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Abstract—With the increasing demand for power system sta-
bility and resilience, effective real-time tracking plays a crucial
role in smart grid synchronization. However, most studies have
focused on measurement noise, while they seldom think about the
problem of measurement data loss in smart power grid synchro-
nization. To solve this problem, a resilient fault-tolerant extended
Kalman filter (RFTEKF) is proposed to track voltage amplitude,
voltage phase angle and frequency dynamically. First, a three-
phase unbalanced network’s positive sequence fast estimation
model is established. Then, the loss phenomenon of measurements
occurs randomly, and the randomness of data loss’s randomness
is defined by discrete interval distribution [0, 1]. Subsequently,
a resilient fault-tolerant extended Kalman filter based on the
real-time estimation framework is designed using the time-
stamp technique to acquire partial data loss information. Finally,
extensive simulation results manifest the proposed RFTEKF can
synchronize the smart grid more effectively than the traditional
extended Kalman filter (EKF).

Index Terms—Dynamic state estimation, Kalman filter, partial
missing measurements, power systems, smart grid, synchronized
measurements.

I. INTRODUCTION

IN recent years, significant changes have occurred in the-
power grid [1], [2]. On the one hand, there has been

an increase in the integration rate into renewable energy
generation. on the other hand, intelligent load control, energy
storage and new energy vehicles are also widely deployed [3].
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This evolution will provide stochastic operating behavior and
enhance the power grid’s dynamic properties. At the same
time, so issues like the rising demand for electricity and
the greenhouse effect can be adequately addressed, public
policy goals have been developed by various governments.
For instance, in developing new energy installed capacity,
by 2030, China’s total installed power capacity will increase
to 3.8 billion kilowatts, and the proportion of clean energy
installed capacity will reach 68%. It is not hard to predict that
the deployment of distributed generation systems (DPGS) will
increase at a high rate of speed due to the need to produce
more clean energy [4]. As a key factor in accurately controlling
grid-connected converters and DPGS, grid synchronization
with high accuracy is necessary. Without precise grid syn-
chronization, our utilities’ networks may face instability or
black-out [5], [6].

Various power grid synchronization methods have been
proposed in the literature [7]. In general, these prior-art
synchronization approaches can be broken down into the
following groups:

1) The first category is mathematical analysis approaches,
mainly based on digital signal processing (DSP) techniques,
which have strict requirements on the sampling rate [8].

2) The zero-crossing technique is more straightforward
to realize and create; however, it is susceptible to voltage
alterations of a power grid, especially for the harmonics and
notches. Therefore, the reliability of the approach needs to be
improved to meet the practical application [9].

3) Based on Phase-Locked Loop (PLL) technology, for
balanced three-phase voltages, several approaches can detect
the precise phase and frequency [10]–[13]. However, these
methods face a potential instability issue in the converter and
generator that may result from various reasons, such as PLL
time delay, large harmonics, inaccurate modeling parameters,
and severely unbalanced voltages.

Except for the methods mentioned above, recent advances in
state estimation (SE) methods [14], which were first suggested
in [15] and [16], are a key component of the grid synchroniza-
tion technology. More importantly, recent advances in comput-
ing and phasor techniques have made it possible to use high-
speed time-synchronization data captured by PMUs to do real-
time dynamic estimates. Most of the published publications
concentrated on measurement noise’s effect on the accuracy
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of the grid synchronization estimation. Since measurement
noise distribution is usually unknown and often deviates from
the assumed Gaussian model, resulting in outliers, a robust
estimation framework is designed in [17] to solve the unknown
non-Gaussian noise and measurement time bias problems and
obtain the optimal estimation. In reference [18], a CKF method
based on generalized entropy loss (GCL) is proposed for
complex non-Gaussian noise in power systems to improve the
accuracy and flexibility of dynamic state estimation when there
is bad measurement information. In reference [19], the concept
of adaptive state estimation of power systems measured by
PMU is proposed given the uncertainty and time-variability
of measurement error characteristics. A Gaussian Laplacian
mixed model is established to fit the unknown measurement
error, and an adaptive estimation framework is proposed to
generate more accurate state estimation.

However, it seldom concerns the impact of measurement
data partial loss [20], [21]. As a result of sensor data dropouts
in transmission channels of conventional measurements from
meters to the control center, the missing data phenomenon con-
stitutes one of the significant concerns in estimating power grid
synchronization [22]–[24]. As noted in [25], the measurement
signal from the sensor may include a damaged signal resulting
from the potential sensor malfunction, which is not always
correct. The sensor data loss may degrade the performance
of conventional dynamic state estimators, which can severely
distort the estimation results, resulting in entirely unreliable
state estimates [26]–[28].

Some significant studies have been conducted in [29], [30]
to deal with the issue of missing measurements. Most existing
literature models missing measurements as a random variable
obeying the Bernoulli distribution, with sensor data assumed
to be either utterly missing or completely available. However,
partial measurement missing is relatively common in practical
applications, as it is rare for complete measurements to be
lost [25]. For example, PMU data are converted from con-
tinuous measurement signals to digital data using analog-to-

digital converters (ADCs). Poorly designed peripheral circuits
or an unstable reference voltage can lead to fading output from
ADCs [31]. It is important to remember that partially missing
measurements differ significantly from lost measurement data,
which was covered in the earlier study [32] and should
be re-evaluated. To the authors’ knowledge, the power grid
synchronization with partial missing measurements has not
been thoroughly investigated. This also constitutes the main
motivation of our current research.

