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A B S T R A C T

The accurate and stable simulation of viscoelastic flows remains a significant computational challenge,
exacerbated for flows in non-trivial and practical geometries. Here we present a new high-order meshless
approach with variable resolution for the solution of viscoelastic flows across a range of Weissenberg numbers.
Based on the Local Anisotropic Basis Function Method (LABFM) of King et al. (2020), highly accurate
viscoelastic flow solutions are found using Oldroyd B and PPT models for a range of two dimensional problems
— including Kolmogorov flow, planar Poiseulle flow, and flow in a representative porous media geometry.
Convergence rates up to 9th order are shown. Three treatments for the conformation tensor evolution are
investigated for use in this new high-order meshless context (direct integration, Cholesky decomposition, and
log-conformation), with log-conformation providing consistently stable solutions across test cases, and direct
integration yielding better accuracy for simpler unidirectional flows. The final test considers symmetry breaking
in the porous media flow at moderate Weissenberg number, as a precursor to a future study of fully 3D
high-fidelity simulations of elastic flow instabilities in complex geometries. The results herein demonstrate the
potential of a viscoelastic flow solver that is both high-order (for accuracy) and meshless (for straightforward
discretisation of non-trivial geometries including variable resolution). In the near-term, extension of this
approach to three dimensional solutions promises to yield important insights into a range of viscoelastic flow
problems, and especially the fundamental challenge of understanding elastic instabilities in practical settings.
. Introduction

Despite decades of research effort, the determination of accurate
iscoelastic flow solutions remains a key challenge in computational
heology. There are a wide variety of techniques to improve numerical
tability at higher levels of elasticity. Many early approaches sought to
djust the balance of elliptic and parabolic terms, with examples being
lastic-viscous split-stress (EVSS) schemes [1,2], adaptive viscoelastic
tress splitting (AVSS) [3,4] and ‘‘both sides diffusion’’ (BSD) [5,6].
hilst these can provide increased stability, especially near the limit

f zero solvent viscosity, they do not provide stability in complex
ransient flows at high levels of elasticity. Another approach, commonly
sed in pseudo-spectral methods (e.g. [7,8]) is to add some form of
rtificial diffusivity to the system. Whilst this can provide stability by
mposing a limit on the smallest lengthscales of the flow, this is at
he expense of accuracy, though justifications can be made by analogy
ith molecular diffusion. Perhaps the most significant development in

he state-of-the-art has arisen from approaches which seek to transform
he equations governing the evolution of the conformation tensor (or

∗ Corresponding author.
E-mail address: jack.king@manchester.ac.uk (J.R.C. King).

polymeric stress), such that (some of the) physical constraints are
respected. Two significant examples of this are the log conforma-
tion formulation [9,10], which guarantees the conformation tensor
remains symmetric positive definite, and the Cholesky decomposition
approach [11].

The above developments have improved capability greatly by in-
creasing stability of simulations, especially as one enters higher Weis-
senberg, 𝑊 𝑖, number regimes, where historically simulations would
quickly fail approaching 𝑊 𝑖 =  (1). Whilst the stability of viscoelastic
flow simulations has been greatly improved, accuracy of these sim-
ulations is now a primary concern. Stable simulations, particularly
those at higher 𝑊 𝑖 number face considerable difficulty in attaining
accurate, converged solutions, due to extremely large elastic stress
gradients (for example near solid boundaries) and/or the development
of very thin transient elastic stress filaments often a precursor to 2D
or 3D (visco-)elastic instability and potentially the onset of elastic or
elasto-inertial turbulence [12,13]. The resolution required to resolve
the elastic stresses is considerable — and as the 𝑊 𝑖 number increases,
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obtaining fully converged solutions can become prohibitively expen-
sive, with computational grid requirements dwarfing those required for
the equivalent Newtonian turbulence simulation at the same Reynolds
number. Given that understanding Newtonian turbulence remains one
of the great open challenges in fluid mechanics, the challenge facing
computational rheology in this regard considerable.

In order to attain high degrees of solution accuracy in a practical
time frame, high-order methods become essential. Spectral, spectral
element, and ℎ𝑝 element methods have become established in compu-
tational rheology over the years [14], and there are many examples of
their usage in solving a range of challenging viscoelastic flow problems
and with a high degree of success (see for example, [15–20]). In
simple domain geometries (i.e. rectangular) spectral methods have few
competitors: relatively fast and extremely accurate they have been used
with great success to model higher 𝑊 𝑖 number problems and funda-

ental flow studies in elastic turbulence (see [7,21], for example).
or more practical contexts however – namely complicated geometries
erhaps resembling industrial processing/mixing devices where accu-
ate flow solutions have broad utility and benefit (e.g. [22]) – spectral
ethods are inapplicable. Spectral and p-finite element methods offer

reater geometric flexibility, but, like mesh-based methods generally,
onstructing a mesh in a very complicated geometry that results in
table and converged solutions is particularly challenging and a sig-
ificantly time-consuming task at pre-processing. Generally, element
izes and shapes have to sufficiently regular and well-distributed for
ccuracy and stability, which can be particularly difficult to achieve
n very complicated geometries and makes an effective high-order
daptive or dynamic meshing scheme, e.g. for resolving thin transient
lastic flow structures, particularly difficult to implement.

Meshless methods circumvent many of these challenges and make
he process of domain discretisation much simpler in comparison.
eshless computational nodes have limited connectivity or require-
ents on topology and can often be scattered across a domain, then
iffused or advected (by the flow or some transport velocity or other-
ise) to improve node distribution. This may be done at pre-processing

or Eulerian (fixed node) approaches or, for Lagrangian or Arbitrary-
agrangian-Eulerian (ALE) simulations, during the simulation itself.
moothed Particle Hydrodynamics is perhaps one of the most well
now meshless methods and has been used to solve viscoelastic flow
roblems in the Lagrangian context for many years (see for exam-
le [23–26]), with impressive results in terms of stability, and showing
onsiderable promise for free-surface flows. The computational nodes
re simultaneously Lagrangian fluid elements, which can offer stability
enefits in the context of viscoelastic flow simulation by effectively
emoving the advective term in the governing equations. There are
lso related methods, such as Dissipative Particle Dynamics (DPD) and
moothed Dissipative Particle Dynamics (SDPD), which are also subject
o a concerted research effort in computational rheology [27–31], but
hese tend to apply on the physical length scales where the search for
onverged continuum solutions becomes less relevant.

While offering enviable geometric flexibility and stability, one of
he primary limitations of SPH and related approaches is accuracy. In
ts traditional form the SPH method is formally low order [32], and
s discussed above, without high-order resolving power, the resolu-
ions required for practical simulation become prohibitively expensive
especially as SPH is more computationally expensive than most grid-
ased methods at an equivalent resolution). One of the key benefits of
PH is that it is (usually) Lagrangian - particles move (approximately)
ith the flow, advection terms are included implicitly through the
article motion, and the simulation of flows with dynamically evolving
ree surfaces or topological changes is straightforward. We note that
he relatively low accuracy of SPH is a consequence of the smoothing
ernel, and even for simple shear flows, is largely unaffected by the
rame of reference (i.e. Eulerian or Lagrangian) [26]. An additional
trength of SPH is that in the context of viscoelastic flows, it is possible
2

hat the Lagrangian nature of SPH provides increased stability at high
𝑊 𝑖 [25,26]. With the above limitations and strengths in mind, the
computational rheology community would benefit from a method that
is both meshless (to provide the improved geometric flexibility) and
high-order (to provide the accuracy and resolving power). In recent
years the authors and co-workers have been developing such a method;
originally motivated by the need to create a high-order version of
the SPH method [33,34], the Local Anisotropic Basis Function Method
(LABFM) has emerged as a generalised high-order meshless scheme [35,
36] with arbitrary orders of convergence possible (but 6th or 8th order
spatial convergence is typical). Following the analysis of prototypical
Newtonian flow cases in [35,36], LABFM has recently been extended
to the study of combustion physics and flame-turbulence interactions
in complex geometries in [37].

