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H I G H L I G H T S  

• Phase-field virtual modelling method (PFVM) is proposed for dynamic fracture in elasto-plastic materials. 
• Full-field uncertainties of PFVM enable reliable tracking of non-deterministic cracks. 
• The exceptional capability of PFVM in complex 3D conditions is demonstrated. 
• PFVM is validated in practical cases with both precision and efficiency.  
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A B S T R A C T   

In modern engineering, dynamic fracture failure because of unexpected load or human faults may 
lead to catastrophic disasters. Preventive structure design and real-time maintain suggestions 
based on accurate numerical simulation are critical, especially when plasticity develops. It re-
mains a challenge to efficiently model dynamic crack propagation in elasto-plastic materials 
while the uncertain factors in service life may significantly increase the difficulty. In this paper, a 
phase-field virtual modelling method (PFVM), based on the features of the novel extended sup-
port vector regression (X-SVR) method, is proposed to tackle this non-deterministic problem. The 
phase field method is adopted for its outstanding performance in complex fracture problems, 
which provides solid reference data for the virtual model’s training and verification. The PFM 
application to dynamic elasto-plastic fracture problems is validated in two practical engineering 
examples. The integrated virtual modelling technique is then proven capable of instantly 
providing precise crack propagation prediction under multiple complex uncertainties, making up- 
to-date numerical dynamic fracture simulation achievable and affordable. The proposed PFVM 
method can minimize the contradiction between accurate modelling and high computational cost 
and can be utilized in various extensions like sensitivity analysis or design optimization.   
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1. Introduction 

The elasto-plastic fracture behaviour under dynamic loading is one of the most important topics in modern engineering disciplines 
such as aerospace [1], medical treatment [2], and civil infrastructure [3–6]. The potential for catastrophic fracture failures, which pose 
considerable danger and risk to life as illustrated in Fig. 1, emphasizes the criticality of this area of research. In the service life of 
structural components, non-deterministic load conditions [7–10] is recognized as a significant contributor to global failure and should 
be considered in design to guarantee the safety and reliability of projects. Until now, it remains insufficient in the development of 
suitable numerical methods for simulating the dynamic fracture process while the balance between accuracy and computational cost is 
unsolved [11]. Furthermore, the incorporation of uncertainties into numerical simulations is challenging due to the required massive 
data. Consequently, the establishment of an effective computational framework to solve non-deterministic dynamic fracture problems 
in elasto-plastic materials is essential and impactful. 

In the purpose of efficiently simulating dynamic crack propagation in elasto-plastic materials, the challenges can be categorized 
into three parts. The first one is the theoretical difficulties in dynamic fracture. Although researchers developed various mathematical 
theories and physics concepts [14–17] to closely describe the dynamic fracture since the early 20th century, it’s not sufficient to fully 
explain the fracture mechanics in advanced materials and engineering science [18–20]. The dynamic load varies over time and causes 
unpredictable crack initiation or instable crack propagation. This will increase the computational complexity in finite element method 
[21]. Furthermore, the consideration of plasticity in elasto-plastic materials introduces another challenge because extra treatments 
should be implemented to describe the nonlinearity [22–25]. 

The second challenge is the choice of suitable simulation methods. Traditionally, the simulation of dynamic loads requires specific 
equipment like shaking tables, gas guns or high-speed cameras in the laboratory. The experiment settings are extremely complex, 
which may introduce human errors in the process. Numerous repeated experiments are preferred but hard to achieve for most elasto- 
plastic materials. Thus, numerical simulation methods provide a more economical way for the simulation compared to the high costs in 
experiments. Researchers have devoted a long research history to study fracture behaviours and understanding the relevant mechanics 
and principles. Several methods came to the forefront including the X-FEM [26] and crack band approach [27]. These methods are 
widely adopted but the performances of those vary a lot. Some may work very well for most 2D cases, but they are unacceptable in 
complex 3D problems. More recently, the phase field method (PFM) has gained considerable interest for its effectiveness in tracking 
complex crack patterns. The foundation of PFM can be traced back to the pioneering work of Francfort [28], Bourdin [29,30], and 
Miehe [31]. This approach then became popular in solving brittle fracture problems [32–39], and then extended to ductile fracture 
problems [22,40–44]. Important contributions include Ambati’s model for elasto-plastic materials [45], Borden’s study [46] on ductile 
fractures under significant strains, and comprehensive reviews by Alessi [47], Fang [23], and Molnár [48]. The emergence of PFM for 
ductile fracture provides reliable solution because of the following advantages. The PFM is based on energy functions and thus is 
naturally capable of handling complex crack topologies including crack branching or multiple 3D crack paths without applying special 
treatment or remeshing techniques. In addition, the PFM effectively couples damage and plasticity when the plastic deformation and 
strains lead to the potential of crack initiation and propagation. Another advantage by PFM is that the complex boundary conditions 
and load scenarios can be regularized simply, which is useful in solving dynamic problems. 

