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A B S T R A C T   

The detection of viruses (e.g. SARS-CoV-2, norovirus) in wastewater represents an effective way 
to monitor the prevalence of these pathogens circulating within the community. However, ac-
curate quantification of viral concentrations in wastewater, proportional to human input, is 
constrained by a range of uncertainties, including (i) dilution within the sewer network, (ii) 
degradation of viral RNA during wastewater transit, (iii) catchment population and facility use, 
(iv) efficiency of viral concentration and extraction from wastewater, and (v) inhibition of 
amplification during the RT-qPCR step. Here, we address these uncertainties by investigating 
several potential normalisation factors including the concentration of ammonium and ortho-
phosphate. A faecal indicator virus (crAssphage), and the recovery of the process-control viruses 
(murine norovirus and bacteriophage Phi6), used for quality control during the RT-qPCR step, 
were also considered. We found that multi-factor normalisation of SARS-CoV-2 RT-qPCR data was 
optimal using a combination of crAssphage, process-control virus recovery, and concentration 
efficiency to improve prediction accuracy relative to clinical test data. Using multi-normalised 
SARS-CoV-2 RT-qPCR data, we found a lasso regression model with random forest modelled re-
siduals lowers the prediction error of positives by 46 %, compared to a single linear regression 
using raw data. This multi-normalised approach enables more accurate wastewater-based pre-
dictions of clinical cases up to five days in advance of clinical data, identifying trends in disease 
prevalence before clinical testing, and demonstrates the potential to improve viral pathogen 
detection for a range of currently monitored and emerging diseases.   

1. Introduction 

The COVID-19 pandemic necessitated the development of new methods for early detection and surveillance of SARS-CoV-2 as 
infections emerged in communities. This need drove rapid innovation in wastewater-based epidemiology (WBE), leading to the growth 
and refinement of techniques to detect pathogenic viruses at urban wastewater treatment plants (WWTPs; Shah et al., 2022; Parkins 
et al., 2023). WBE can be used to identify areas with growing disease prevalence allowing the timely implementation of mitigation 
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Fig. 1. A. Map of North Wales and a section of England showing the location of the Wastewater treatment plants (WWTPs) sites. B. Lagged cor-
relation between normalised and unnormalised wastewater SARS-CoV-2 measures and positive case rates. They depict the root-mean-square-error 
(RMSE) of single linear models predicting COVID-19 case rates with 79 normalised and unnormalised wastewater SARS-CoV-2 N1 gene fragment 
quantities, predicting zero to fourteen days ahead of clinical test data. The best time lag between the clinical signal and the wastewater signal was 
selected by the lowest median RMSE (Chester: 3 days; Flint: 11 days; Conwy: 1 day; Holyhead: 3 days; Kinmel Bay: 2 days; Llangefni: 9 days; Bangor: 
13 days; Wrexham: 3 days). 
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measures aimed at controlling further spread of the disease (Bittihn et al., 2021; Henriques et al., 2023). This has proved useful as 
individual testing often fails to detect all infections due to asymptomatic cases, pre-symptomatic transmission, limited access to clinical 
testing facilities or poor uptake due to testing hesitancy (McGowan et al., 2020; Bourrier and Deml, 2022). The approach has now been 
applied to a wide range of enteric and respiratory pathogens including SARS-CoV-2, norovirus, influenza, Campylobacter and mpox 
(formerly known as monkeypox) (Wannigama et al., 2023; Zhang et al., 2023; Shrestha et al., 2024). WBE measures of viral RNA/DNA 
in wastewater typically enables: (i) detection prior to symptom onset, (ii) unbiased sampling of the whole community, including 
asymptomatic cases, (iii) rapid, inexpensive deployment (Buscarini et al., 2020; Gibas et al., 2021; Kumar et al., 2021; Shah et al., 
2022; Shrestha et al., 2021; Wade et al., 2022), and (iv) advanced warning of rising prevalence due to high asymptomatic rates, 
allowing early localised response (Jones et al., 2020; Gibas et al., 2021; Zhu et al., 2021a). 