The potential of the LABFM approach as a geometrically flexible,
multi-physics, high-order solver is such that the aim and focus of this
manuscript is the extension of LABFM to the solution of viscoelastic
fluid flow. Herein we demonstrate high-order solutions of viscoelas-
tic flow in both simple and non-trivial geometries with convergence
rates of up to 9th order possible. We also consider three numerical
approaches for the viscoelastic stresses (based on direct integration,
Cholesky decomposition, and log conformation) to assess suitability in
this new high-order mesh-free context for different test cases. The paper
concludes with a preliminary study of a two-dimensional symmetry
breaking elastic instability in a representative porous media geometry
at moderate 𝑊 𝑖, demonstrating the potential of high-order meshless
schemes for the fundamental study of elastic instabilities and elastic
turbulence in non-trivial geometries in the near future. It is hoped
that in the longer term the method may serve as a practical tool for
the computational analysis, optimisation and design of challenging
industrial viscoelastic fluid processing, an activity which underpins
healthcare product and foodstuff manufacturing, energy supply, and
many other important industries worldwide.

The remainder of this paper is set out as follows. In Section 2
we introduce the governing equations, and their Cholesky and log-
conformation formulations, and in Section 3 we describe the numerical
implementation. Section 4 contains a set of numerical results providing
validation for the model against two-dimensional Kolmogorov flow,
Poiseuille flow, and flows past cylinders in a channel and representative
porous media geometry. Section 5 is a summary of conclusions.

Before continuing further, we briefly comment on our notation. To
avoid ambiguity, we use Einstein notation where possible, and, of the
Latin characters, subscripts 𝑖, 𝑗 𝑘, 𝑙, 𝑛 are reserved for this purpose,
with repetition implying summation. Subscripts 𝑎 and 𝑏 are used for
particle/node indexes. Bold fonts are used to refer to tensors in their
entirety (e.g. 𝒄) rather than individual components. The order of the
spatial discretisation scheme is denoted by 𝑚.

2. Governing equations

In the present work we limit our focus to the two-dimensional
problem. The governing equations for the density, momentum and
conformation tensor (in Einstein notation) are
𝜕𝜌
𝜕𝑡

+
𝜕𝜌𝑢𝑘
𝜕𝑥𝑘

= 0, (1)

𝜕𝜌𝑢𝑖
𝜕𝑡

+
𝜕𝜌𝑢𝑖𝑢𝑘
𝜕𝑥𝑘

= −
𝜕𝑝
𝜕𝑥𝑖

+ 𝛽𝜂
𝜕2𝑢𝑖

𝜕𝑥𝑘𝜕𝑥𝑘
+

(1 − 𝛽) 𝜂
𝜆

𝜕𝑐𝑘𝑖
𝜕𝑥𝑘

+ 𝜌𝑓𝑖, (2)

𝜕𝑐𝑖𝑗
𝜕𝑡

+ 𝑢𝑘
𝜕𝑐𝑖𝑗
𝜕𝑥𝑘

−
𝜕𝑢𝑖
𝜕𝑥𝑘

𝑐𝑘𝑗 −
𝜕𝑢𝑗
𝜕𝑥𝑘

𝑐𝑖𝑘 = −

(

𝑐𝑖𝑗 − 𝛿𝑖𝑗
)

𝜆
[

1 − 2𝜀 + 𝜀𝑐𝑘𝑘
]

, (3)

in which 𝑥𝑖 is the 𝑖th coordinate (𝑥𝑖 = 𝑥, 𝑦 for 𝑖 = 1, 2), 𝑢𝑖 is the
𝑖th component of velocity (𝑢, 𝑣 for 𝑖 = 1, 2), 𝜌 is the density, 𝑝 the
pressure, 𝑐𝑖𝑗 the 𝑖𝑗-th element of the conformation tensor, 𝑓𝑖 is a body
force, 𝜆 the polymer relaxation time, 𝜂 the total viscosity, 𝛽 the ratio
of solvent to total viscosity, and 𝜀 is a non-linearity parameter. The
system is closed with an isothermal equation of state 𝑝 = 𝑐2

(

𝜌 − 𝜌
)

,
𝑠 0
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where 𝜌0 is a reference density and 𝑐𝑠 is the sound speed. Taking 𝑈
and 𝐿 to be characteristic velocity and length scales, and 𝑇 = 𝐿∕𝑈 the
characteristic time scale, the governing dimensionless parameters are:

𝑅𝑒 =
𝜌0𝑈𝐿
𝜂

; 𝑊 𝑖 = 𝜆𝑈
𝐿

; 𝑀𝑎 = 𝑈
𝑐𝑠
; (4)

the viscosity ratio 𝛽, and the PTT nonlinearity parameter 𝜀. Additional
erms which might arise in (2) and (3) due to compressibility (see
.g. [38,39]) are neglected as we operate near the incompressible limit,
ith Mach number 𝑀𝑎 < 0.05 for all considered cases. In this pa-
er, three different formulations are investigated for the conformation
ensor evolution equation (3) to inform optimal use in the high-order
eshless context across test cases. In particular, we employ direct
umerical integration of (3), Cholesky Decomposition [11], and log-
onformation [9,10], summaries of which are provided in the sections
elow.

.1. Cholesky decomposition

First considered in the context of viscoelastic numerical simulation
y [11], the Cholesky decomposition of the conformation tensor offers
convenient way to maintain symmetric positive definiteness. Consider

he Cholesky decomposition of the 2-D conformation tensor, viz.,

=
[

𝑙211 𝑙11𝑙12
𝑙11𝑙12 𝑙212 + 𝑙

2
22

]

, (5)

ith 𝑙𝑖𝑗 denoting the components of the lower triangular matrix 𝑳, such
hat 𝒄 = 𝑳𝑳𝑇 . Defining 𝑆𝑖𝑗 as the right hand side of (3)

𝑖𝑗 = −

(

𝑐𝑖𝑗 − 𝛿𝑖𝑗
)

𝜆
[

1 − 2𝜀 + 𝜀𝑐𝑘𝑘
]

, (6)

hen the equations for the evolution of the Cholesky decomposition
omponents are:
𝜕𝑙11
𝜕𝑡

+ 𝑢𝑘
𝜕𝑙11
𝜕𝑥𝑘

= 𝜕𝑢
𝜕𝑥
𝑙11 +

𝜕𝑢
𝜕𝑦
𝑙12 +

𝑆11
2𝑙11

(7a)

𝜕𝑙12
𝜕𝑡

+ 𝑢𝑘
𝜕𝑙12
𝜕𝑥𝑘

= 𝜕𝑣
𝜕𝑦
𝑙12 +

𝜕𝑢
𝜕𝑦
𝑙222
𝑙11

+ 𝜕𝑣
𝜕𝑥
𝑙11 +

𝑆12
𝑙11

−
𝑙12
2𝑙211

𝑆11 (7b)

𝜕𝑙22
𝜕𝑡

+ 𝑢𝑘
𝜕𝑙22
𝜕𝑥𝑘

= 𝜕𝑣
𝜕𝑦
𝑙22 −

𝜕𝑢
𝜕𝑦
𝑙12𝑙22
𝑙11

+
𝑆22
2𝑙22

−
𝑆12𝑙12
𝑙22𝑙11

+
𝑙212𝑆11

2𝑙211𝑙22
(7c)

Eqs. (7a)–(7c) can then be discretised in space and integrated in time as
detailed in Section 3. We refer to this formulation as CH. It is common
practice to evolve the natural logarithms of 𝑙11 and 𝑙22. The correspond-
ing evolution equations can be obtained by simply dividing (7a) by 𝑙11
and (7c) by 𝑙22 (with (7b) unchanged). We refer to this formulation as
Cholesky-log, or CH-L.