This paper aims to develop a novel resilient fault tolerant
extended Kalman filter (RFTEKF), which can provide more
reliable dynamic state estimation in power grid synchroniza-
tion when partial measurements are missing. Compared to
conventional EKFs, it can track power grid synchronization
information more effectively. The main contributions of this
paper are highlighted as follows:
• The estimation model of smart grid synchronization with

partial measurement missing is established, where the
time stamp technology is utilized to acquire the sensor
data lost information.

• A novel resilient fault tolerant extended Kalman filter is
proposed and derived, in which the gain is calculated
using only the statistical characteristic of the lost in-
formation, where the randomness of partial missing is
represented by a discrete distribution in the interval of
[0, 1].

• Extensive simulation results show the efficiency of the
proposed method and demonstrate that RFTEKF can
provide more accurate results than conventional EKF and
FTEKF.

Following is the remainder of this paper. First, the state
space model for the smart grid synchronization with par-
tial measurement missing is established in Section II. Then,
Section II infers the conventional extended Kalman filter
and the proposed resilient fault tolerant extended Kalman
filter approach with specificity. Subsequently, to assess the
effectiveness of the suggested approach, extensive simulations
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Fig. 1. Diagram of the proposed RFTEKF method.
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are performed on various test systems, the estimation results
are then provided, and finally, the conclusions are presented
in Section V.

II. PROBLEM FORMULATION

A. Basic Theory

In general, the general form of three-phase power system
voltages can be expressed by:

va(t) =
√

2Va cos(ωt+ φa)

vb(t) =
√

2Vb cos(ωt+ φb)

vc(t) =
√

2Vc cos(ωt+ φc)

(1)

where va(t), vb(t), vc(t) are the instantaneous unbalanced volt-
ages of a, b, and c phases, respectively; t represents the time
in seconds; ω indicates the electrical angular frequency in
rad/s. Vi(i = a, b, c) is the RMS voltage amplitudes, and φi
is the corresponding RMS phase angles. Note that the voltage
magnitudes of each phase are not necessarily equal, and the
phase difference between each phase voltage might not be
120◦.

From (1), the discrete three-phase voltages can be derived
as: 

va(k) =
√

2Va cos(ωkT + φa)

vb(k) =
√

2Vb cos(ωkT + φb)

vc(k) =
√

2Vc cos(ωkT + φc)

(2)

where k = 0, 1, 2, 3, . . . represents the sampling instant. T is
sampling period, x(k) = x(kT ) corresponds to the magnitude
of x(t) at the kth time instant. In general, the frequency of
a power grid is considered to be 60 Hz, and the sampling
frequency is 2400 Hz.

The variable v(k) = [va(k), vb(k), vc(k)]T represents the
three-phase voltage vector. According to the symmetrical
component transformation, the unbalanced three-phase voltage
can be represented as:

v(k) = v0(k) + vp(k) + vn(k) (3)

where v(k) is the instantaneous three-phase voltage at time in-
stant k; vp(k), vn(k) represent the positive, negative sequence
voltages, respectively; v0(k) represents the zero sequence
voltage:
vp(k) =

√
2Vp[cos(θp), cos(θp − 120◦), cos(θp + 120◦)]T

vn(k) =
√

2Vn[cos(θn), cos(θn + 120◦), cos(θn − 120◦)]T

v0(k) =
√

2V0[cos(θ0), cos(θ0), cos(θ0)]T

(4)

where θp, θn, θ0 are represent the positive, negative and zero
sequence phase angles.

According to the symmetric component transformation, the
three-phase voltage phasors under the abc coordinate frame
can be separated into the zero, positive, and negative sequence
phasors: V aV b

V c

 =

1 1 1
1 a2 a
1 a a2

V 0

V p
V n

 (5)

where a = 1∠120◦.
In addition, by using Clarke’s transformation, the abc co-

ordinate frame voltage phasors can be transformed into the
voltage phasors of stationary αβ coordinate frame:[

V α
V β

]
=

2

3

[
1 − 1

2 − 1
2

0
√
3
2 −

√
3
2

]V aV b
V c

 (6)

By combining (5) and (6), the following can be derived:[
V α
V β

]
=

[
1 1
−j j

] [
V p
V n

]
(7)

Furthermore, voltage phasors V α and V β can be discretized
as vα(k) and vβ(k):

vα(k) =
√

2Vp cos(ωkT + φp) +
√

2Vn cos(ωkT + φn)

=
√

2(Vp cosφp + Vn cosφn) cosωkT

−
√

2(Vp sinφp + Vn sinφn) sinωkT

=
√

2Va cos(ωkT + φα) (8)

vβ(k) =
√

2Vp sin(ωkT + φp)−
√

2Vn sin(ωkT + φn)

=
√

2(Vp cosφp − Vn cosφn) sinωkT

+
√

2(Vp sinφp − Vn sinφn) cosωkT

=
√

2Vα cos(ωkT + φβ) (9)

Note after using Clarke’s transformation, the zero sequence
quantities in (7) are zeros.