The third challenge is the uncertainty analysis of non-deterministic cases. Non-deterministic factors are inevitable in contemporary 
engineering, such as inconstant loads (wind, vehicles, or impacts) and tiny defects in material. The acceptable nominal variation in the 
manufacturing process is typically limited to 1 % – 5 % but these seemingly negligible deviations may cause serious consequences in 
dynamic elasto-plastic fracture. Due to the development of plasticity, potential cracks accumulate along the load history. The un-
derestimation of these minor imperfections or the over-simplicity of plasticity behaviour could lead to inaccurate crack propagation 
results and then to the global fracture failure [49]. Therefore, an uncertainty analysis should be conducted. The uncertainty analysis is 
a statistical process based on a large number of experimental or numerical simulations, rather than simply taking the maximum or 
minimum values. Engineers can improve the weak parts of the structure and optimize the structural design according to the analysis 
results [50,51]. Recently, one rising research direction is the use of machine learning techniques [52], like the extended support vector 

Fig. 1. (a) Cracked roller coaster column [12]. (b) Cracked beam on Lake Shore Drive Bridge [13].  
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regression (X-SVR) method [53]. These techniques may utilize sampling methods to extract information from the raw database and 
relieve the requirement of enormous statistical data. In other words, machine learning techniques are capable of learning from training 
datasets and predicting outcomes, and then pave the way for virtual models. As it literally meant, virtual models function as digital 
twins of physical models to acquire the prediction of dynamic elasto-plastic fracture responses without traditional FE calculations. 
Thus, virtual modelling can provide statistical information of fracture responses and is an efficient approach for uncertainty analysis of 
dynamic crack propagation in elasto-plastic materials. 

Based on the methods discussed above, a novel phase-field virtual modelling method (PFVM) is proposed in the present study. 
PFVM provides an efficient means to deal with 3D dynamic elasto-plastic fracture problems under stochastic conditions, to compre-
hensively provide statistical information of fracture responses and to accurately predict future crack propagation paths with possi-
bilities. Theoretically, PFVM is established on a base of numerous phase field simulations of dynamic elasto-plastic fracture problems, 
forming a global training dataset. In this process, the phase field method ensures the dependability of these numerical outcomes, and 
the training process incorporates a sampling technique first. This sampling technique involves the stochastic selection of system inputs 
with the associated fracture responses to facilitate a solid statistical representation of the whole database. Subsequently, the virtual 
model undergoes training using the dataset derived from this sampling process. In addition, another vital feature of PFVM is the 
application of the kernel-based X-SVR algorithm. X-SVR algorithm is orientated to handle the complexities of a high-dimensional, 
nonlinear elasto-plastic problem, thereby establishing a virtual governing relationship. With the trained virtual model, the PFVM 
framework demonstrates a remarkable proficiency in predicting dynamic elasto-plastic fracture responses with both efficiency and 
accuracy, then providing reliable statistical information for structural safety. 

The paper is organized as follows. Chapter 2 provides a detailed explanation of deterministic dynamic elasto-plastic fracture 
analysis incorporating the phase field method. Chapter 3 extends the fracture analysis into non-deterministic cases with the considered 
uncertainties and numerical implementation. The procedure flowchart is also demonstrated in this chapter. In Chapter 4, two nu-
merical examples and the verification results are discussed in detail. 

2. Deterministic dynamic fracture analysis of elasto-plastic materials 

The plasticity in the numerical simulation of dynamic fracture should be well considered due to its widespread existence. 
Considering the complex geometry and arbitrary crack propagation pattern, the phase field method is adopted in present study. The 
essential theories and formulations for dynamic fracture analysis in elasto-plastic materials are explained in this chapter. The detailed 
formulations about phase field method can be found in previous publications [36,48,54]. 

2.1. Theory of phase field method 

In the theory of phase field method, the crack is represented as a surrounding cracked area instead of a discontinuity in the material. 
Under this assumption, two scalar values, the length parameter l0 and the phase field value ϕ, are introduced to regularize the crack 
diffusion. 

Considering an arbitrary solid Ω⊂Rn(n= 2,3) made of elasto-plastic material, the in-body crack boundary is denoted as Γ while the 
external applied boundary condition is marked as ∂Ω. In the location x, the displacement field at time t is u(x, t)⊂Rn while the phase 
field can be defined as ϕ(x). Assuming the solid body is under external loads including body force bf and traction force T. Fig. 2 
provides a 2D demonstration of these settings. In the meanwhile, the size of the affected area is formalised by l0. The greater l0 is, the 
wider the cracked material is. The mentioned scalar variable ϕ ∈ [0, 1] is adopted to represent the status of the solid by defining that the 

Fig. 2. Diffused crack model in phase field method.  
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material is broken when ϕ = 1. The solid body remains intact if ϕ = 0 respectively. 
Francfort [28] proposed a variational method with the traditional Griffith’s damage theory [55], in which the minimum energy to 

generate a new damage surface per unit area is defined as the critical fracture energy release rate Gc. Then, the energy function can be 
extracted within this energy-based theory. The total potential energy Ψpot(u,Γ) can be calculated as the sum of the elastic energy Ψe, 
plastic energy Ψp, fracture energy Ψfrac and external forced energy Ψext : 

Ψpot(u,Γ) = Ψe + Ψp + Ψfrac − Ψext (1) 

The first part of total potential energy is the elastic energy Ψe which can be decomposed into tensile and compressive components. 
In this implementation, only the tensile component can be cracked, and the cracked material is degraded by a degradation function 
[37,56]. 