2.2. Log-conformation

The log-conformation formulation employed directly follows that
of [9,10], to which readers may refer for further details. We define the
diagonalisation of the conformation tensor as

𝑐𝑖𝑗 = 𝑅𝑖𝑘𝛬𝑘𝑙𝑅𝑗𝑙 , (8)

in which 𝑅𝑖𝑗 contains the eigenvectors of the conformation tensor, and
the diagonal matrix 𝛬𝑖𝑗 contains the eigenvalues. We then denote the
log-conformation tensor as

𝛹𝑖𝑗 = 𝑅𝑖𝑘 ln𝛬𝑘𝑙𝑅𝑗𝑙 , (9)

where the logarithm is applied independently to each diagonal element
𝛬𝑖𝑖. The log-conformation tensor is then evolved according to

𝜕𝛹𝑖𝑗
𝜕𝑡

+ 𝑢𝑘
𝜕𝛹𝑖𝑗
𝜕𝑥𝑘

= 𝛺𝑖𝑘𝛹𝑘𝑗 −𝛹𝑖𝑘𝛺𝑘𝑗 + 2𝐵𝑖𝑗 −
1
𝜆
(

1 − 2𝜀 + 𝜀𝑐𝑘𝑘
) {

𝑐−1
}

𝑖𝑗

(

𝑐𝑖𝑗 − 𝛿𝑖𝑗
)

,

(10)
3

A

where

𝛺𝑖𝑗 = 𝑅𝑖𝑘
(

𝜔𝑘𝑛
(

1 − 𝛿𝑛𝑙
))

𝑅𝑗𝑙 , (11)

and

𝐵𝑖𝑗 = 𝑅𝑖𝑘
(

𝑚𝑘𝑛𝛿𝑛𝑙
)

𝑅𝑗𝑙 , (12)

in which

𝜔𝑖𝑗 =
(

𝛬𝑗𝑚𝑖𝑗 + 𝛬𝑖𝑚𝑗𝑖
)

∕
(

𝛬𝑗 − 𝛬𝑖
)

(13)

and

𝑚𝑖𝑗 = 𝑅𝑘𝑖
𝜕𝑢𝑘
𝜕𝑥𝑙

𝑅𝑙𝑗 . (14)

The subsequent spatial and temporal discretisation of the log-
conformation scheme is described in Section 3. As mentioned, both
the Cholesky decomposition and log-conformation approaches will be
compared with a scheme that directly integrates the conformation
tensor evolution Eq. (3), with no explicit constraints given on tensor
positive definiteness. The aim will be to compare the three schemes
across different flow test cases to determine optimal usage in the
high-order meshless framework.

3. Numerical implementation

For all three formulations, the numerical implementation closely
follows that described in [36] for isothermal Newtonian flows and [37]
for turbulent reacting flows, with spatial discretisation based on the
Local Anisotropic Basis Function Method (LABFM), time integration
via an explicit Runge–Kutta scheme, and acceleration via OpenMP and
MPI, with non-uniform structured block domain decomposition.

3.1. Spatial discretisation

The spatial discretisation is based on LABFM, which has been de-
tailed and extensively analysed in [35,36], and we refer the reader to
these works for a complete description, but provide sufficient details
here to reproduce the method. Briefly summarising, the domain is
discretised with a point cloud of 𝑁 nodes, unstructured internally, and
with local structure near boundaries. The node-set is fixed in space;
i.e. the nodes do not move during the simulation. Along wall, inflow
and outflow boundaries, nodes are distributed uniformly. Near bound-
aries, an additional 4 rows of uniformly distributed nodes are arranged
along boundary normals originating at nodes on boundaries. These are
used to construct one-sided difference operators on the boundaries.
Internally, the node distribution is generated using the propagating
front algorithm of [40]. The generation of the node distribution is akin
to a mesh-generation procedure for unstructured mesh-based methods,
and we do not repeat details of the algorithm here, which has been
described in [36,37]. To ensure repeatability of our work, for each case
herein, node distributions are available on request.

Each node 𝑎 has an associated resolution 𝑠𝑎, which corresponds
o the local average distance between nodes. The resolution need
ot be uniform, and 𝑠𝑎 may vary with 𝑥 and 𝑦. Each node also has
n associated computational stencil length-scale ℎ𝑎, which again may
ary with 𝑥 and 𝑦. The ratio 𝑠𝑎∕ℎ𝑎 is approximately uniform, with
ome variation due to the stencil optimisation procedure described
n [36], which ensures the method uses stencils marginally larger than
he smallest stable stencil. Each node holds the evolved variables 𝜌𝑎,
𝑢𝑖,𝑎, and either the components of 𝒄, the components of 𝜳 , or the
omponents of the 𝑳. The governing equations are solved on the set
f 𝑁 nodes.

The difference between properties at two nodes is denoted (⋅)𝑏𝑎 =
⋅)𝑏 − (⋅)𝑎. The computational stencil for each node 𝑎 is denoted 𝑎,
nd is constructed to contain all nodes 𝑏 such that 𝑟2𝑏𝑎 = 𝑥2𝑏𝑎+𝑦

2
𝑏𝑎 ≤ 4ℎ2𝑎.
schematic of the computational stencil is shown in Fig. 1.
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Fig. 1. A schematic of the computational stencil.

In the following, we use standard multi-index notation with index
e.g.) 𝛼 representing the ordered pair

(

𝛼1, 𝛼2
)

, with |𝛼| = 𝛼1 + 𝛼2. For
larity, as is standard in multi-index notation 𝛼! = 𝛼1!𝛼2!, 𝑥𝛼 = 𝑥𝛼11 𝑥

𝛼2
2 ,

nd the partial derivative

𝛼 = 𝜕𝛼1
𝜕𝑥1

𝜕𝛼2
𝜕𝑥2

. (15)

In LABFM, all spatial derivative operators take the form

𝐿𝛾𝑎 (⋅) =
∑

𝑏∈𝑎

(⋅)𝑏𝑎𝑤
𝛾
𝑏𝑎, (16)

where 𝛾 is a multi-index which identifies the derivative being ap-
proximated by (16), and 𝑤𝛾𝑏𝑎 are a set of inter-node weights for the
operator. To evaluate 𝑤𝛾𝑏𝑎, we first define the vector of monomials 𝑿𝑏𝑎
element-wise, with the element corresponding to multi-index 𝛼

𝑋𝑏𝑎 =
𝑥𝛼𝑏𝑎
𝛼!
, (17)

and a vector of anisotropic basis functions 𝑾 𝑏𝑎 = 𝑾
(

𝒙𝑏𝑎
)

, with the
lement corresponding to multi-index 𝛼 given by

𝑏𝑎 =
𝜓
(

𝑟𝑏𝑎∕ℎ𝑎
)

√

2|𝛼|
𝐻𝛼

(

𝑥𝑏𝑎
ℎ𝑎

√

2

)

, (18)

where

𝐻𝛼 (𝑥) = 𝐻𝛼1

(

𝑥1
)

𝐻𝛼2

(

𝑥2
)

(19)

are bi-variate Hermite polynomials of the physicists’ kind, and the
radial basis function (RBF) 𝜓 is a Wendland C2 kernel [41]. The weights
𝑤𝛾𝑏𝑎 in (16) are constructed as

𝑤𝛾𝑏𝑎 = 𝑾 𝑏𝑎 ⋅ 𝜳 𝛾 , (20)

with 𝜳 𝛾 a vector to be determined. To determine 𝜳 𝛾 we construct and
olve the linear system

∑

𝑏∈𝑎

𝑿𝑏𝑎 ⊗𝑾 𝑏𝑎

⎤

⎥

⎥

⎦

⋅ 𝜳 𝛾 = 𝑪𝛾 , (21)

n which 𝑪𝛾 is a unit vector defined element-wise as 𝐶𝛼𝛾 = 𝛿𝛼𝛾 , with
𝛼𝛾 the Dirac-delta function. The consistency of the operator (16) is
hen determined by the size of the linear system (21). If we include
he first 𝑀 = 𝑚2+3𝑚

2 terms (i.e. up to order |𝛼| ≤ 𝑚) then the operator
has polynomial consistency of order 𝑚. Consequently, first derivative
operators converge with 𝑠𝑚, and second derivatives with 𝑠𝑚−1. With
4

(

ur nodes fixed in space, as a preprocessing step, for each node we con-
truct and solve the linear system (21) to obtain 𝜳 𝛾 , for 𝛾 corresponding

to both first spatial derivatives, and the Laplacian, which we then use
to calculate and store 𝑤𝛾𝑏𝑎 in (16). The derivatives appearing in (1), (2),
and either (3), (7a) to (7c), or (10) are approximated using (16).

