 

IISE 93.07 45.29 - 14225500 87989 

SSIISE 94.01 44.74 1.01 655734 6685 

30 

Baseline 169.97 - - - - 

MCS 170.26 0.17 - 178600000 1141798 

SSMCS 171.04 0.63 0.45 7666968 54116 

CEMCS 165.11  2.86  - 19210000 122435 
SSCEMCS 164.49 3.22 0.37 3843582 34635 

SE 16.61 90.23 - 14225500 91107 

SSSE 16.49 90.30 0.72 552563 5120 
IISE 100.51 40.86 - 14225500 91112 

SSIISE 99.79 41.29 0.72 552563 5122 

V. CONCLUSION 

This paper proposes a state-similarity-based approach to 

accelerate the reliability assessment of power systems 

considering variations in renewable generation and loads. As 

empirical evidence and experience show, multiple states often 

share similar active constraints with only minor differences in 

generator outputs and load levels. Based on this state 

similarity, the AC OPF computations can be streamlined to 

solving nonlinear equations. Furthermore, an alternating 

iterative approach is proposed to get an approximate solution 

to these equations, which can effectively obtain the minimal 

load curtailment of the original AC OPF problem. The 

optimality criteria are implemented to match states with their 

similarities and to reject the vast majority of inaccurate 

solutions. The results demonstrate that the proposed method 

can remarkably speed up the reliability assessment. More than 

90% of states are analyzed by the SS approach instead of time-

consuming optimization algorithms. Its effectiveness is also 

proven in renewable energy systems, in some cases improving 

speed by more than 10 times with high accuracy. Moreover, 

the robustness and applicability of the proposed SS approach 

are demonstrated in various systems, from the RTS-79 to the 

Brazilian system, indicating its suitability for complex power 

systems. 
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