B. Smart Grid Synchronization System Model

According to (8)–(9), the discrete grid synchronous voltage
state space variables with sampling period T are chosen as
follows: 

x1(k) =
√

2Vα cos(kωT + φα)

x2(k) =
√

2Vα sin(kωT + φα)

x3(k) =
√

2Vβ cos(kωT + φβ)

x4(k) =
√

2Vβ sin(kωT + φβ)

x5(k) = ωT

(10)

where t = kT and T = 1/fs, T and fs are the sampling time
and frequency, respectively.

According to (10), the smart grid synchronization system
model can be formulated as follows:

x1(k + 1) = x1(k) cos(x5(k))− x2(k) sin(x5(k))

x2(k + 1) = x1(k) sin(x5(k)) + x2(k) cos(x5(k))

x3(k + 1) = x3(k) cos(x5(k))− x4(k) sin(x5(k))

x4(k + 1) = x3(k) sin(x5(k)) + x4(k) cos(x5(k))

x5(k + 1) = x5(k)

(11)

The process noise in (11) is usually considered to be zero.
The measurement functions are expressed as:

z1(k) = x1(k) + ζ1(k)

z2(k) = x3(k) + ζ2(k) (12)

where ζ1(k) and ζ2(k) are deemed to be external disturbances.
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C. Calculation of Positive Sequence Voltage

At first, by taking the invert the matrix in (7), the following
equation can be derived:[

V p
V n

]
=

1

2

[
1 j
1 −j

] [
V α
V β

]
(13)

Then, based on Euler’s formula, the positive voltage vector
can be derived by expanding the first row of the matrix (13):

V p = Vp∠θp =
1

2
(V α + jV β)

= 0.5[(Vα cos θα − Vβ sin θβ)

+ j(Vα sin θα + Vβ cos θβ)] (14)

Thus, the magnitude and phase angle of positive sequence
voltage can be acquired as follows [32]:

θp = tan−1
Vα sin(θα) + Vβ cos(θβ)

Vα cos(θα)− Vβ sin(θβ)
(15)

Vp =
1

2

√
(Vα sin θα+Vβ cos θβ)2+(Vα cos θα−Vβ sin θβ)2

(16)

D. Smart Grid Synchronization System Model with Partial
Missing Measurements

Based on the smart grid synchronization system model
described by (11)–(12), the discrete power grid system process
and measurement equations with partial missing measurements
can be expressed by:

xk+1 = f(xk) + vk

yk =


γ1kΓ

1(xk) + ς1k
γ2kΓ

2(xk) + ς2k
...

γmk Γm(xk) + ςmk

 = ΞkΓ(xk) + ςk
(17)

where xk ∈ Rn - state variable; yk ∈ Rm - measurement vec-
tor with partial measurements missing; f ,Γ - system and mea-
surement functions; vk, ςk - process noise and measurement
noise are commonly depicted as zero-mean Gaussian white
noises with covariance matrices Qk and Rk, respectively.

In addition, Ξk = diag{γ1k, γ2k, · · · γmk } and γik(i = 1,
2, · · · ,m) are m independent random variables, which are
independent of the system noise and measurement noise.
Where Γ(xk) = diag{Γ1(xk),Γ2(xk), · · ·Γm(xk)}, and the
random variable γm,k represents the mth measurement partial
loss coefficient, which obeys uniform distribution of [0, 1]
interval.

III. PROPOSED RESILIENT FAULT TOLERANT EXTENDED
KALMAN FILTER

In this section, as an essential theoretical basis, the main im-
plementation framework of the conventional extended Kalman
filter method is first introduced briefly. Then, a novel resilient
fault-tolerant extended Kalman filter is developed and proved
to acquire a more reliable dynamic state estimation that can
deal with the issue of partial missing measurements in the
PMU-based power grid synchronization.

Some basic theories and necessary lemmas will be intro-
duced to facilitate deriving a resilient fault-tolerant extended
Kalman filter approach.
Lemma 1 [33]: Given two matrices Am×n and Bn×n, where
Bn×n = BT

n×n, then the partial derivative of tr(ABAT),
with respect to A, can be derived as follows:

∂ tr(ABAT)

∂A
= 2AB (18)

where tr(·) represents the trace of the matrix.
Lemma 2 [34]: Given a real-valued matrix A = [aij ]p×p and
a diagonal stochastic matrix B = diag(b1, b2, · · · bp), then

E(BABT) =


E(b21)E(b1b2) · · ·E(b1bp)
E(b1b2)E(b22) · · ·E(b2bp)

· · ·
E(bpb1)E(bpb2) · · ·E(b2p)

⊗A (19)

where E(·) is the mathematical expectation, ⊗ represents the
Hadamard product.

For convenience, x̂−k denotes the a prior estimator of xk, x̂+k
represents the posteriori estimate of xk, which are expressed
as follows: {

x̂−k = E[xk|y1,y2, · · ·yk−1]

x̂+
k = E[xk|y1,y2, · · ·yk]

(20)

A. Extended Kalman Filter

As a conventional nonlinear dynamic state estimator, EKF
has been widely used in state estimation and parameter iden-
tification of nonlinear systems [35], [36].