We highlight here that the consistency correction procedure de-
scribed above removes the discretisation error limit which causes a
saturation of convergence in low-order mesh-free methods, such as SPH
(see e.g. [32] for a discussion). In such methods, this limit is caused by
the fact that the kernel does not account for the node distribution, and
the derivation of the method assumes the equivalence of the integral of
the kernel over its support with the sum of the kernel over the particles
in a stencil. No such assumptions are made in the present method, and
the operators converge until an error limit dictated by the accuracy
with which (21) can be solved, typically 

(

10−12
)

for order 𝑚 = 8.
For in-depth analysis of the LABFM discretisation, we refer the reader
to [35,36].

The order of the spatial discretisation can be specified between 𝑚 =
and 𝑚 = 10, and although there is capability for this to be spatially

or temporally) varying, in this work we set 𝑚 = 8 uniformly away from
oundaries (except where explicitly stated in our investigations of the
ffects of changing 𝑚). Whilst a larger value of 𝑚 gives greater accuracy
or a given resolution, it also requires a larger stencil (larger ℎ𝑎∕𝑠𝑎), and
ence incurs greater computational expense for a given resolution. As
n central finite difference schemes, the cost scales with the product
f the stencil size and the number of points 𝑁 , where  is the
verage number of nodes in a computational stencil. In the present
mplementation, parallelised with MPI, scaling results have shown
arallel efficiency above 96% between 4 and 1024 cores. The method
xhibits the same scaling performance as our related work in [37]. A
alue of 𝑚 = 8 provides a good compromise between accuracy and

computational cost. At non-periodic boundaries, the consistency of the
LABFM reconstruction is smoothly reduced to 𝑚 = 4. The stencil scale
ℎ𝑎 is initialised to ℎ𝑎 = 2.7𝑠𝑎 in the bulk of the domain, and ℎ𝑎 = 2.4𝑠𝑎
ear boundaries (choices informed through experience as being large
nough to ensure stability with 𝑚 = 8). In the bulk of the domain,
he stencil scale is then reduced following the optimisation procedure
escribed in [36]. This has the effect of both reducing computational
osts, and increasing the resolving power of LABFM, and accordingly
𝑎 takes a value slightly larger than the smallest value for which the
iscretisation remains stable. Note that as with high-order central finite
ifferences, or pseudo-spectral methods, no upwinding is used in the
resent scheme.

.2. Temporal discretisation

For the direct integration of 𝒄 (hereafter referred to as DI), we
volve only 3 of the 4 (in two-dimensions) components of 𝒄, and impose
ymmetry. There is nothing in this formulation to ensure 𝒄 remains
ositive definite. Both the log-conformation (referred to as LC) and
holesky decomposition (referred to as CH) formulations ensure 𝒄 is
ymmetric positive definite by construction.

Time integration is by explicit third order Runge–Kutta scheme. We
se a low-storage four-stage Runge–Kutta scheme with an embedded
econd order error estimator, with the designation RK3(2)4[2R+]C in
he classification system of [42]. The value of the time-step is controlled
sing a Proportional-Integral-Derivative (PID) controller as described
n [37], which ensures errors due to time-integration remain below
0−4. In addition to the PID controller, we impose an upper limit on
he time step with

𝑡 ≤ 𝛿𝑡𝑚𝑎𝑥 = max
(

𝛿𝑡𝑐𝑓𝑙 , 𝛿𝑡𝑣𝑖𝑠𝑐
)

(22)

here 𝛿𝑡𝑐𝑓𝑙 = min
(

𝑠∕
(

𝑢 + 𝑐𝑠
))

and 𝛿𝑡𝑣𝑖𝑠𝑐 = min
(

𝐶𝑣𝑖𝑠𝑐𝜂𝑠2
)

denote the
ime steps due to the CFL and viscous diffusion constraints, respectively

with the min taken over the entire domain). We set the coefficient 𝐶𝑣𝑖𝑠𝑐
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Fig. 2. Kolmogorov flow. Variation of 𝐿2 error in steady state conformation tensor trace 𝑐𝑥𝑥 + 𝑐𝑦𝑦, for different orders 𝑚 of the numerical discretisation scheme. The left panel
shows the errors for all formulations DI (red lines), CH (solid blue lines), CH-L (dashed blue lines) and LC (black lines), for 𝑅𝑒 = 1 and 𝑊 𝑖 = 0.1. The right panel shows the errors
or DI only, for 𝑅𝑒 = 10 and 𝑊 𝑖 = 1.
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o the limiting value 𝐶𝑣𝑖𝑠𝑐 = 1, with the PID controller reducing the
ime-step size as necessary to keep time-integration errors bounded.

We note here that because we use an explicit time integration
cheme, at small 𝑅𝑒, 𝛿𝑡 ∝ 𝑅𝑒, making simulations in the creeping
low limit prohibitively expensive. An implicit time-integration scheme
ould be implemented with the present spatial discretisation scheme.
his would remove the viscous constraint on the time-step, at the ex-
ense of the solution of a large sparse linear system every step. Implicit
chemes have been implemented in Smoothed Particle Hydrodynam-
cs [26,43], which although low-order and Lagrangian, has effectively
he same stencils as the present method, including on massively parallel
rchitectures [44], and for high-order variants on multiple GPUs [45].
n Lagrangian schemes the linear system must be reconstructed each
ime-step, incurring considerable cost. In the present method, where
he nodes are fixed, the linear system would need to be built only once.
he development of an implicit, incompressible formulation of our
umerical framework is planned, but beyond the scope of the present
ork.

In common with other high-order collocated methods, the dis-
retisation admits solutions with energy at the wavenumber of the
esolution, and some form of de-aliasing or filtering is required. In the
resent work, the solution is dealiased every time-step by a high-order
ilter, as is commonly used for high-order central finite differences
pplied to compressible flows. For a field 𝜙, the filtering procedure is
efined as

̂ =
(

1 + 𝑎
)

𝜙, (23)

n which the operator 𝑎 is

𝑎 (𝜙) = 𝜅𝑚,𝑎
∑

𝑏∈𝑎

𝜙𝑏𝑎𝑤
𝛾𝑚
𝑏𝑎 , (24)

here 𝛾𝑚 is a multi-index such that the operator using weights 𝑤𝛾𝑚𝑏𝑎 ap-
roximates ∇𝑚, and the pre-factor 𝜅𝑚,𝑎 is calculated in a pre-processing
tep as

𝑚,𝑎 =
2
3

⎧

⎪

⎨

⎪

⎩

∑

𝑏∈𝑎

[

1 − cos
(

3𝜋𝑥𝑏𝑎
2𝑠𝑎

)

cos
(

3𝜋𝑦𝑏𝑎
2𝑠𝑎

)]

𝑤𝛾𝑚𝑏𝑎

⎫

⎪

⎬

⎪

⎭

−1

. (25)

By construction, 𝜅𝑚,𝑎 ensures that the amplitude responses of the filter
at a wavenumber two thirds of the Nyquist wavenumber (defined by
the resolution 𝑠) is equal to 1∕3. Further details of the procedure can
be found in [36,37]. The filter primarily acts on large wavenumbers,
and has little effect on wavenumbers which are small relative to the
5

Nyquist wavenumber of the discretisation (𝜋∕𝑠). Provided the flow field
is sufficiently resolved that the physical information in the solution
lies at small wavenumbers (relative to 𝜋∕𝑠), the effect of the filter on
the physical solution is negligible. In the present work, the filter (23)
is applied every time step to the density and momentum fields, to
either the components of 𝒄 (for DI), the components of 𝜳 (LC) or the
components of 𝑳 (CH).

3.3. Boundary treatment

Throughout this work, the computational domain is discretised
with a strip of uniformly arranged nodes near solid boundaries, and
an unstructured node-set internally. The discretisation procedure is
the same as that used in [36,37], to which we refer the interested
reader for details. As in those works, numerical boundary conditions
for no-slip walls are implemented via the Navier–Stokes Characteristic
boundary condition formalism following [46], the implementation of
which directly follows [36]. For the conformation tensor (or its decom-
positions), the hyperbolic term is zero on solid boundaries, and requires
no additional treatment. The upper-convected terms may be directly
evaluated using the values of 𝒄 (or its decompositions) on the boundary,
nd the local velocity gradients (evaluated using one-sided derivatives
s detailed in [36]).