In the case of COVID-19, efforts to develop effective concentration methods for isolation of viral RNA in wastewater has allowed for 
the quantification of the SARS-CoV-2 N1 gene fragment with reverse transcription quantitative polymerase chain reaction (RT-qPCR) 
(Farkas et al., 2021; Ahmed et al., 2021). Targeting the N1 gene fragment has been particularly successful in detecting the virus in 
sewage, up to three weeks in advance of clinical cases, but also in predicting absolute case rates at a community level (Gibas et al., 
2021; Ahmed et al., 2021; D’Aoust et al., 2021; Karthikeyan et al., 2021). However, the latter requires accurate quantification pro-
portional to the levels of virus shed by infected individuals. The levels of virus detected, however, are directly influenced by a range of 
factors including: (i) individual shedding rate, (ii) dilution in wastewater by rainfall and other inputs, (ii) decay of the RNA/DNA 
during transit in the sewer network or post-sample collection, (iii) catchment population and facility use, and (iv) efficiency of con-
centration, extraction and RT-qPCR of genetic material in the laboratory (Ahmed et al., 2020; Wade et al., 2022). However, once the 
viral concentrations are determined, data should be adjusted to population levels in the WWTP catchment area. 

Chemical analytes, including ammonium (NH4
+), orthophosphate (PO4

3-), cotinine and 5-hydroxyindoleacetic acid, have been 
linked to census populations and employed to normalise measured levels of illicit drugs in wastewater (Been et al., 2014; Van Nujis 
et al., 2011; Chen et al., 2014), with ammonium linked to daily and hourly fluctuations due to commuter, weekend and other travel 
dynamics (Been et al., 2014). More recently, viral population markers have been adopted, including pepper mild mottle virus 
(PMMoV), F+ coliphage and crAssphage, all of which are prevalent in the human gut and indicative of human faeces in water (Kitajima 
et al., 2018; Farkas et al., 2019; Rainey et al., 2023). These viruses, therefore, offer the possibility to normalise SARS-CoV-2 levels in 
wastewater, with evidence that this reduces exogenous variability due to flow and results in improved correlations with positive 
clinical tests (Wu et al., 2020; D’Aoust et al., 2021; Wilder et al., 2021). 

Additionally, process control viruses, added to the samples at different stages of sample processing, can be used to estimate viral 
recoveries. For example, mengovirus (a Picornavirus infecting mainly rodents) has been used to normalise norovirus concentration for 
inhibition during RT-qPCR of environmental samples (Haramoto et al., 2018; Zakhour et al., 2010). However, most studies only 
attempt to incorporate one or two variables for normalisation (Bertels et al., 2023; Sweetapple et al., 2023), and none have attempted 
to normalise for inhibition and viral loss during concentration, extraction and RT-qPCR simultaneously, leaving a significant amount of 
variability unaccounted for and a considerable gap for improvements in normalisation. 

In this work, our aims were to (a) assess the correlation between wastewater measures and clinical case rates, (b) further analyse 
crAssphage, ammonium and orthophosphate as normalisation variables for wastewater dilution, viral decay, catchment population 
and facility/building-scale use, (c) introduce and assess the crAssphage concentration factor and process-control virus recovery as 
normalisation variables for efficiency of concentration, extraction and RT-qPCR, (d) evaluate the influence of viral shedding profiles on 
prediction accuracy, and (e) expand the statistical modelling tools used beyond linear and parametric regression. To do this, we carried 
out a longitudinal study, measuring wastewater data before, during and after the second peak of the COVID-19 epidemic from 
September 2020 to March 2021, for eight cities and towns in the UK. 

2. Materials and methods 

2.1. COVID-19 clinical case data 

Clinical COVID-19 case data that had been geographically aggregated to lower layer super output areas (LSOAs) were obtained 
from Public Health Wales. LSOAs are defined by the national population census data as regions comprising between 400 and 1200 
households equating to a resident population of between 1000 and 3000 persons (ONS, 2021). Cases were then assigned to WWTPs, 
using Arc-GIS (Esri Inc., Redlands, CA), by the ratio of the LSOA’s population serviced by the WWTP’s catchment area. 