In general, the recursive form of EKF can be summarized
as follows:

x̂−k+1 = f(x̂+
k ) (21)

x̂+
k+1 = x̂−k+1 +Kk+1[yk+1 − Γ(x̂−k+1)] (22)

Let e−k+1 = xk+1 − x̂−k+1 represent the a priori state
estimation errors and e+k+1 = xk+1 − x̂+

k+1 indicate the
posteriori state estimation errors of the system, respectively.
Then, we can get:

P−k+1 = E(e−k+1(e−k+1)T) (23)

P+
k+1 = E(e+k+1(e+k+1)T) (24)

The standard EKF is of the following form:
1) Initialization

x̂0 = E(x0) (25)

P0 = E[(x0 − x̂0)(x0 − x̂0)T] (26)

2) State Prediction
a) Calculation of Jacobian matrices

Ak =
∂f(xk,uk)

∂xk

∣∣∣∣
xk=x̂+

k

(27)

b) Time update equation

x̂−k = f(x̂+
k−1) (28)

P−k = Ak−1P
+
k−1A

T
k−1 +Qk (29)

3) State Update
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a) Computation of Jacobian matrices

Ck =
∂Γ(xk)

∂xk

∣∣∣∣
xk=x̂−

k

(30)

b) Computation of the Kalman gain at time instant k

Kk = P−k C
T
k × (CkP

−
k C

T
k +Rk)−1 (31)

c) Update of the posterior state estimate at the time of
instant k

x̂+
k = x̂−k +Kk[yk − Γ(x̂−k )] (32)

d) Update of state estimation error covariance at the time
instant k

P+
k = (I −KkCk)P−k (33)

Remark 1: Due to the characteristics of simple calculation
and high efficiency, the conventional extended Kalman filter
has been widely utilized in many areas, such as dynamic state
estimation of power systems, vehicle state estimation, and state
estimation of lithium batteries [37], [38]. The standard EKF
method can work well if the measurement data acquired are
correct. However, these assumptions are difficult to hold due to
sensor data dropouts inevitably occurring in the transmission
channels of conventional measurements from the meters to
the control center. The sensor data loss may degrade the
performance of conventional EKF, which can severely distort
its estimation results, resulting in unreliable state estimates.

B. Resilient Fault Tolerant Extended Kalman Filter

In this subsection, a resilient, dynamic estimation method
for smart power grid synchronization is developed to acquire
a more reliable and accurate result of power grid synchro-
nization, which could mitigate the adverse effect of inevitably
partial sensor data loss, named resilient fault tolerant extended
Kalman filter.

Considering partial measurements of the smart grid syn-
chronization system in (17) are missing, if all the conditions
in (34) are satisfied:

E[vk] = 0, E[ςk] = 0, E[vkς
T
j ] = 0

E[vkv
T
j ] = QkΩk−j , E[ςkς

T
j ] = RkΩk−j

Ωk−j = 1(k = j); Ωk−j = 0(k 6= j)

E[vkx
T
0 ] = 0, E[ςkx

T
k ] = 0

(34)

Then, the RFTEKF method can be derived for grid synchro-
nization DSE with partial missing measurements.

Based on the DSE model of power grid synchronization
described in (17), the RFTEKF method can be further con-
structed as:

x̂−k+1 = f(x̂+
k ) (35)

x̂+
k+1 = x̂−k+1 +Kk+1[yk+1 −Ξk+1Γ(x̂−k+1)] (36)

where Ξ is used to describe the partial missing measurements.
To express convenience, we define εk , yk −ΞkΓ(x̂−k ).

Then, the optimal filter gain of RFTEKF can be derived as
follows:

Kk+1 = P−k+1C
T
k+1Ξk+1Λ

−1
k+1 (37)

where Λk+1 = Ξk+1⊗ (Ck+1P
−
k+1C

T
k+1) +Rk+1 and Ξk+1

= E(Ξk+1).
P+
k+1 can be written as:

P+
k+1 = P−k+1 −Kk+1Λk+1K

T
k+1 (38)

Proof: Let {
e+k+1 = xk+1 − x̂+

k+1

e−k+1 = xk+1 − x̂−k+1

(39)

where e+k+1 represents the state estimation error, e−k+1 indi-
cates the prior state prediction error. According to (35), e+k+1

and e−k+1 can be further rewritten as follows:

e+k+1 = f(xk) + vk − x̂−k+1 −Kk+1εk+1 (40)

e−k+1 = f(xk) + vk − f(x̂+
k ) (41)

Taylor expansion is used to linearize f(xk) and Γ(xk+1)
at x̂+

k and x̂−k+1, respectively, and leaving only the first-order
term:

f(xk) = f(x̂+
k ) +Ake

+
k

Ak =
∂f(xk)

∂xk

∣∣∣∣
xk=x̂+

k

(42)

e−k+1 = Ake
+
k + vk (43)

Γ(xk+1) = Γ(x̂−k+1) +Ck+1e
−
k+1

Ck+1 =
∂Γ(xk+1)

∂xk+1

∣∣∣∣
xk+1=x̂−

k+1

(44)

e+k+1 = (I −Kk+1Ξk+1Ck+1)e−k+1 −Kk+1ςk+1 (45)

According to the (37), P−k+1 can be computed by

P−k+1 = E[e−k+1(e−k+1)T] = AkP
+
k A

T
k +Qk (46)