. Numerical results

For the following, we reiterate use of the acronyms DI, CH, CH-L and
C to indicate direct integration of the conformation tensor, Cholesky
ecomposition, log-Cholesky decomposition, and the log-conformation
ormulation, respectively. Where a figure provides a comparison of
hese formulations, we use red, black and blue lines for DI, LC and CH
espectively.

.1. Kolmogorov flow

Our first test is two-dimensional Kolmogorov flow. Although a
imple geometry and one for which pseudo-spectral methods are well
uited, the flow has an analytic solution in the steady state, and given
he absence of boundaries, is a good test of the convergence of our
ethod. The domain is a doubly-periodic square with side length 2𝜋.
forcing term of 𝑓𝑥 = 4

𝑅𝑒 cos (2𝑦) and 𝑓𝑦 = 0 is added to the right hand
ide of the momentum equation. The analytic solution in the steady
tate is 𝑢 = cos (2𝑦), 𝑣 = 0, 𝜌 = 1 and

=
[

1 + 8𝑊 𝑖2 sin2 (2𝑦) −2𝑊 𝑖 sin (2𝑦)
]

. (26)

−2𝑊 𝑖 sin (2𝑦) 𝑐𝑦𝑦 = 1
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Fig. 3. Variation of the Poiseuille flow steady state 𝐿2 error norm of the conformation tensor components with resolution for parameters 𝑅𝑒 = 1, 𝑊 𝑖 = 1, 𝜀 = 0, 𝛽 = 1 and
𝑎 = 0.05, for the three formulations: DI -red lines, CH - blue lines, LC - black lines. The annotations indicate the slopes of the dashed lines.
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e first set 𝑅𝑒 = 1, 𝛽 = 0.5, 𝜀 = 0, 𝑀𝑎 = 0.05. To reduce the costs of
eaching a steady state, we use a small value of 𝑊 𝑖 = 0.1. Note that the
urpose of this test is not to demonstrate the ability of the method to
each larger 𝑊 𝑖, but to assess the accuracy of the numerical scheme.
he convergence rates observed would be unaffected if we set 𝑊 𝑖 = 1,
ut the simulation would take longer to reach a steady state. We vary
he order 𝑚 of the discretisation, with 𝑚 ∈ [4, 6, 8, 10]. The left panel of
ig. 2 shows the convergence in the trace of the conformation tensor
or all three formulations for 𝑅𝑒 = 1 and 𝑊 𝑖 = 0.1. The errors scale
ith 𝑠𝑚−2. At higher 𝑚, DI is slightly more accurate than LC and CH,
nd CH-L is least accurate, but at lower 𝑚 the errors for all formulations
re almost identical.

For lower 𝑅𝑒, the time-step selection criteria is such that we have
𝑡 ∝ 𝑠2, and, by considering a steady state at a fixed time 𝑡𝑒𝑛𝑑 , the total
umber of time-steps to reach 𝑡𝑒𝑛𝑑 is 𝑁𝑠𝑡𝑒𝑝𝑠 ∝ 𝛿𝑡−1 ∝ 𝑠−2. The total
rror at 𝑡𝑒𝑛𝑑 is given by the spatial error, dominated by terms ∝ 𝑠𝑚 in
he present case, multiplied by the number of time steps, resulting in a
caling of 𝑠𝑚−2, as shown in the convergence rates of the left panel of
ig. 2. The right panel of Fig. 2 shows convergence in 𝑡𝑟𝒄 at larger 𝑅𝑒
and 𝑊 𝑖, with 𝑅𝑒 = 10 and 𝑊 𝑖 = 1), but presenting the DI formulation
nly. Note that as the time step is now proportional to 𝑠 (rather than
2), given the larger 𝑅𝑒, convergence rates tend to follow order 𝑚 − 1,
s observed in [36]. For the right panel of Fig. 2 errors are taken at
imensionless time 𝑡 = 40∕𝜋, after the steady state is reached, but
efore the growth of any instability. The magnitudes of the errors are
arger in this case because 𝑊 𝑖 is larger (with similar behaviour seen
n the Poiseuille flow case to follow in Section 4.2). For a fixed 𝑅𝑒,
ncreasing 𝑊 𝑖 will increase the error magnitude, but leave the rate of
onvergence unchanged.

For both panels in Fig. 2 we see slightly lower convergence rates
t very coarse resolutions because the wavelengths on which the high-
rder filters act are closer to those of the base solution. This behaviour
as been observed and discussed in [36], and further in the context
f three-dimensional turbulence simulations in [37]. If filtering for the
onformation tensor equation is removed, this does not affect the order
f convergence, but does reduce the magnitude of the errors by 

(

103
)

.

6

o

owever, at coarse resolutions, filtering is essential for stability with 𝒄
ecoming unbounded in the absence of filtering for all formulations
DI, CH, CH-L, LC).

.2. Poiseuille flow

Poiseuille flow is an important and classical flow test admitting
nalytical solutions for Oldroyd B fluids in the unsteady transient start-
p flow as well as at steady state, and hence provides a good test of
ethod accuracy. For all Poiseuille flow tests considered, the domain

s a unit square, periodic laterally with no-slip wall boundaries at the
op and bottom. The flow is driven by a constant and uniform body
orce such that the channel centreline velocity in the steady state is
nity.

.2.1. 𝑅𝑒 = 1, 𝑊 𝑖 = 1, 𝜀 = 0, 𝛽 = 1, 𝑀𝑎 = 0.05, Varying resolution 𝑠
This selection of parameters decouples the momentum equation

rom the conformation tensor, and is a good validation of the accuracy
f our discretisation. Fig. 3 shows the convergence with resolution of
he 𝐿2 norm of the conformation tensor components once a steady state
as been reached. For direct integration of the conformation tensor, re-
ults are much more accurate. At these low 𝑅𝑒, the time-step is limited
y the viscous constraint, and so 𝛿𝑡 ∝ 𝑠2. This explains the increasing
rror from machine precision with resolution, clearly visible for 𝑐𝑦𝑦
n particular — there is an accumulation of time-stepping errors of
rder 𝑠−2. For LC and CH approaches, we see more typical convergence
ehaviour of order 5 with resolution 𝑠. Indeed, the DI approach would
lso exhibit 5th order convergence if the errors were not already so
lose to machine precision, and this is shown in subsequent results in
he next section.

The 5th order convergence behaviour observed follows principally
rom the boundary conditions employed. Although the finite difference
tencils used on the wall boundary are 4th order, the dominant error
n this Poiseuille flow arises mainly due to errors in the nonlinear
dvection terms, which are larger in the near-wall region, where the

rder of the LABFM discretisation is reduced from 𝑚 = 8 to 𝑚 = 6.
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Fig. 4. Poiseuille flow: Time evolution of the 𝐿2 error in the velocity for several values of 𝑀𝑎, using log-conformation formulation (denoted LC), with a resolution of 𝑠 = 1∕50.
Fig. 5. Poiseuille flow. Left panel: Time evolution of the 𝐿2 error in the velocity for all three formulations (DI - red lines, CH - blue lines, LC - black lines), for several resolutions
𝑠. Right panel: Convergence of the 𝐿2 error in the velocity at time 𝑡 = 10 with resolution for all three formulations. The dashed lines show convergence rates of order 5.
The elements of 𝒄 have quadratic and linear forms, and therefore for
DI, their derivatives are reproduced exactly. Due to the Cholesky- and
log- transformations, the elements of both 𝑳 and 𝜳 have more complex
forms, and first derivatives are accurate to order 𝑚, whilst second
derivatives are accurate to order 𝑚−1. The order 𝑚 = 6 consistency near
the walls, combined with the accumulation of time-stepping errors,
results in the observed convergence rates of order 5.