2.2. Sampling methodology 

Untreated influent wastewater (n = 572) was collected 2–5 times per week using grab samples between 25th September 2020 and 
22nd March 2021 at eight municipal WWTPs located at Chester, Wrexham, Flint, Kinmel Bay, Conwy, Bangor, Llangefni and Holyhead 
in North Wales and Northwest England, UK (Fig. 1A). Wastewater samples (500 ml) were collected plant-side of the crude influent 
grate in sterile Nalgene® bottles in the morning between 08.00 h and 10.00 h, at the time of peak flow following the protocol of Hillary 
et al. (2021). This type of sampling has been shown to give very similar results to composite sampling using refrigerated autosamplers 
at the same locations (Farkas et al., 2023). Samples were stored and transported to the laboratory at 4◦C and processed within 24 h of 
collection. 
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2.3. Chemical analysis 

The pH and electrical conductivity (EC) of the wastewater samples were measured using a Hanna 209 pH meter (Hanna In-
struments Ltd., UK) and a Jenway 4520 conductivity meter (Jenway Ltd., UK). Prior to ammonium and orthophosphate determination, 
samples were centrifuged (18,000 g, 15 min) to remove suspended solids. After recovery of the supernatant, the concentrations of 
ammonium and orthophosphate were determined colorimetrically using the salicylic acid procedure of Mulvaney (1996) and 
ammonium molybdate method of Murphy and Riley (1962), respectively. In brief, samples were mixed with ammonium molybdate, 
sulfuric acid and ascorbic acid and absorbance were measured at 820 nm. Orthophosphate concentration was determined against a 
dilution series of PO4-P standards. For determining ammonium concentrations, samples were mixed with EDTA tetrasodium salt 
dihydrate, sodium nitroprusside and NaK2PO4. Once green colour appeared, absorbance was measured at 667 nm. Ammonium con-
centration was determined against a dilution series of NH4

+-N standards. All measurements were conducted using a Spectrostar Nano 
microplate reader (BMG Labtech, Germany). 

2.4. Sample concentration and viral RNA/DNA extraction 

A 200 ml aliquot of each sample was centrifuged to eliminate solid matter. A 0.2–0.5 ml aliquot of the clarified supernatant was 
retained for direct nucleic acid extraction using the NucliSense MiniMag extraction system (BioMerieux, France) for crAssphage 
quantification (hereafter referred to as the unconcentrated supernatant). Subsequently, viral genetic material in 150 ml of the su-
pernatant was concentrated using the polyethylene glycol (PEG) 8000 methods, Fig. S1, described in Farkas et al. (2021). The resulting 
PEG pellet was either resuspended in 0.5 ml phosphate buffered saline (PBS; pH 7.4) and the viral nucleic acids were extracted 
manually using the NucliSense MiniMag extraction system (BioMerieux, France) or the PEG pellet was resuspended in 0.8 ml 
NucliSense Lysis buffer and extracted using the NucliSense chemistry on the Kingfisher 96 Flex extraction system (Thermo Scientific) 
as previously described (Kevill et al., 2022). The final volume of the eluents was 0.1 ml. 

The samples taken between 13th January 2021 and 22nd March 2021 were spiked with ~ 105–106 genome copies (gc) of an 
enveloped dsRNA bacteriophage, the Pseudomonas phage Phi6 (DSM 21518; Leibniz Institute DSMZ-German Collection of Microor-
ganisms and Cell Cultures, Germany; Fedorenko et al., 2020) after the initial centrifugation step. The Phi6 phage was cultured in a 
Pseudomonas sp. host (DSM 21482) in Tryptone Soy broth (TSB) containing 5 µl 0.5 M CaCl2 at 25 ◦C (Kevill et al., 2022). With each set 
of samples, a process control (200 ml ion-exchanged water spiked with Phi6) was also processed to assess concentration efficiency and 
cross-contamination. 

The samples taken between 25th September 2020 and 22nd January 2021 were spiked with ~ 105–106 genome copies of an ssRNA 
virus, murine norovirus (MNV), after PEG precipitation for extraction efficiency control. The MNV was cultured and prepared in BV2 
cells, kindly provided by Prof Ian Goodfellow, University of Cambridge, UK, as previously described (Kevill et al., 2022). In brief, MNV 
was cultured in BV2 tissue in high-glucose Dulbecco’s minimum essential medium (DMEM; Sigma Aldrich, USA) with 10 % foetal 
bovine serum (FBS; Sigma Aldrich, USA), 1 % MEM Non-Essential Amino Acids (Sigma Aldrich, USA), 1 % L-glutamine (Sigma Aldrich, 
USA) and 1 % Penicillin/Streptomycin (Sigma Aldrich, USA) at 37 ◦C with 5 % CO2 for 48 h. After cytopathic effect was confirmed, 
viral particles were extracted by three freeze-thaw cycles followed by centrifugation (1000 g, 15 min). The supernatant was then 
diluted 10 × in PBS (pH 7.4) and stored at − 80 ◦C. With each set of extraction, negative control (PBS) and positive control (PBS spiked 
with MNV) were used to assess extraction efficiency and cross-contamination. 