Due to vk, ek, ςk and Ξk are mutually uncorrelated,
according to (39), P+

k+1 is generated as follows:

P+
k+1 = E[e+k+1(e+k+1)T]

= P−k+1 − P
−
k+1C

T
k+1Ξk+1K

T
k+1

−Kk+1Ξk+1Ck+1(P−k+1)T

+ (Kk+1 −K∗k+1)Λk+1(Kk+1 −K∗k+1)T

−K∗k+1Λk+1(K∗k+1)T +K∗k+1Λk+1K
T
k+1

+Kk+1Λk+1(K∗k+1)T (47)

When Kk+1 = K∗k+1 = P−k+1C
T
k+1Ξk+1Λ

−1
k+1, P+

k+1

can acquire minimum value. Thus, P+
k+1 and Kk+1 can be

written as:{
P+
k+1 = P−k+1 −Kk+1Λk+1K

T
k+1

Kk+1 = P−k+1C
T
k+1Ξk+1Λ

−1
k+1

(48)

This completes the proof.
At last, for simplicity, Algorithm 1 is a summary of the

proposed RFTEKF method.
Remark 2: When designing the estimator, literature [35] only
adopted the statistical property of measurement data loss in
formula (18) to improve the calculation accuracy. However,
when referring to the design and implementation of the esti-
mator in [39], the time stamp technology in the sensor network
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Algorithm 1: Resilient Fault Extended Kalman Filter
Method

1 Step 1: set k = 0, x̂0,P0, Ts;
2 Step 2: calculate x̂−k at time instant k by (35)

x̂−k ← f(x̂+
k−1);

3 Step 3: calculate P−k at the time instant k by (46)
P−k = Ak−1P

+
k−1A

T
k−1 +Qk;

4 Step 4: update the gain matrix Kk at the time instant
k by (37)

Kk+1 = P−k+1C
T
k+1Ξk+1Λ

−1
k+1

5 Step 5: update the estimated state vector x̂+
k by (36)

x̂+
k = x̂−k +Kk[yk −ΞkΓ(x̂−k )];

6 Step 6: update the estimation covariance matrix P+
k

by (38)
P+
k = P−k −Kk[Ξk ⊗ (CkP

−
k C

T
k ) +Rk]KT

k ;
7 Step 7: output the state estimation results of x̂k, and

update the time instant
8 Step 8: k = k + 1, go back to Step 2
9 until k = Ts, end loop

can be used to know Ξ. In this literature, similar to [40], only Ξ
statistical characteristics are used to construct the best possible
filter gains for the RFTEKF. More importantly, using one
Riccati, the gains can be computed offline [39]. Meanwhile,
the timestamp mechanism implements the RFTEKF approach
to assume Ξ is known online.

IV. SIMULATION RESULTS AND ANALYSIS

Detailed numerical simulations are implemented in this sec-
tion to show the effectiveness and resistance of the proposed
resilient fault-tolerant extended Kalman filter against partial
missing measurements.

A. Test Systems

To verify the validity and robustness of the proposed
method, numerical signal analysis, WECC 9-bus test and real
power system with DPGS test are carried out. The following
are the precise settings for each testing system.

Case Study 1: The proposed RFTEKF method is compared
with FTEKF and conventional extended Kalman filter for the
numerical signal with partial missing measurement.

Case Study 2: To further illustrate the effectiveness of the
developed RFTEKF method, the discussed approaches are
tested on the three-phase voltage imbalance signal acquired
between bus 8 and bus 9 of the standard WECC 9-bus test
system.

Case Study 3: To verify the effectiveness of the proposed
method in a large power system with a high proportion of
new energy access, a signal from the actual power system with
DPGS penetration in Henan Province, China, is considered and
tested further to demonstrate the scalability and effectiveness
of the method.

To accurately track the dynamic features of the smart
grid, in this paper, the time step for the simulation is set at
0.25 seconds. The sampling frequency is selected as 2400 Hz.
It’s important to note each of the discussed approaches is

carried out in MATLAB R2020b on a PC with the Intel Core
CPU i5-7200U, 2.5 GHz and 8 GB RAM.

In addition, to obtain more comprehensive and substantial
results and to make the statistical results clearer and easier to
understand, the overall performance indicator Ex introduced
in the revised manuscript to evaluate the performance of each
discussed algorithm with the 100 Monte Carlo simulations
conducted, which is defined as follows:

Ex =
1

NMC

NMC∑
i=1

√√√√NT∑
k=1

(x̂k − xk)2/NT (49)

where NMC = 100 is the number of Monte Carlo runs; NT
is the simulation time steps k represents the time instant, x
denotes the magnitude and phase angle of positive sequence
voltage, x̂k and xk are the estimated value and the truth value
of the state variable, respectively.

B. Case Study 1: Numerical Signal Test

In this part, the numerical simulation of the three-phase
unbalanced voltage signal is carried out. The performance of
traditional EKF, FTEKF and the proposed RFTEKF are tested.
In the simulation studies, the initial value of the amplitude of
the unbalanced voltage is set [1, 1.2, 0.8]T, and the initial value
of the phase angle is selected as [0◦, 120◦, 240◦]T.

In the simulation, the sampling frequency is 2400 Hz. The
initial value of the error covariance of the EKF, FTEKF
and RFTEKF is chosen as 10−6In×n. The system and
measurement noise covariance matrices are set as Q0 =
10−6I5×5,R0 = 10−6I2×2, respectively.