4.2.2. 𝑅𝑒 = 1, 𝑊 𝑖 = 1, 𝜀 = 0, 𝛽 = 0.1, Varying 𝑀𝑎 and resolution 𝑠
We now demonstrate the effect of varying Mach number on the

solution. At steady state, the solution has uniform pressure and so
offers a good test on the role of Mach number as compressibility
should not affect the final solution. This is confirmed by Fig. 4 showing
the time evolution of the 𝐿2 error in the velocity for several values
of 𝑀𝑎 using LC and a resolution 𝑠 = 1∕50. There are small error
7

differences in the transient flow at early times, but the steady state
is unaffected. Accordingly, for the remainder of this section, we use
𝑀𝑎 = 0.05. In [36] we also showed the effects of changing 𝑀𝑎 but in
the Newtonian setting by comparing to analytical solutions for Taylor
Green vortices, and also found 𝑀𝑎 = 0.05 to be a suitable value.
However, viscoelastic simulations are invariably more complex and
some care does need to be taken at larger 𝑊 𝑖, where the value of 𝑀𝑎
can affect stability of the simulation, particularly if 𝑀𝑎 is too small, and
also at very low 𝑅𝑒, where large viscous stresses can require smaller 𝑀𝑎
to ensure negligible compressibility. This behaviour is described further
below.

The left panel of Fig. 5 shows variation of 𝐿2 error in velocity with
time for several resolutions, for direct integration of the conformation
tensor (DI), Cholesky-decomposition (CH) and the log-conformation
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Fig. 6. Poiseuille flow. Left panel: Time evolution of the mean velocity for a range of 𝑊 𝑖, obtained with the LC formulation. Red lines indicate the analytic solution, dashed black
lines indicate the numerical results. Right panel: Variation with 𝑊 𝑖 of the 𝐿2 error in the velocity at dimensionless 𝑡 = 𝑊 𝑖, for all formulations. In all cases 𝑠 = 1∕100.
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ormulation (LC). The right panel of Fig. 5 shows the variation of the 𝐿2
rror in velocity at 𝑡 = 10 with resolution 𝑠 for all three formulations.

LC, CH and DI all converge with approximately 5th order. The DI
pproach is more accurate by several orders of magnitude. The initial
scillation in the error seen in the left panel of Fig. 5 results from
he interplay between the elastic stresses and small acoustic waves
enerated at start-up, with the size of these small amplitude oscillations
ecreasing with decreasing 𝑀𝑎. The larger error magnitude for DI here
han in the previous case with 𝛽 = 1 arises because, although the steady
olution is quadratic in 𝑦, the transient solution is not. As a result, the
dvective errors described in the previous subsection for LC and CH
lso occur for DI in the present case where 𝛽 ≠ 1.

As indicated above, at lower 𝑀𝑎 the solution for all cases becomes
less stable, with a gradual increase in error at late times, which appears
to be very small (machine precision order) errors acting multiplica-
tively every time step. Indeed, for the resolution 𝑠 = 1∕200, the
time-step is 𝛿𝑡 = 7.5 × 10−6 (dimensionless units), so a simulation up
to 𝑡 = 10 requires a significant number of time-steps (more than 106).
Evidently, larger 𝑀𝑎 values introduce a degree of acoustic dissipation
that limits such error growth and helps to stabilise the simulation.
In this regard setting an upper limit of 𝑀𝑎 = 0.05 for simulations
provides a good compromise between maintaining numerical stability
and providing a good approximation to flow incompressibility.

4.2.3. 𝑅𝑒 = 1, 𝛽 = 0.1, 𝜀 = 0, 𝑀𝑎 = 0.05, 𝑠 = 1∕100, Varying 𝑊 𝑖
In this subsection we vary the Weissenberg number, 𝑊 𝑖, to deter-

ine the accuracy of the solution at different levels of elasticity and
o explore the largest allowable 𝑊 𝑖 for a stable simulation for this test
ase. The left panel of Fig. 6 shows the time evolution of the mean
elocity for a range of values of 𝑊 𝑖 (dashed black lines) compared with
he unsteady analytical solution (red lines). Results shown here were
btained with LC, but the results for DI and CH are indistinguishable
n these axes. As can be seen, there is an excellent match for 𝑡 < 100 up
o 𝑊 𝑖 = 128. At this resolution, the CH and DI approaches break down
bove 𝑊 𝑖 = 128, whilst LC is stable at 𝑊 𝑖 = 256. Beyond these 𝑊 𝑖
alues, at this resolution, the three schemes fail. All three formulations
re capable of reaching higher 𝑊 𝑖 if the resolution is increased (𝑠
educed) further as key terms in the governing equations are better
esolved.

In particular, the errors in evaluating advection terms are larger
ith increasing 𝑊 𝑖, resulting in deviation of 𝑐𝑦𝑦 from unity for LC and
H (and CH-L), with this deviation increasing with 𝑊 𝑖 and decreasing
ith larger 𝑠. Typically errors of order 10−2 when 𝑊 𝑖 = 16 and
= 1∕100 are seen in velocity and stress profiles for LC and CH/CH-
approaches, with DI errors smaller by orders of magnitude (but
8

c

till growing with increasing 𝑊 𝑖). This behaviour can be seen in the
ight panel of Fig. 6 which shows the 𝐿2 error in the velocity at

(dimensionless) 𝑡 = 𝑊 𝑖 for a range of 𝑊 𝑖, for all three formulations.
The orders of error growth with 𝑊 𝑖 are indicated by the dashed lines,
and whilst DI has lower overall error, the rate of error growth with
increasing 𝑊 𝑖 is larger than the LC and CH formulations.

The difference in growth of errors with 𝑊 𝑖 between DI and LC
and CH can be attributed to differences in the solution profiles across
the channel. As discussed earlier, whilst in the steady state the cross-
channel profiles of 𝑐𝑥𝑥 and 𝑐𝑥𝑦 are quadratic and linear (respectively) in
𝑦, the log- and Cholesky- transformations of 𝒄 result in the components
of 𝜳 and 𝑳 having profiles with more complex structure. In particular,
whilst the profiles of the components of 𝜳 and 𝑳 are nearly linear and
uadratic near the channel walls, they have greater curvature in the
hannel centre (where the stress is zero), and this curvature increases
or increasing 𝑊 𝑖. As such, at larger 𝑊 𝑖, the dominant errors for LC and

CH occur near the channel centre, whilst for DI they are more uniform
across the domain (with the only variation being near the walls, where
𝑚 is reduced towards 𝑚 = 4). Finally, we note that the growth of errors
with 𝑊 𝑖 is very similar for both CH and CH-L formulations, as it is
the non-exact (but still  (𝑠𝑚)) advection of the non-linear profiles near
zero-stress points which dominates in this case.

4.3. Periodic array of cylinders

This flow case provides a test of the method in a non-trivial geome-
try and allows us to assess the performance of the different formulations
(LC, CH and DI) for non-parallel flows. The periodic cylinders case
simulated follows that of [26] and is based on [25]. The domain
is rectangular with dimension 6𝑅 × 4𝑅, with a cylinder of radius 𝑅
ocated in the centre. At the upper and lower boundaries, and the
ylinder surface, no-slip wall boundary conditions are imposed, whilst
he domain is periodic in the streamwise direction. The flow is driven
y a body force, the magnitude of which is set by a PID controller
uch that the mean velocity magnitude (averaged over the domain) is
nity. We take the cylinder radius 𝑅 as the characteristic length-scale
or non-dimensionalisation.