The degradation function g(ϕ) is defined by: 

g(ϕ) = (1 − ϕ)2
+ k (2)  

where k is a small number (10− 8) introduced for numerical stability when ϕ approaches 1. 
The linear strain tensor ε = ε(u) is formulated as: 

εij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)

(3) 

Under the assumption of isotropic linear elasticity, the linear energy density ψε(ε) is expressed in terms of Lamé constants λ and μas 
[31]: 

ψe =
1
2

λεiiεjj + μεijεij (4) 

Then, a degradation function containing the phase field value reduces the tensile strain energy density. Since the strain energy is 
composed of tensile strain (+) and compressive strain (-), the elastic energy is expressed as: 

Ψe(ε) =
∫

Ω
ψεdΩ =

∫

Ω

[
(1 − ϕ)2

+ k
]

⋅ ψe(ε)
+
+ ψe(ε)

− dΩ (5) 

In this implementation, the Von Mises yield criterion is adopted for its popularity universality. The plastic energy density ψp for a 
linear isotropic hardening is formulated as: 

ψp(δ, d) =
1
2
H̃(d)δ2 (6)  

where H̃(d) is the hardening modulus of the degraded material and δ is the accumulated plastic strain. The equivalent yield stress is 
denoted as σ̃y. It should be noted that both compression and tensile plastic strain contribute crack propagation equally, which is 
different from the condition of elastic strain. The plastic strain energy can be expressed as: 

Ψp(δ) =
∫

Ω

[
(1 − ϕ)2

+ k
](1

2
H̃(ϕ)δ2 + σ̃yδ

)

dΩ (7) 

As shown in Fig. 2, the crack surface is diffused by the length parameter l0. According to the Griffith’s theory, Miehe [57] developed 
the formulation describing the surface energy density function in the phase field theory as, 

γ(ϕ,∇ϕ) =
1

2l0
⋅ ϕ2 +

l0
2

⋅ |∇ϕ|2 (8) 

With the crack surface density function (8), the considered fracture energy can be treated as a minimum energy to create a new 
crack area and then be written with critical energy release rate Gc as: 

∫

Γ
GcdΓ ≈

∫

Ω
Gc ⋅ γ(l0,ϕ,∇ϕ)dΩ =

∫

Ω
Gc ⋅

[
1

2l0
⋅ ϕ2 +

l0
2

⋅ |∇ϕ|2
]

dΩ (9) 

Combining the formula above, the total potential energy is expressed as: 

Ψpot(u,Γ) =
∫

Ω
ψ e(ε)dΩ +

∫

Ω
ψp(δ)dΩ +

∫

Γ
Gc(x)dΓ −

∫

∂ΩN

T ⋅ ud∂ΩN

=

∫

Ω

[
(1 − ϕ)2

+ k
]

⋅ ψe(ε)
+
+ ψe(ε)

− dΩ +

∫

Ω

[
(1 − ϕ)2

+ k
](1

2
H̃(ϕ)δ2 + σ̃yδ

)

dΩ

+

∫

Ω
Gc ⋅

1
2l0

⋅ ϕ2 + Gc
l0
2

⋅ |∇ϕ|2dΩ −

∫

∂ΩN

T ⋅ ud∂ΩN +

∫

Ω
bf ⋅ udΩ

(10)  
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2.2. Staggered algorithm with quasi-Newton method 

In this implementation, the staggered algorithm is adopted for the crack propagation analysis due to its numerical stability and 
robustness in dynamic fracture problems. In the staggered algorithm, which was firstly developed by Miehe et al. [57], the history field 
is added into the computation process to decouple the displacement field and the phase field. Under this setting, the history field H acts 
as the transfer station between these two independent fields. 

The energy functional of dynamic fracture involves the Lagrange function is: 

Hu = D(u̇) − Ψpot (11)  

where u̇ contains the velocity vector. D(u̇) is the kinetic energy and can be expressed in terms of material density ρ: 

D(u̇) =
1
2

∫

Ω
u̇Tu̇ρdΩ (12) 

Then, the phase field function can be derived as: 

Hϕ =

∫

Ω
[Gcγ(ϕ,∇ϕ)+ϕ ⋅ H]dΩ (13)  

where the history field replaces the total potential energy term. In order to prevent the healing of the crack, the irreversibility of phase 
field value is restricted by Eq. (14), 

H =

{
ψe(ε)

+
+ ψp(δ) − ψ frac, ψe(ε)

+
+ ψp(δ) − ψ frac > Hn

Hn, ψe(ε)
+
+ ψp(δ) − ψ frac ≤ Hn

(14)  

where Hn is the previous step history field. Furthermore, Eq. (14) make the history field satisfies the Karush–Kuhn–Tucker (KKT) 
condition. 

3. Non-deterministic dynamic fracture analysis in elasto-plastic materials 

This section introduces the non-deterministic numerical implementation of the dynamic phase field model for elasto-plastic ma-
terials. The numerical application of ABAQUS using user subroutine (UEL) codes is thoroughly explained. Additionally, the non- 
deterministic parameters are defined in detail for enhanced comprehension. The implementation of virtual modelling techniques is 
subsequently demonstrated through a comprehensive flowchart. 