Figures 2 and 3 show the complete measurement informa-
tion of y1 and y2 with and without partial missing measure-
ments. Based on which, we have compared traditional EKF,
FTEKF and proposed RFTEKF three methods state estimation
tests for power grid synchronization. The comparison results
of the discussed approaches are presented in Figs. 4–8.
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Fig. 2. Measurement y1 with and without partial missing.

As a result of the experimental findings, it can be seen
that the proposed resilient fault-tolerant extended Kalman filter
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Fig. 3. Measurement y2 with and without partial missing.
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Fig. 4. Estimation results of state variables x1 by different methods.

approach can accurately estimate each state variable, even with
partial missing measurements. FTEKF is second because it
only considers the statistical properties of lost information.
Due to the severe nonlinearity caused by the partial missing
measurement, the conventional extended Kalman filter sig-
nificantly deviates from the true value. It cannot converge
to the real values of the five state trajectories. In the case
of sensor data loss, the conventional EKF method exhibits
numerical instability because the EKF methodology uses first-
order linearization to update the estimation covariance matrix
and mean state.

Additionally, Table I summarizes the performance indices of
EKF, FTEKF and the proposed RFTEKF methods for power
grid synchronization with partial missing measurements. It can
be seen that compared to the traditional EKF method and
FTEKF, the estimation error of the new RFETKF method-
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Fig. 5. Estimation results of state variables x2 by different methods.
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Fig. 6. Estimation results of state variables x3 by different methods.

TABLE I
PERFORMANCE COMPARISON

Metric EKF FTEKF RFTEKF
EX1

0.0498 0.0111 0.0003
EX2 1.2820 0.0478 0.0050
EX3

0.3469 0.0096 0.0024
EX4

0.8864 0.0122 0.0043
EX5 0.2490 0.0088 0.0019

ology is significantly lower. These experimental outcomes are
consistent with those reflected in Figs. 4–8 further verifies and
confirms that the proposed RFTEKF approach is more robust
and resistant to measurements with partly missing data.

C. Case Study 2: WECC 9-Bus Test

In this scenario, the 3-machine and 9-bus system of the
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Fig. 7. Estimation results of state variables x4 by different methods.
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Fig. 8. Estimation results of state variables x5 by different methods.

Western Electric Power Coordinating Committee (WECC)
is selected as the test system [31]. The unbalanced volt-
age signal is acquired between bus 8 and bus 9 of the
test system. The measurement data with partial missing are
displayed in Figs. 9–10. Three-phase unbalanced voltage’s
initial amplitude and phase angle are [1, 1.11, 0.89]T and
[0◦, 120.33◦, 240.32◦]T, respectively. In addition, 10−6In×n
is selected as the initial value of the error covariance of the
EKF and RFTEKF. The system noise covariance matrix is
Q0 = 10−6I5×5 and the measurement noise covariance matrix
is R0 = 10−6I5×5.

The conventional EKF, FTEKF and RFTEKF approaches
are implemented for dynamic state estimation of WECC
synchronization. The estimation outcomes based on EKF,
FTEKF and RFTEKF are contrasted with actual values of state
variables, which are displayed in Figs. 11–15.

According to the experimental findings shown in Figs. 11–
15, the synchronization estimation of traditional EKF deviates
from true value seriously under this scenario, which reflects
conventional EKF is susceptible to partial missing measure-
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Fig. 9. Measurement y1 with and without partial missing.
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Fig. 10. Measurement y2 with and without partial missing.

ment. FTEKF performs better than EKF because the estimator
is designed with measurement missing in mind. The developed
RFTEKF method, in contrast, outperforms the traditional EKF
method and FTEKF in accurately tracking the dynamic of the
WECC system, even with partial missing measurements. These
results demonstrate the excellent performance and numerical
stability of the proposed RFTEKF method in the case of the
partial missing measurement.

In addition, to acquire a quantitative understanding of the
performance comparison of each discussed approach, Table II
provides an overview of the estimation error index for the
proposed RFTEKF, FTEKF and EKF methods for the WECC
test. It is evident from the table the proposed RFTEKF method
can achieve a much smaller root-mean-square error than the
conventional EKF. These experimental findings concur with
Case Study 2, which shows the RFTEKF method is more
resilient and robust when dealing with partial missing mea-
surements.
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Fig. 11. Estimation results of state variables x1 by different methods.

0 50 100 150 200 250

Time (ms)

−2

−1.5

−1

−0.5

0

0.5

1

1.5

S
ta

te
v
ar

ia
b
le
X

2

real state EKF FTEKF RFTEKF

Fig. 12. Estimation results of state variable x2 by different methods.

TABLE II
PERFORMANCE COMPARISON

Metric EKF FTEKF RFTEKF
EX1 0.4781 0.0820 0.0025
EX2

1.2071 0.0890 0.0050
EX3

0.5236 0.0066 0.0021
EX4 1.1847 0.0580 0.0041
EX5

0.2166 0.049 0.0018

Furthermore, synchronous estimation experiments were car-
ried out to track the phase angle and amplitude of dynamic
positive sequence voltage in the WECC test system using
the traditional EKF, FTEKF, and the developed RFTEKF
method. The comparison outcomes of the methods are shown
in Figs. 16 and 17.