In all cases we set 𝑅𝑒 = 2.4 × 10−2, 𝛽 = 0.59 and 𝜀 = 0, to match
those parameters used in [25,26]. For this non-parallel flow case at
low 𝑅𝑒, the magnitude of the body force required to drive the flow
is larger than the previous cases, and a smaller value of 𝑀𝑎 is required
to ensure density variations remain small. We set 𝑀𝑎 = 10−3, which
esults in density variations of less than 0.5%. For this test we discretise
he domain with a uniform resolution 𝑠𝑎 = 𝑠 for all nodes 𝑎, allowing

omparison with the aforementioned previous works.
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Fig. 7. Profiles of the conformation tensor components along the channel centreline for 𝑊 𝑖 = 0.2 at steady state (20 dimensionless time units). Left panel: 𝑐𝑥𝑥 for a range of
resolutions, using the log-conformation formulation. Results taken from SPH simulations are shown with black stars ( [25]) and a dashed blue line ( [26]). Right panel: 𝑐𝑥𝑥 (solid
lines) and 𝑐𝑦𝑦 (dashed lines) for a resolution of 𝑠 = 𝑅∕25 for the three different formulations.
Fig. 8. Isocontours of conformation tensor trace (left) and velocity magnitude (right) for the periodic array of cylinders with 𝑊 𝑖 = 0.8 and 𝑠𝑚𝑖𝑛 = 𝑅∕50, obtained using the
log-conformation formulation.
We first set 𝑊 𝑖 = 0.2 and assess the accuracy of the method using
the LC formulation. The left panel of Fig. 7 shows the profile 𝑐𝑥𝑥 along
the channel centreline for a range of resolutions. We see clearly see
convergence in the LABFM solution (inset). The results are compared
with SPH data from [25,26], with good agreement shown despite SPH
being formally low order. Indeed, both schemes in [25,26] benefit in
not having to compute the advection term by their nature of being
Lagrangian methods, removing a key term for error growth in the
LABFM method. Furthermore, the formulation of [25] is constructed
in the GENERIC framework: the symmetries of the conservation laws
are matched by the discretised formulation in a thermodynamically
consistent way, providing benefits for longer term dynamics and global
conservation.

The right panel of Fig. 7 shows the profiles along the channel
centreline of 𝑐𝑥𝑥 and 𝑐𝑦𝑦 for a fixed resolution of 𝑠 = 𝑅∕25, for the
three formulations DI (red), CH (blue) and LC (black). The LC and CH
formulations are almost indistinguishable, but the values from the DI
approach (and 𝑐𝑦𝑦 in particular) deviate slightly.

We next increase the degree of elasticity, setting 𝑊 𝑖 = 0.8. Fig. 8
shows the conformation tensor trace and velocity magnitude fields in
this case, with 𝑠𝑚𝑖𝑛 = 𝑅∕50, obtained with LC. The problem becomes
more numerically challenging now, as the infinite polymer extensibility
of the Oldroyd B model results in a singularity in the stress field in the
9

cylinder wake. It was found by [47] through numerical experiments
that for a cylinder in a channel (no periodicity assumed), the solution
was divergent for 𝑊 𝑖 ≥ 0.7, whilst a similar result was obtained
by [48], who obtained exact solutions for the wake centreline stress
in the ultra-dilute case. Non-convergence with resolution for 𝑊 𝑖 = 0.8
was also observed in [25]. For the direct integration formulation, a
catastrophic instability occurs early in the simulation at all resolutions
tested. This is due to errors in the advection of the elements of 𝒄,
which result in a loss of positive definiteness, leading to non-physical
results. At all resolutions studied, CH and LC are in close agreement.
In the remainder of this section, the results presented are obtained
using the LC formulation. Fig. 9 shows the profiles of velocity (left) and
conformation tensor component 𝑐𝑥𝑥 (right) along the channel centre
line for a range of resolutions, alongside results from SPH simulations
of [25] (black stars) and [26] (dashed blue lines).

Firstly, it is clear that the profile of the stress in the cylinder wake is
diverging with resolution refinement as expected, and we note that the
maximum value of 𝑐𝑥𝑥 in the cylinder wake scales linearly with 𝑅∕𝑠.
Note, that although the stress field is divergent, the velocity field is
converging with increasing resolution (inset of the left panel of Fig. 9).
Secondly, there are clear discrepancies between the present results and
the results of [25,26] using SPH. As described above, there are several

contributing factors behind differences observed in Fig. 9 between the
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Fig. 9. Profiles along the channel centre-line of the velocity (left panel) and conformation tensor component 𝑐𝑥𝑥 (right panel) at 𝑊 𝑖 = 0.8, for a range of resolutions (red and
black lines), compared with the SPH results of [25] (black stars) and [26] (dashed blue lines).
Fig. 10. Isocontours of conformation tensor trace (left) and velocity magnitude (right) for the porous geometry with 𝑊 𝑖 = 1 and 𝑠𝑚𝑖𝑛 = 𝐷∕600, simulated using LC. The inset on
the right shows the node distribution near one of the cylinders.
Fig. 11. The time evolution of the volume averaged value kinetic energy (left panel) and transverse velocity ⟨𝑣⟩ (right panel), for a range of resolutions.
SPH simulation results of [25,26] and the present work - not least of
which being that SPH is formally low order, with such differences in
method accuracy exacerbated in a parameter regime with a divergent
stress field incorporating steep gradients. However, the exact cause
of the discrepancy is not clear, and we also note that in the cited
SPH results, the method is Lagrangian, and the non-linear advection
10
terms are implicitly included in the temporal evolution of the particle
positions.

4.4. Representative porous geometry

We next consider a repeating unit of a representative porous geom-
etry, consisting of cylinders with diameter 𝐷 and spacing 𝑆. Several
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Fig. 12. Left panel: The time evolution of the volume averaged value of the conformation tensor trace 𝑐𝑥𝑥 + 𝑐𝑦𝑦. Right panel: The variation with 𝑊 𝑖 of the variance of the volume
averaged value of 𝑐𝑥𝑦. The dashed line illustrates a linear dependence on 𝑊 𝑖.
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authors have studied similar configurations, with Lattice-Boltzmann
methods [49,50] and finite volume methods [51,52]. All these works
study the flow at negligible 𝑅𝑒, whilst we use 𝑅𝑒 = 1. Whilst there are
differences in the exact geometries between these works, they all con-
tain the same essential features, allowing for qualitative comparisons to
be made. The computational domain has size

√

3𝑆 ×𝑆, and is periodic
in both directions. A cylinder of diameter 𝐷 = 𝑆∕1.2 is centred on the

idpoint of each boundary. The domain therefore represents a minimal
epeating unit of a hexagonal lattice of cylinders. The geometry can
e seen in Fig. 10. The system is non-dimensionalised by the cylinder
iameter 𝐷 and the mean velocity magnitude 𝑈 . The flow is driven by

a body force in the 𝑥 direction, which is set by a PID controller to track
𝑈 = 1. The domain is discretised with a non-uniform resolution 𝑠𝑚𝑖𝑛 at
the cylinder surfaces, and 𝑠 increases smoothly away from the cylinders
to 𝑠𝑚𝑎𝑥 = 3𝑠𝑚𝑖𝑛 at distances greater than 25𝑠𝑚𝑎𝑥 from the cylinders. The
node distribution near the cylinder is shown in the inset on the right of
Fig. 10. With the finest flow structures located near the cylinder walls,
the accuracy of the simulations is largely controlled by 𝑠𝑚𝑖𝑛, which we
use to characterise the resolution of each simulation.

In all cases, we set 𝑅𝑒 = 1, 𝛽 = 0.5, 𝜀 = 10−3,𝑀𝑎 = 10−2. We vary𝑊 𝑖
and the resolution. The inclusion of non-zero 𝜀 (thus representing a PTT
fluid rather than an Oldroyd B fluid) avoids the singularity present in
the previous test case. We note that the values of 𝑊 𝑖 studied are small,
and based on 𝑈 and 𝐷. An effective Weissenberg number 𝑊 𝑖𝑒𝑓𝑓 for the
flow within the pore space may be a more pertinent measure, and could
be defined based on the pore size 𝑆 −𝐷 = 𝐷∕5, giving 𝑊 𝑖𝑒𝑓𝑓 = 5𝑊 𝑖.

4.4.1. Effect of formulation and resolution at fixed 𝑊 𝑖 = 1
In the first instance we run the simulation for all three formulations.

For DI, the simulation quickly becomes unstable, as the thin regions
where 𝑐𝑦𝑦 are large just upstream of each cylinder (see left panel
of Fig. 10) cannot be accurately advected. Local oscillations occur,
resulting in negative values of 𝑐𝑦𝑦, and loss of positive definiteness
of the conformation tensor. For CH, the simulation exhibits numerical
artefacts at lower resolutions than LC. It appears that at higher reso-
lutions, CH is capable of handling this problem, but LC can achieve
accurate solutions at lower resolution, and hence lower cost.