3.1. Numerical implementation of non-deterministic dynamic elasto-plastic fracture 

The staggered time-integration algorithm is adopted to solve the non-deterministic dynamic fracture problem in this paper. The 
Abaqus user subroutine is used to solve the displacement field and phase field iteratively. 

The non-deterministic parameters are listed in Table 1. The first category of uncertainties involves material properties including 
Young’s modulus, Poisson ratio, critical energy release rate, density, and initial yield stress. These parameters are commonly used to 
describe the mechanical properties of the material and it’s essential to provide a statistical analysis of their influence on the fracture 
responses. In this study, the material property uncertainties are listed in a vector ηM =

[
E, υ,Gc, ρ, σy0

]T [58,59]. Furthermore, the 
non-deterministic external loads are also considered and expressed in form of a vector ηL =

[
Lx, Ly, Lz

]T. The footnote ηj represents the 
jth non-deterministic parameter set, and the vector ηR belongs to the probability space (Y,Λ,P) where Y denotes the sample space, P 
denotes the probability measure and Λ denotes the σ-algebra. 

Table 1 
Considered variabilities.  

Category Variational parameters Abbreviations Unit 

Material properties Young’s modulus E
(

ηM
j

)
GPa 

Poisson ratio υ
(

ηM
j

)
/ 

Critical energy release rate Gc

(
ηM

j

)
MPa•mm 

Density ρ
(

ηM
j

)
kg/m3 

Yield stress σy0

(
ηM

j

)
MPa 

Load conditions x-direction displacement Lx

(
ηL

j

)
mm 

y-direction displacement Ly

(
ηL

j

)
mm 

z-direction displacement Lz

(
ηL

j

)
mm  
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3D element type C3D4 in ABAQUS is implemented, so the shape function can be defined as N = [N1⋯N4] and its corresponding 
spatial derivatives are given as: 

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂N1

∂x
⋯

∂N4

∂x
∂N1

∂y
⋯

∂N4

∂y
∂N1

∂z
⋯

∂N4

∂z

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(15) 

The strain tensors and phase field value derivative can be given by: 

ε = Buu
(
ηL)

∇ϕ = Bdϕ
(
ηM) (16) 

For the dynamic cases, ABAQUS adopts the Hilber-Hughes-Taylor (HHT) method to achieve equilibrium and the equilibrium 
problem is listed as: 

⎡

⎣
Su

n

(
ηR

j

)
0

0 (1 + α)Kϕ
n
(
ηj
)

⎤

⎦

[
un+Δt

(
ηj
)

ϕn+Δt
(
ηj
)

]

= −

[
ru
n
(
ηj
)

αrd
n− 1

(
ηj
)
− (1 + α)rϕ

n
(
ηj
)

]

(17)  

where Su
n
(
ηj
)

and Kϕ
n
(
ηj
)

are the elementary stiffness in displacement field and phase field respectively. ru
n
(
ηj
)

and rϕ
n
(
ηj
)

are the 
residues. Parameter α = − 0.05 is the damping coefficient. 

The tangent matrix Su
n
(
ηj
)

of the displacement field is the sum of material and density matrix: 

Su
n
(
ηj
)
= M

(
ηj
) dü

du
+ (1 + α)Ku

n
(
ηj
)

(18)  

where the mass matrix can be obtained by, 

M
(
ηj
)
= Mkk =

∫

Ω

(
Nu

kj

)T

ρ
(
ηj
)
Nu

kjdΩ (19) 

Traditionally, ABAQUS finite element models are nonlinear and solved by Newton’s method. The quadratic convergence rate in 
Newton’s method is achieved by introducing the gradients matrix KNM

i . However, there are some drawbacks when solving non-convex 
energy functional. The Jacobian matrix must be calculated and solved in the process. In the large models containing non-linear be-
haviours, the computational efforts are greatly increased. The quasi-Newton method enhances computational efficiency by approxi-
mating the Hessian matrix, thereby limiting the need for its explicit computation. This method leverages gradient information from 
previous iterations to construct an approximation of the Hessian, significantly reducing computational cost. By avoiding the direct 
calculation of second derivatives, the quasi-Newton method is particularly advantageous for large-scale problems, where the Hessian 
matrix can be prohibitively large. Additionally, this approach accelerates convergence compared to simple gradient descent methods 
and requires less memory, making it well-suited for high-dimensional parameter spaces. The Broyden-Fletcher-Goldfarb-Shanno 
(BFGS) algorithm [60] exemplifies these benefits by iteratively updating the Hessian approximation with gradient information, 
thereby achieving a balance between computational efficiency and convergence speed. The application of this quasi-Newton method is 
widely proven efficient in the publications [39,61–63]. The basic function of quasi-Newton method is to calculate a series of guess 

functions K̃
NM
i to the Jacobian matrix satisfying the secant condition, finally reaching the condition K̃

NM
i ≈ KNM

i . In functional 
expression, the below formula is applied: 

FN( uM
i
)
− FN( uM

i− 1
)
= K̃

NM
i

(
uM

i − uM
i− 1

)
(20) 

The residual between two iterations can be formulated as: 

τN
i = FN

i − FN
i− 1 (21) 

Since the correction is denoted as ϖM
i , Eq. (21) is then written as: 

τN
i = K̃

NM
i ϖM

i (22) 