As demonstrated by the experimental results displayed in
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Fig. 13. Estimation results of state variables x3 by different methods.
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Fig. 14. Estimation results of state variables x4 by different methods.
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Fig. 15. Estimation results of state variable x5 by different methods.
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Fig. 16. Estimation result of positive sequence phase angle by different
methods.
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Fig. 17. Estimation result of positive sequence voltage magnitude by different
methods.

Figs. 16 and 17, the estimation results of the traditional
Kalman filter deviate largely from the true value of the voltage
in the presence of partial missing measurements. The tracking
effect of FTEKF is better than EKF because it considers the
problem of missing measurements but only uses statistical
characteristics, so the tracking effect is slightly inferior to
RFTEKF. By contrast, the proposed RFTEKF can accurately
track the amplitude and phase angle of the positive sequence
voltage even with incomplete measurement information, dis-
playing significantly improved performance over the conven-
tional EKF method and FTEKF. In addition, the performance
indicators of the three methods are provided in Table III,
and the obvious deviation of the proposed RFTEKF approach
is much smaller. These numerical results are consistent with
those reflected in Figs. 16 and 17, which further confirms the
proposed RFTEKF method is more robust and resilient in the
case of partial missing measurements.

TABLE III
PERFORMANCE COMPARISON

Metric EKF FTEKF RFTEKF
Eθ̂p 1.2819 0.0098 0.0010
EV̂p

0.2949 0.0080 0.0002

D. Case Study 3: Real Power System With DPGS Test

In this scenario, a signal from the actual power system with
DPGS penetration in Henan Province, China, is considered.
Specifically, the three-phase voltage at the 35KV bus bar
near the wind-driven generator connection point is utilized
and tested. The sampling frequency is 10,000 Hz and the
simulation time is 1 s. In the application process, the initial co-
variance of state error is set as 10−6In×n, and the covariance
of process and measurement noise is Q0 = 10−10I5×5,R0 =
10−10I5×5 respectively.

Figures 18 and 19 show measurement variables y1 and y2
with and without partial measurement missing information,
respectively. Under the condition of partial measurement miss-
ing, we use three algorithms to estimate the power grid voltage
data synchronously.
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Fig. 18. Measurement y1 with and without partial missing.

In Figs. 20–21, the results of grid synchronization estima-
tion using voltage data collected at the point of interconnection
of a wind turbine are shown. Only the tracking effect of
voltage amplitude and phase angle are shown.

The experimental results show that the conventional EKF
method seriously deviates from the true value trajectory since
it was not designed with the effect of partial missing mea-
surements. By contrast, the RFTEKF and FTEKF methods
can obtain higher accuracy for state estimation. In addition,
due to the proposed RFTEKF approach using the time-stamp
technology to get packet loss information, the estimation
error of RFTEKF is minimal. These estimation results further
confirm the strong robustness of the RFTEKF against partial
missing measurements and demonstrate its good scalability.
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Fig. 19. Measurement y2 with and without partial missing.
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Fig. 20. Estimation result of positive sequence phase angle by different
methods.

E. Case Study 4: Evaluation of Computational Efficiency

To satisfy various real-time energy management systems
(EMS) applications, the estimation approach for smart grid
synchronization needs to be computationally efficient. As a
result, to determine whether the computation time of RFTEKF
presented in this paper is lower than the PMU sampling rate,
the entire running time of the conventional EKF, FTEKF and
RFTEKF for the Case Study 1, Case Study 2 and Case Study
3 are calculated, and the results are displayed in Fig. 22. It
can be seen from the calculation time the RFTEKF method
has similar computational efficiency to FTEKF. Because of the
complicated formula in the update stage, the operating time of
RFTEKF is slightly longer than that of FTEKF. However, it is
still lower than the sampling rate of the PMU. Therefore, the
proposed RFTEKF method can satisfy the requirements for
real-time tracking of smart grid synchronization estimation.
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Fig. 21. Estimation result of positive sequence voltage magnitude by different
methods.
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Fig. 22. Total execution time of each discussed approach for different test
systems.

V. CONCLUSION

Accurate voltage synchronization under bad data, fault and
distorted voltage conditions is critical for properly control-
ling electrical energy transfer between a distributed power
generation system (DPGS) and the grid. In this article, lost
information is considered to be known online using the time-
stamp technique, and the gain is calculated by using its
statistical characteristic to design and implement the estimator,
which can effectively reduce the influence of partial loss of
sensor data on state accuracy. Experimental data manifest that
the proposed RFTEKF algorithm is robust and reliable for
synchronous dynamic estimation of smart grid for various test
systems with partial missing measurements. In future studies,
we will focus on the collection of measurement data, as well
as the analysis of statistical characteristics of the data.
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[38] G. Özkurt and E. Zerdali, “Design and implementation of hybrid
adaptive extended Kalman filter for state estimation of induction mo-
tor,” IEEE Transactions on Instrumentation and Measurement, vol. 71,
pp. 7500212, Jan. 2022.

[39] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan, and
S. S. Sastry, “Kalman filtering with intermittent observations,” IEEE
Transactions on Automatic Control, vol. 49, no. 9, pp. 1453–1464, Sep.
2004.