With LC identified as the best formulation for this problem, we focus
in more detail on the effect of resolution. In all cases hereafter, we use
the LC formulation. Fig. 11 shows the time variation of volume aver-
aged kinetic energy and transverse velocity for resolutions 𝑠𝑚𝑖𝑛∕𝐷 ∈
[

1∕300, 1∕450, 1∕525, 1∕600, 1∕750
]

, when using the log-conformation
ormulation. For resolutions finer than 𝑠𝑚𝑖𝑛 = 𝐷∕525 the kinetic energy
s approximately converged, and the global drag in the system (as
easured by the body force required to drive the flow) is converged
11

m

to within 2.4%. The entire system has a chaotic/sensitive dependence
on initial conditions, and hence we do not see convergence in the exact
trajectory of these global statistics. This behaviour is especially obvious
in the right panel of Fig. 11 showing the symmetry breaking given the
considerable variation in the volume averaged transverse velocity, ⟨𝑣⟩.

A particular computational challenge is that for low 𝑅𝑒, we require
very small time-steps due to the viscous time-step constraint, with
the finest resolution 𝑠𝑚𝑖𝑛 = 𝐷∕750 requiring > 107 time steps to
imulate 8 dimensionless time units. Conversely, at higher 𝑅𝑒 we need
xceptionally fine resolution to stably resolve the steep stress gradients
nd transients leading to the onset of elastic instability. Indeed, whilst
igh-order discretisations are invaluable for this problem, there is
ignificant benefit to be had from variable and potentially adaptive res-
lution (in addition to high-order interpolants) for simulations of elastic
nstabilities. A fully implicit method utilising the present high-order
nterpolants and discretisation scheme would permit larger time-steps,
nd enable these simulations at reduced costs. Such an approach is an
venue we are interested in pursuing for future work.

.4.2. Symmetry breaking with increasing 𝑊 𝑖
As a precursor to the complete study and direct numerical simu-

ation of elastic instability in this complex geometry, we consider in
ore detail the case of symmetry breaking in the flow with increasing
𝑖 up to 𝑊 𝑖 = 1. Note that whilst we show and quantify symmetry

reaking, this is a preliminary study and our main focus is on the
umerical method. All results in this section are obtained using the
C approach with 𝑠𝑚𝑖𝑛 = 𝐷∕600. The Weissenberg numbers considered
re 𝑊 𝑖 ∈ [0, 0.1, 0.25, 0.3, 0.35, 0.4, 0.5, 0.75, 1]. Beyond these values
approximately 𝑊 𝑖 = 1.5) we expect transition to three-dimensional
low, as reported in [53] (for example), and hence extension to 3D
imulations remains an area for future work.

We define the instantaneous volume averaged conformation tensor
lements as

𝑐𝑖𝑗 (𝑡)
⟩

= ∫𝑉
𝑐𝑖𝑗 (𝑡) 𝑑𝑉 , (27)

hich corresponds to the volume averaged trace if 𝑗 = 𝑖, and the
olume average of 𝑐𝑥𝑦 if 𝑗 ≠ 𝑖. The left panel of Fig. 12 shows the
ime evolution of the volume averaged conformation tensor trace. As
xpected, fluctuations of increasing magnitude are seen with increasing
𝑖, but with values of the volume averaged conformation tensor trace

evelling out (on average) with time, indicative of a statistically steady
tate.

We evaluate the variance of
⟨

𝑐𝑥𝑦
⟩

once the statistically steady state
as been reached, over the interval 𝑡 ∈ [10, 20]. This is a proxy for the

easure of asymmetry in the polymeric deformation field. The right
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Fig. 13. Isocontours of vorticity (red-blue), with streamlines superimposed, showing the symmetry breaking with increasing 𝑊 𝑖. Streamlines originating in the upper half of the
domain are coloured white, and those originating in the lower half are coloured black. Panels: (a) 𝑊 𝑖 = 0.0, (b) 𝑊 𝑖 = 0.25, (c) 𝑊 𝑖 = 0.5, and (d) 𝑊 𝑖 = 1.
Fig. 14. Isocontours of conformation tensor trace for (a) 𝑊 𝑖 = 0.25, (b) 𝑊 𝑖 = 0.5, and (c) 𝑊 𝑖 = 1,.
panel of Fig. 12 shows the dependence of 𝑣𝑎𝑟
⟨

𝑐𝑥𝑦
⟩

on 𝑊 𝑖. We see
at small 𝑊 𝑖 where the flow is steady, the variation is negligible. At
𝑊 𝑖 ≥ 0.3 the flow is unsteady and symmetry is broken, with the extent
of the symmetry breaking having a linear dependence on 𝑊 𝑖 (dashed
line) with slope 2. Note that for 𝑊 𝑖 > 0.75 this relation ceases, likely
as the flow enters a different, more elastic, regime.

Fig. 13 shows isocontours of the vorticity field (red-blue) with
streamlines showing flow crossing from the upper to lower halves of
the domain at increasing 𝑊 𝑖. Note that between 𝑊 𝑖 = 0 and 𝑊 𝑖 = 0.25
(panels (a) and (b) respectively) the vorticity field develops a stream-
wise asymmetry as expected, and observed in a similar configuration
by [51]. By 𝑊 𝑖 = 0.5 the instability has developed and the symmetry
is broken in the transverse direction, as shown by streamlines crossing
the domain centreline. Similarly, Fig. 14 shows isocontours of the
conformation tensor trace 𝑐𝑥𝑥 + 𝑐𝑦𝑦 for (a) 𝑊 𝑖 = 0.25, (b) 𝑊 𝑖 = 0.5,
and (c) 𝑊 𝑖 = 1. As above, by 𝑊 𝑖 = 0.25 the field has developed a
streamwise asymmetry, which clearly breaks in the transverse direction
by 𝑊 𝑖 = 0.5. Beyond this (𝑊 𝑖 = 1), symmetry breaking in the flow
is clear with unsteady elastic flow structures larger in magnitude - a
precursor stage before the flow evolves fully 3D flow structures. The
unsteady thin near-wall structures are qualitatively similar to those
found in [49], who studied a similar geometry but in the creeping flow
regime.
12
5. Conclusions

In this work a new high-order meshless method for the solution
of viscoelastic flow in two-dimensional, non-trivial geometries has
been presented. Three different approaches to treating the viscoelastic
stresses are considered for assessment in this new high-order meshless
framework — direct integration, Cholesky decomposition (both with
and without a logarithmic transform of the diagonal elements), and
the log-conformation formulation. Direct integration provides notably
more accurate solutions for parallel flows but the log-conformation
approach provides enhanced stability across all test cases considered.
Highly accurate results can be obtained with convergence up to 9th
order, depending on the test case. For parallel flows, the attainable
Weissenberg numbers are large, up to 𝑊 𝑖 = 128. For non-trivial geome-
tries, the attainable Weissenberg numbers are more moderate, up to
 (1), but we find that the limiting factor is the requirement to resolve
the increasingly fine flow features present with increasing 𝑊 𝑖, suggest-
ing that our method can handle higher 𝑊 𝑖 given sufficient resolutions.
The meshless nature of the method enables non-trivial geometries to be
discretised straightforwardly, with variable resolution easily included.
Accordingly, an initial study of a symmetry breaking elastic instability
at moderate 𝑊 𝑖 is considered in a non-trivial representative porous me-
dia geometry. The results are promising and demonstrate the potential
of this method for the high-fidelity study of fully 3-D elastic instabilities
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in realistic, industrially relevant geometries in the longer term. The
explicit nature of the present formulation renders simulations in the
limit of vanishing 𝑅𝑒 impractical, and thus the method is well suited
to inertial flows. An implicit formulation would allow us to simulate
flows with negligible inertia, and explore purely elastic instabilities
in complex geometries. These are the main goals of our future work,
with any 3-D method also requiring adaptivity of resolution, both in
polynomial reconstruction and spatial resolution, to enable the capture
of thin, unsteady elastic flow structures in a computationally efficient
manner.
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