Later, Matthies and Strange improved the efficiency of the BFGS method by creating a series of mathematical approximation, which 

retain the symmetry and positive definitions of K̃
NM
i . The quasi-Newton method is embedded in the ABAQUS solver. The imple-

mentation of phase field method in dynamic elasto-plastic fracture is often computationally expensive. Therefore, the BFGS algorithm 
is applied to improve computational efficiency. 
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3.2. Virtual modelling technique in dynamic elasto-plastic fracture 

The virtual modelling technique for the dynamic elasto-plastic fracture analysis is introduced in this section. The virtual modelling 
technique is capable to virtually predict the fracture responses without solving physics functional. In this study, the truncated T–spline 
kernel based extended support vector regression (X-SVR) method is employed to perform the training of virtual model. As a kernel 
sensitive approach, the performance of truncated T-spline kernel is validated in multiple random parameter regression. The spline 
functions can be considered as a set of piecewise polynomial functions by creating a smooth curve with preset points and are normally 
adopted in interpolation or smoothing techniques. 

Developed from the original SVR or DrSVM [64–66], the X-SVR method utilizes the quadratic ε-insensitive loss function which does 
not penalize the errors within a certain threshold. Furthermore, the X-SVR method employs the kernel function to transform the raw 
data into a -dimensional space, resulting in a possible linear regression. In previous works [17,67], the X-SVR method is proven to be 
efficient and accurate in handling complex data structures or high-dimensional data. 

The mapping function transforms the raw input data into a high dimensional space, making the linear regression possible. In X-SVR, 
the mapping function can be normally formulated as: 

xi =
[
xi,1, xi,2,⋯, xi,n

]T ↦ d̂(xi) =

⎡

⎢
⎢
⎣

χ(x1)
Tχ(xi)

χ(x2)
Tχ(xi)

⋮
χ(xn)

Tχ(xi)

⎤

⎥
⎥
⎦ = D(xi). (23) 

In Eq. (23), χ(x) denotes the mapping function and d̂(xi) denotes the empirical kernelized vector. The transforming kernelized 
mapping function are written as: 

D(xi) =

⎡

⎢
⎢
⎣

D(x1, x1) D(x1, x2) ⋯ D(x1, xj)

D(x2, x1) D(x2, x2) ⋯ D(x2, xj)

⋮ ⋮ ⋱ ⋮
D(xj, x1) D(xj, x1) ⋯ D(xj, xj)

⎤

⎥
⎥
⎦ (24) 

Then, the original system inputs can be transformed into high dimensional space by the mapping function. In the high-dimensional 
space, the regression problem will be solved using the following optimization algorithm: 

min
px ,qx ,α,ρ,ρ̂

:
ι1
2
(
‖ rx‖

2
2 + ‖ tx ‖

2
2
)
+ ι2eT

j (rx + tx) +
χ
2
(
ρTρ + ρ̂T ρ̂

)

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

σej + ρ ≥ Mtrain(rx − tx) − αej − ytrain

σej + ρ̂ ≥ ytrain − Mtrain(rx − tx) + αej

rx, tx, ρ, ρ̂ ≥ 0j

(25)  

here χ is the penalty parameter; σ is the parameter identifying the acceptable deviation; ej is a unit vector; rx, tx are the positive 
parameters normal to the hyperplane; ρ, ρ̂ are the slack variables for excess deviations and the tunning variables for feature selection 
are denoted as ι1, ι2. 

The optimization problem is then further simplified into a quadratic programming problem as: 

min :
ytrain ,λ

1
2
(
rT

x R̂xrx + α2)+ ι2zT
xnx

s.t.
(
Âx + I4j×4j

)
nx +

(
ωI4j×4j + χD̂x

)
êx + ĝx ≥ 04j

(26)  

min
ςx

:
1
2

τT
x
Vxτx − sT

x τx

s.t.τx ≥ 04j

(27)  

where the identity matrix is I4j×4j, the detailed explanation of corresponding matrix vector can be found in the former publications 
[17]. Given the global minimum solution h∗

x, the expression of the related variables can be written as: 

nx = Q̂
− 1
x

((
Âx + I4j×4j

)Th∗
x − β2zx

)
(28)  

χ = êT
x D̂xh∗

x (29) 

Therefore, the overall governing expression of X-SVR algorithm can be proposed as: 
{

rx − tx = nx(1 : j) − nx(j + 1 : 2j)

f̂ (x) = (rx − tx)
T d̂(x) − êT

x D̂xh∗
x

(30) 

Recently, the truncated T–spline polynomial kernel function is based on T-splines and achieved by the truncation mechanism. This 

Y. Liu et al.                                                                                                                                                                                                             



Computer Methods in Applied Mechanics and Engineering 429 (2024) 117160

8

Fig. 3. Flow chart of virtual modelling technique for non-deterministic dynamic fracture analysis in elasto-plastic materials.  
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mechanism equips the traditional T-splines with reduced support overlapping and better performance. With in X-SVR algorithm, the 
truncated T–spline polynomial kernel function is defined as: 

Tt− spline(x) =
∑n

i=0
Ci ⋅ Bi(x) (31)  

and, 

Bi(x) =
x − xi

xi+k − xi
⋅ Bi− 1(x) +

xi+k+1 − xi

xi+k+1 − xi− 1
Bi− 1(x+ 1) (32)  

where Ciare the scalar values that weight the contribution of each basis function, Bi are the basis functions, xi,xi+1,..., xi+k+1 are the knot 
values, and k is the order of spline. 