2.5. RNA/DNA quantification of viral targets 

All real-time PCR assays were run on the QuantStudio Flex 6 system (Applied Biosystems, USA) and analysed using the QuantStudio 
real-time PCR software v1.3 and v1.7 (Applied Biosystems, USA). In all assays, samples were run in duplicate and molecular-grade 
water was used as a non-template control to assess cross-contamination. The primers and probes used in the assays are listed in 
Table S1 and the standard curve details are listed in Table S2. Samples were subject to (RT-)qPCR within 24 h after RNA/DNA 
extraction. Altogether 192 (RT-)qPCRs were run. 

We quantified the faecal indicator, crAssphage, in the samples using a previously described assay with Quantifast Probe reaction 
mix (Qiagen, Germany) with the reaction mix and conditions as described previously (Farkas et al., 2019; Kevill et al., 2022). We used 
a dilution series of plasmid DNA incorporating the target sequence as standards. For SARS-CoV-2 N1, MNV and Phi6 quantification, we 
used one-step qRT-PCR either with the RNA Ultrasense 1-step qRT-PCR reaction mix (Applied Biosystems, USA) (Farkas et al., 2021) or 
with the TaqMan Virus Fast 1-step qRT-PCR mix (Applied Biosystems, USA) (Kevill et al., 2021). For standards, a dilution series 
(100–105 gc/µl) of synthetic RNA were used in duplicates (Kevill et al., 2022). Where applicable, the SARS-CoV-2 N1 and Phi6 assays 
were duplexed by mixing the primers and probes of the two assays in one reaction mix. When duplexed assayed were applied, a 
singular standard dilution series with both target RNA sequences was prepared. Duplexing did not affect assay performance (Farkas 
et al., 2022; Kevill et al., 2022). 

The concentration data was expressed as genome copies (gc)/µl nucleic acid extract. Sample concentrations (gc/l wastewater) were 
calculated as in Eq. (1). 

vcw =
vce • ev

sv
• 1000 (1)  
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Where vcw is the virus concentration in a wastewater sample (gc/l); vce is the virus concentration in RNA eluent (gc/µl); ev is the RNA 
eluent volume (µl); and sv is the processed sample supernatant volume (ml). 

2.6. Statistical analysis 

Statistical analysis was carried out in R v4.1.2, utilising the “dplyr”, “purr”, “tidyr”, “slider” and “zoo” packages for data manip-
ulation; the “ggplot2”, “gridExtra”, “ggpubr” and “patchwork” packages for visualisations; and the “glmnet” and “randomForest” 
packages for lasso regression and random forest models, respectively (R Core Team, 2021; Wickham, 2016, 2020; Wickham et al., 
2021; Henry and Wickham, 2020; Grolemund and Wickham, 2011; Vaughan, 2020; Zeileis and Grothendieck, 2005; Auguie, 2017; 
Kassambara, 2020; Pedersen, 2020; Friedman et al., 2010; Liaw and Wiener, 2002). 

2.7. Viral sample processing controls 

To account for variation in efficiency of concentration and extraction, a concentration factor was calculated from the measurement 
of crAssphage with and without sample concentration (Eq. (2)). Essentially, if concentration has reduced performance, potentially due 
to chemical interference, the crAssphage measured in the concentrated sample (C) will be proportionally lower, whereas the crAss-
phage measured in the unconcentrated supernatant sample (S) will remain stable, thus reducing the concentration factor (CF). 

CF =
C
S

(2) 

To account for variation in concentration, extraction and qPCR efficiency, the process control virus (Phi6 or MNV) recovery was 
calculated through comparison of control virus quantified in wastewater samples with control virus quantified in sample controls (Eq. 
(3)). For example, if the qPCR was inhibited by an unmeasured chemical in the wastewater sample, the quantity of control virus 
measured in the wastewater sample would reduce compared to the quantity of control virus measured in the control, resulting in a 
decreased control virus recovery. 

cvrec =
cvs

cvc
(3)  

Where cvrec is the Phi6 or MNV control virus recovery calculated as the proportion of control virus quantified in a wastewater sample 
(cvs) to control virus quantified in a control (cvc). 

Due to the change in internal control from MNV to Phi6, missing data in MNV or Phi6 recovery (MNVrec; Phi6rec) were estimated 
using a linear model predicted with the control used (Eqs. (4a) and (4b)). The model was fit using overlapping data during the 
transition period. 