[40] H. S. Zhang, X. M. Song, and L. Shi, “Convergence and mean square
stability of suboptimal estimator for systems with measurement packet
dropping,” IEEE Transactions on Automatic Control, vol. 57, no. 5,
pp. 1248–1253, May 2012.

10.1016/j.rser.2022.112213
10.1007/s00202-021-01394-3
10.17775/CSEEJPES.2021.08600
10.17775/CSEEJPES.2021.00650
10.17775/CSEEJPES.2021.00650
10.1109/TPWRS.2023.3287151
10.1109/TPWRS.2023.3287151
10.1016/J.IJEPES.2022.108809
10.1016/J.IJEPES.2022.108809


WANG et al.: RESILIENT SMART POWER GRID SYNCHRONIZATION ESTIMATION METHOD FOR SYSTEM RESILIENCE WITH PARTIAL MISSING MEASUREMENTS 1319

Yi Wang received his B.S. degree from Luoyang In-
stitute of Science and Technology, Luoyang, China,
in 2014; and received his Ph.D. degree from Hohai
University, Nanjing, China, in 2020. He was a vis-
iting scholar at the University of Alberta between
2018 and 2019. He is an Associate Professor at
Zhengzhou University, and a Henan Province Out-
standing Youth Fund winner. His research interests
include theoretical and algorithmic studies in power
system estimation, parameter identification, power
system dynamics, signal processing, and cyber se-

curity. He is also an active reviewer for many international journals.

Yanxin Liu received her B.S. degree in Electric
Power System and Its Automation from Zhongyuan
University of Technology, Zhengzhou, China, in
2022. She is pursuing an M.S. degree in Electrical
Engineering at Zhengzhou University, Zhengzhou,
China. Her research interests include theoretical and
algorithmic studies in power system estimation.

Mingdong Wang received his Ph.D. degree from
Harbin Institute of Technology, Harbin, China, in
2008. He is a Professor at Zhengzhou University.
His research interests are power system analysis and
control, intelligent theory and application in power
systems. He is also an active reviewer for many
international journals.

Venkata Dinavahi received the B.Eng. degree in
Electrical Engineering from Visvesvaraya National
Institute of Technology (VNIT), Nagpur, India, in
1993, the M.Tech. degree in Electrical Engineering
from the Indian Institute of Technology (IIT) in Kan-
pur, India, in 1996 and the Ph.D. degree in Electrical
and Computer Engineering from the University of
Toronto, Ontario, Canada, in 2000. He is a Professor
at the Department of Electrical and Computer Engi-
neering, University of Alberta, Edmonton, Alberta,
Canada. He is a Fellow of the Engineering Institute

of Canada. His research interests include real-time simulation of power
systems and power electronic systems, electromagnetic transients, device-level
modeling, large-scale systems, and parallel and distributed computing.

Jun Liang received his B.S. degree in Elec-
tric Power Systems and Its Automation from the
Huazhong University of Science and Technology,
Wuhan, China, in 1992, and his M.S. and Ph.D.
degrees in Electric Power System and Its Automa-
tion from China Electric Power Research Institute
(CEPRI), Beijing, in 1995 and 1998, respectively.
From 1998 to 2001, he was a Senior Engineer with
CEPRI. From 2001 to 2005, he was a Research
Associate with Imperial College London, U.K. From
2005 to 2007, he was with the University of Glam-

organ, Pantiplife, U.K., as a Senior Lecturer. He is currently a Professor of
Power Electronics at the School of Engineering, Cardiff University, Cardiff,
U.K. His research interests include HVDC, MVDC, FACTS, power system
stability control, power electronics, and renewable power generation. Prof.
Liang is a Fellow of the Institution of Engineering and Technology (IET).
He is the Chair of IEEE UK and Ireland Power Electronics Chapter. He is
an Editorial Board Member of CSEE JPES. He is an Editor of the IEEE
Transactions on Sustainable Energy.

Yonghui Sun received the Ph.D. degree from the
City University of Hong Kong, Hong Kong, China,
in 2010. He is a Professor at the College of Energy
and Electrical Engineering, Hohai University, Nan-
jing, China. He has authored more than 100 papers in
refereed international journals. His research interests
include stability analysis and control of power sys-
tems, optimal planning and operation of integrated
energy system, optimization algorithms, and data
analysis. Dr. Sun received the First Award of Jiangsu
Provincial Progress in Science and Technology in

2010 as the Fourth Project Member. He is an active reviewer for many
international journals.


	Introduction
	Problem Formulation
	Basic Theory
	Smart Grid Synchronization System Model
	Calculation of Positive Sequence Voltage
	Smart Grid Synchronization System Model with Partial Missing Measurements

	Proposed Resilient Fault Tolerant Extended Kalman Filter
	Extended Kalman Filter
	Resilient Fault Tolerant Extended Kalman Filter

	Simulation Results and Analysis
	Test Systems
	Case Study 1: Numerical Signal Test
	Case Study 2: WECC 9-Bus Test
	Case Study 3: Real Power System With DPGS Test
	Case Study 4: Evaluation of Computational Efficiency

	Conclusion
	References
	Biographies
	Yi Wang
	Yanxin Liu
	Mingdong Wang
	Venkata Dinavahi
	Jun Liang
	Yonghui Sun