The general algorithm of the proposed virtual modelling technique in dynamic elasto-plastic fracture is shown in Fig. 3. The final 
step is to evaluate the performance of the prediction by virtual model. The statistical error estimation parameter R2 is utilized between 
the results of repetitive sampling simulations and virtual model predictions. 

R2 = 1 −

∑j

i=1
( f̂ i − yi)

2

∑j

i=1
(y − yi)

2
(33)  

where f̂ is the virtual model’s predicted results, y and y are the sampling simulation results and their mean values. 

4. Numerical verification and examples 

In order to demonstrate the implementation of the proposed non-deterministic phase field modelling technique, two real-world 3D 
examples are performed. In each example, the crack propagation processes are compared to the recorded damage to verify the 
effectiveness. Furthermore, the numerical efficiency is also corroborated in this chapter. 

4.1. Roller coaster column 

In July 2023, one support column of the famous roller coaster in USA, Fury 325, was found broken during operation [68] and the 
crack totally went through the column, as shown in Fig. 4. The roller coaster was then shut down for repair. This public crisis alerted 
people to keep tighter monitoring of the structural health of similar equipment. Given by this event, the first numerical example of the 
non-deterministic phase field modelling in elasto-plastic material studies the roller coaster column. 

The numerical column model takes a similar geometry to the real one. The model consists of two circular tubes and the horizontal 
connection beam is in the H section. The boundary conditions and geometric information is shown in Fig. 5 (a). Assuming that the 
column is made up of structural steel, the material properties are chosen as: Young’s modulus E = 200GPa, Poisson ratio v = 0.29, 
initial yield stress σy0 = 300MPa, density ρ = 7850kg /m3 and critical energy release rate Gc = 100MPa ⋅ mm. In this case, the linear 
hardening law is adopted for simplicity and the hardening modulus is selected as H = 1000MPa. The load is directly applied on the 
cross section of H horizontal beam, which simulates the real-world working condition of roller coaster. For the dynamic fracture 
analysis, three load phases simulating different passenger loads are implemented. The load history is demonstrated in Fig. 5 (c). 

The model is first tested in deterministic condition to verify the accuracy of implemented codes. C3D4 element in Abaqus is applied 
for its efficiency in generating meshes from arbitrary 3D geometry. In this implementation, a total of 59,401 elements are used, and the 
mesh is refined in the potential crack propagation area, as shown in Fig. 5 (b). A tiny crack of 2 mm is located on the joint of the support 

Fig. 4. Damaged roller coaster column in Fury 325.  
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column. The total simulation time is 0.6 s and 6000 fixed time steps are adopted. The plots in Fig. 6 demonstrate the crack propagation 
process. Compared to the crack patten in Fig. 4, it can be verified that the implementation of phase field modelling of dynamic fracture 
in elasto-plastic materials is appropriate. 

After the verification, non-deterministic parameters are proposed considering the existence of variability. Amongst these non- 

Fig. 5. (a) Geometry and boundary conditions. (b) Meshed numerical model. (c) Load history.  

Fig. 6. Crack propagation plots at different times.  
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deterministic parameters in Table 2, different distribution types are adopted to simulate various scenarios in real-world applications. 
Because of the complexity and long computational time in solving dynamic elasto-plastic fracture problems, 300 times simulations 

based on the non-deterministic parameters are performed using BFGS algorithm. The outputs of these simulations are adopted as 
sampling simulations in virtual model training process. It can be found in Fig. 6 that the crack propagation speeds up after the crack 
reaches the column joint (t = 0.52 s). Therefore, the first prediction target of virtual model implementation is the time when crack 
reaches the joint. For the existence of non-deterministic parameters, the time varies amongst 300 independent numerical tests. The 
total running time of 300 simulations is more than 10 days on the platform by National Computational Infrastructure (NCI) with high- 
performance computers. After completion, then the virtual model training process costs 1 day to train the adequate virtual model based 
on i7-12700K CPU and 128G RAM. Given the detailed information about variabilities and outputs, the virtual model can be trained 
with X-SVR algorithm by building a virtual governing relationship between them instead of the physical formulations. Once the virtual 
model is generated, the fracture prediction can be obtained within 1 s. The training performance of the first prediction target can be 
found in Fig. 7. The probability density function (PDF) and cumulative distribution function (CDF) plots are provided to demonstrate 
the virtual model prediction performance compared to the sampling simulations. Furthermore, the relative errors are calculated in 
Fig. 7 (c). In these figures, the prediction by the virtual model is marked in red points while the sampling data is marked in black solid 
line. It is approved that the prediction performance is excellent. 

Moreover, another prediction target is set as the total crack length to comprehensively demonstrate the effectiveness of the virtual 
modelling technique. The training performance is compared with repetitive tests in Fig. 8. 