Phi6rec = β0 + β1 • MNVrec + ε (4a)  

MNVrec = β0 + β1 • Phi6rec + ε (4b)  

Where β0 and β1 are estimated with QR factorization, optimising the residual-sum-of-squares (RSS; Eq. (5)) of the model. While ε is the 
error remaining in the model. 

SS =
∑n

i=1

(

yi − β0 −
∑p

j=1
βj xij

)2

(5)  

Where yi is observation i of the variable being predicted and xij is observation i of the predictor variable j; β0 is the estimated model 
intercept; and βj is the estimated parameter j for variable j. 

2.8. Normalisation of SARS-CoV-2 concentrations in wastewater 

Calculated variables were assigned to categories for influencing factors they should account for and used to normalise the SARS- 
CoV-2 estimations (Fig. S2). Normalisation was carried out by multiplying viral concentrations by normalisation coefficients for each 
variable (Table S3). Normalisation coefficients are calculated simply as the reciprocal of each of the processing controls described 
above. Calculation of the crAssphage concentrate normalisation coefficient (Cnc) is demonstrated in Eq. (6a). A combined mean 
normalisation coefficient (combnc) is shown in Eq. (6b) that takes the average of the crAssphage (C), ammonium (NH4) and ortho-
phosphate (P) normalisation coefficients but represents the only combination of normalisation variables of this kind. 

Cnc =
1
C

(6a)  

combnc =

(
1
P
+

1
NH4

+
1
C

)/

3 (6b) 
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Normalisation coefficients were then used to normalise SARS-CoV-2 N1 concentration (gc/l), as demonstrated with Phi6 recovery 
in Eq. (7), normalising N1 gene fragment abundance for inhibition of concentration, extraction and qPCR. 

N1norm = N1 •
1

Phi6rec
=

N1
Phi6rec

(7) 

Further, normalisation coefficients were combined to account for many factors at once, as demonstrated with pre-normalised 
crAssphage (C) by MNV in Eq. (9), normalising for dilution, viral decay, facility use and inhibition during extraction. Additionally, 
square root transformations were performed on the normalisation variables (Eq. (9)) to mitigate the impact of large outliers created 
due to the grab sampling approach taken (Wade et al., 2022). Logarithmic transformations were considered but not used, to avoid 
interference with the assessment of the shedding profile (discussed in Section 2.10). 

N1norm =
N1

C
/ ̅̅̅̅̅̅̅̅̅̅̅

MNV
√ (8) 

In total, 79 variables were created through a variety of singular and combined normalisations (full list shown in Table S3). 

2.9. Delayed correlation between SARS-CoV-2 in wastewater and clinical case data 

Analysis was independently performed on each of the eight sites, following the same methodology. To assess the time lag between 
wastewater measurements and clinically derived case rates in the population, linear models were fitted for each of the 79 normalised 
variables, predicting case rates between zero to fourteen days ahead. The 1185 models for each site were then evaluated using the root 
mean square error (RMSE; Eq. (10)), and the best fitting time lag was selected as the delay with the lowest median RMSE. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(yi − ŷi)
2

n

√

(9)  

Where yi is the case rates; ŷi is the predicted case rates; and n is the total number of predictions. 

2.10. Normalisation variable assessment 

After selecting and applying the best fitting lag (Section 2.8), the impact of each normalisation variable and their combinations 
were assessed. The models were assigned to groups based on the variables and combinations used in normalisation, then visualised and 
compared with raw, unnormalised SARS-CoV-2 N1 gene fragment abundance (gc/l) based on their RMSE. Additionally, the RMSE for 
the models was normalised to the case rate standard deviation of each site (NRMSE; Eq. (11)) to allow for a combined comparison. 
Welch’s two sample t-tests were selected, following an assessment of distribution, to compare crAssphage pre-normalisation and 
square root transformation. 

NRMSE = RMSE

/ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(yi − μ)2
√

n
(10) 

Where: μ is the mean case rate. 

2.11. Human shedding profile of SARS-CoV-2 

To assess the potential impact of viral shedding profiles on the prediction of case rates using wastewater measurements, a decay 
rate (D) was formulated as shown in Eq. (12), assuming a logistic decay for the shedding profile shown by Hoffmann and Alsing (2023), 
and calculated with half-lives ranging from 0 to 100 h. 