Similarly, after the crack propagation data is collected, the prediction of final crack location can be performed. In this case, the 
geometry location of crack tip at the end of simulation is extracted and trained by the X-SVR algorithm to generate a virtual model 
respectively. The training performance shows that the virtual model prediction can accurately simulate the results of phase field 
method, meaning that the virtual model could be adopted in further numerical study. Continuously, in Fig. 9, the probability density 
functions of x and y direction is demonstrated. These heat maps are provided by the well-trained virtual models. The crack tip locations 
are also shown in Fig. 9. With this kind of heat-map, the virtual model can be applied to guide the design process in order to prevent 
similar crack propagation by improving the fracture resistance in relative area. 

4.2. Tooth replacement implant 

Inspired by medical records about tooth implant fractures, the second numerical example focuses on the dynamic fracture during 
the service life of tooth implant. The service load includes severe loading conditions when people chew some hard food like bones. In 
the numerical simulation, only the metal alloy parts including abutment and implant body are modelled in Fig. 10. 

The 3D model of tooth implant is constructed with respect to geometry illustrated in Fig. 11. The load is applied as the combined 
displacement along x and z directions. A tiny 0.1 mm pre-crack is located in the joint part to simulate decay in normal usage. The mesh 
of numerical model is refined in the potential crack area around the initial tiny crack. Two materials are selected in this example to 
show how the material property affects the fracture process in dynamic cases. The numerical model is made up of two different 

Table 2 
Statistical information of non-deterministic material properties and loads in roller coaster column example.  

Non-deterministic parameters Distribution type Mean Standard deviation Range 

Material properties Young’s modulus E [GPa] Normal [69] 200 2 / 
Poisson ratio Beta [70] 0.29 0.005 / 
Yield stress σy0 [MPa] Log-normal 300 10 / 
Density ρ [kg/m3] Normal 7850 150  
Critical energy release rate 
Gc[MPa•mm] 

Uniform [71] 100 / [95.00, 105.00] 

Applied pressure Load phase 1 [kPa] Normal 100 1 / 
Load phase 2 [kPa] Uniform 90 / [88, 92] 
Load phase 3 [kPa] Log-normal 95 1 /  

Fig. 7. Comparison of the time when crack reaches the joint by virtual model and phase field method: (a) estimated PDF plot; (b) estimated CDF 
plot; (c) relative error of CDF. 
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materials, stainless steel, and titanium, to compare their performance in service life. The material properties of stainless steel are: 
Young’s modulus E = 200GPa, Poisson ratio v = 0.29, initial yield stress σy0 = 300MPa, density ρ = 7850kg /m3 and critical energy 
release rateGc = 150MPa ⋅ mm. Additionally, the material properties of titanium alloy are chosen as: Young’s modulus E = 116GPa, 

Fig. 8. Comparison of the final crack length by virtual model and phase field method: (a) estimated PDF plot; (b) estimated CDF plot; (c) relative 
error of CDF. 

Fig. 9. Heat map of predicted crack tip location.  

Fig. 10. Tooth replacement implant parts.  
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Poisson ratiov = 0.33, initial yield stress σy0 = 400MPa, density ρ = 4500kg /m3 and critical energy release rateGc = 100MPa ⋅ mm. 
The linear hardening law is adopted for simplicity and the universal hardening modulus is selected as H = 1000MPa. The total 
displacement is 2 mm within 1 s. 

For the verification purposes, the numerical simulation results are compared to medical records in Fig. 12. It is clear that the crack 
propagates from the initial tiny crack and extends along the connection surface. The result shed light for further investigation of the 
dynamic fracture behaviour of tooth implant. Considering the unexpected service condition, the uncertainties regarding external loads 
are added to the non-deterministic material property parameters. The materials of tooth implants vary from stainless steel to titanium. 
In this numerical example, the detailed information of considered uncertainties is listed in Table 3. 

After the settings of uncertainties, 300 times sampling simulations of each material are performed using BFGS algorithm. To obtain 
a good understanding of fracture responses, the evaluation of crack length at the end of simulation is performed. Subsequently, two 
virtual models are trained separately in each material to demonstrate the influence of material property especially in elasto-plastic 
materials. In this case, the total running times are 11 days for stainless steel and 12 days for titanium on NCI. After that, then the 
virtual model training process costs 1 day for both materials to train the adequate virtual models. With the trained virtual models, the 
fracture responses can be predicted within seconds. In Figs. 13 and 14, the statistical information of training performance including 
PDF plots, CDF plots and relative errors shows that the virtual models can predict the fracture responses accurately for both materials. 

Before conducting the sensitivity analysis, the determination of the material is crucial. In practical applications, titanium is 
preferred over stainless steel for tooth medical implants due to its lightweight nature, biocompatibility, and high strength. These 
attributes make titanium an ideal choice for medical implants. Utilizing the well-trained virtual models, we have evaluated the fracture 
response performance of both materials. The final crack tip locations are illustrated in Fig. 15, and a detailed comparison of crack 
propagation between the two materials is provided in Table 4. Additionally, Fig. 16 compares the difference in crack propagation 
between titanium and stainless steel. The results clearly indicate that implants made of titanium exhibit superior fracture durability 
compared to those made of stainless steel. Specifically, the initiation of cracks in titanium implants is significantly delayed under 
identical load conditions. This delay in crack initiation underlines the material’s higher resilience and better long-term durability in 
medical applications. Based on these findings, it is evident that titanium should be the material of choice for dental implants in clinical 
practice. The superior properties of titanium not only enhance the longevity of the implants but also contribute to improved patient 
outcomes by reducing the likelihood of implant failure. 

Since the material has been determined as titanium, the sensitivity analysis can be conducted to guide designers and engineers on 
how to improve the fracture performance in medical tooth implant. The virtual models for both materials are well trained based on the 
information, then the sensitivity analysis is performed. Sensitivity analysis enables the understanding of the relationship between 
different factors and their contribution to the overall fracture behaviour of the model. To achieve this, the virtual model is utilized to 
predict the fracture responses with assigned variation (5 %). The numerical results are summarized in Table 5. In Fig. 17, amongst all 
the uncertainties, the initial yield stress is the most influential factor affecting fracture performance, whereas Young’s modulus also 
plays a critical role as a determinative parameter in dynamic elasto-plastic fracture. Through this sensitivity analysis, the virtual 
modelling technique has shown the capability of guiding structural design process by telling the most critical material parameters from 
various non-deterministic parameters. Therefore, engineers can specifically improve existing products or structures to achieve superior 

Fig. 11. Numerical model and boundary conditions of tooth implant.  
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crack resistance performance. 

5. Conclusion 

In conclusion, this study introduces a pioneering framework for analysing dynamic elasto-plastic fracture in materials under non- 
deterministic conditions. The integration of the phase field method and the innovative virtual modelling algorithm enables this 
framework to predict fracture responses efficiently and accurately. This approach is proven in handling high-dimensional, nonlinear 
problems, creating a virtual model that adeptly links fracture responses with various uncertain parameters. 

The phase field method was chosen for its outstanding capability to tackle complex fracture problems, providing reliable data for 

Fig. 12. Tooth implant fracture: (a) photo from medical record [72], (b) numerical simulation.  

Table 3 
Statistical information of non-deterministic material properties and load in tooth implant example.  

Non-deterministic parameters Distribution type Mean Standard deviation Range 

Material properties of stainless steel Young’s modulus E [GPa] Log-normal 200 2 / 
Poisson ratio Beta 0.29 0.005 / 
Yield stress σy0 [MPa] Normal 300 10 / 
Density ρ [kg/m3] Log-normal 7850 150  
Critical energy release rate Gc[MPa•mm] Uniform 150 / [145.00, 155.00] 

Material properties of titanium alloy Young’s modulus E [GPa] Log-normal 116 2 / 
Poisson ratio Beta 0.33 0.005 / 
Yield stress σy0 [MPa] Normal 400 10 / 
Density ρ [kg/m3] Log-normal 4500 150  
Critical energy release rate Gc[MPa•mm] Uniform 100 / [94.00, 104.00] 

Applied load x-direction [mm] Normal 2 0.1 / 
z-direction [mm] Log-normal 0.1 0.005 /  

Fig. 13. Comparison of the crack tip angle of titanium alloy: (a) estimated PDF plot; (b) estimated CDF plot; (c) relative error of CDF.  
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training, and validating the virtual model. The framework’s implementation to dynamic elasto-plastic fracture problems was validated 
through two practical engineering examples. These numerical examples highlight the framework’s ability to deliver precise, real-time 
predictions of crack propagation even with multiple uncertainties. This makes it not only feasible but also practical for contemporary 
numerical dynamic fracture simulations. This framework addresses and overcomes several limitations of traditional phase field 
method simulations. It reached a balance between accurate modelling and computational efficiency, reducing the typically high 
computational costs associated with detailed simulations without losing accuracy. This efficiency makes the framework suitable for 
various extensions, such as sensitivity analysis and design optimization. Accurate prediction of dynamic fracture responses under 
uncertain conditions can lead to more resilient and safer designs. Comprehensive explanations of both deterministic and non- 

Fig. 14. Comparison of the crack tip angle of stainless steel: (a) estimated PDF plot; (b) estimated CDF plot; (c) relative error of CDF.  

Fig. 15. Measurement of final crack tip location θ [degree].  

Table 4 
Comparison of final crack tip location between two materials.  

Material Stainless steel Titanium 

Crack tip location [degree] 89.114 82.478  

Fig. 16. Comparison of statistical information between two materials: (a) estimated PDF plot; (b) estimated CDF plot.  
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deterministic fracture analyses by detailed numerical examples and verifications, provide a deep understanding of this innovative 
computational framework. 

This study offers a powerful tool for engineers and researchers to tackle complex dynamic fracture problems in elasto-plastic 
materials. This framework holds promise for enhancing structural safety, guiding preventive design, and informing real-time main-
tenance strategies, ultimately contributing to more robust and reliable engineering solutions. 
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Table 5 
Sensitivity analysis of uncertainties on crack propagation in titanium tooth implant.  

Uncertainties Crack tip angle [degree] Maximum variation at ±5 % mean value [ %] 

95 % mean value 105 % mean value 

Young’s modulus [GPa] 80.488 84.238 2.413 
Poisson ratio 81.771 82.680 0.857 
Yield stress [MPa] 79.444 85.935 4.191 
Density [kg/m3] 81.549 83.504 1.244 
Critical energy release rate [MPa•mm] 80.917 83.598 1.893 
Applied load x [mm] 82.343 82.600 0.164 
Applied load z [mm] 82.059 82.942 0.563  

Fig. 17. Comparison of the influence of uncertainties in titanium tooth implant.  
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