D = 0.5t − t− 1/half − life (11) 

The decay rate (D) was applied to SARS-CoV-2 N1 estimations, as shown in Eq. (13), to calculate the expected concentration of virus 
from newly infected individuals (N1new) after accounting for continued shedding from previously infected and positively tested in-
dividuals. Furthermore, the decay rate was applied to the best performing normalised N1 variable, with performance defined by 
prediction accuracy (RMSE) of case rates using a linear model. 

N1new = N1t − N1t− 1 • D (12)  

2.12. Improved predictive modelling 

A lasso regression model with random forest modelled residuals was selected as a final prediction of case rates, with the lasso 
regression optimised by minimising the l 1 penalised residual sum of squares (l 1RSS; Eq. (13)), and the random forest optimised by 
minimising the residual sum of squares (RSS; Eq. (5)). The model was selected due to the ability of linear models to extrapolate beyond 
the bounds of their training data, lasso models having inherent robustness against multicollinearity, and the combination of parametric 
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and non-parametric approaches allowing linear and non-linear interactions to be predicted (Zhang et al., 2019). 

l 1RSS = RSS+ λ
∑p

j=1
|βj| (13)  

Where n is the total number of observations; p the total number of variables; and λ is an adjustable tuning parameter. 
The lasso regression tuning parameter (λ) was selected through k-fold cross-validation (CV) (k = 10; Jung, 2018), where the dataset 

is split into k subsets and k models can be fit with one subset removed for each model, such that every subset of data is omitted from 
model fitting in one model. The models can then each be tested on their omitted subset to produce a more reliable estimate of model 
performance when applied to new data. As such, an optimal λ was selected for reducing the CV error, with a larger λ resulting in greater 
shrinkage of model coefficients, and vice versa. 

Fig. 2. Comparison of normalisation variables. Depicts the RMSE of single linear models predicting case rates using a variety of normalisation 
variables, at the best delayed correlation. The dashed line is centred on the unnormalised N1 gene fragment abundance, identifying normalisations 
which improved the model fit with a lower RMSE to its left. 
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The random forest was then fit to the lasso regression residuals, calculated as the observed minus predicted cases rates. A random 
forest is a collection of t regression trees, fitted using v randomly selected variables at each node. Where t was selected through k-fold 
CV of random forest models with 115–450 trees at 15 tree intervals, and v was selected as the square root of the number of initial 
variables. The initial variables for the random forest with normalised variables were selected through backward propagation, 
removing 20 % at each iteration with the lowest importance, then the best subset of variables was selected through k-fold CV. 
Importance was calculated as the total RSS (Eq. (5)) reduced through branches selected with each variable. Two lasso regressions with 
random forest modelled residuals were fitted: the first without normalised variables and the second with all normalised variables prior 
to initial variable selection, as detailed above. 

The model fit was assessed using leave-one-out CV, and calculation of the CV RMSE. Leave-one-out CV functions exactly as k-fold, 
except k is equal to the number of observations, thus retaining more data in the fitting process with the constraint of being more 
computationally demanding. Models for each site were fit with the wastewater parameters predicting case rates zero to fourteen days 
into the future. Then, after selecting the optimum delay, the final models were fit, and the cross-validated predictions visualised 
against the true clinical case rates. 

3. Results 

3.1. Wastewater measures correlate with future clinical cases 

Three temporal variables (wastewater transport time, pre-symptomatic shedding and community reactions to testing) have con-
flicting impacts on the delay between wastewater sample collection and the onset of symptoms and positive clinical tests. To account 
for this, single linear models were fit to clinical positive tests, zero to fourteen days ahead, with each of the 79 variables created from 
normalisation of the SARS-CoV-2 N1 gene fragment (see Section 2.7 for details; variable list in Supplementary Table S3; Fig. S3-5 for 
heatmaps; and Table S4 for summary data). The 1185 models for each site were then grouped by delay and the lowest median root- 
mean-square-error (RMSE) was used to select the optimum. This optimum lag time had a mode of three days, although this varied 
considerably between sites (from 1 to 13 days; Fig. 1). This was determined based on the lowest median RMSE overall. Selection of the 
best lag time would not have varied if based on unnormalised SARS-CoV-2 N1 measures, or the single best variable, rather than the 
median. However, there were no clear downward and upward trends around an optimum, rather, obvious individual optima sur-
rounded by noise, or sometimes no clear optimum. 

3.2. Multi-normalisation improves correlation with case rates 

Variation in wastewater dilution, viral decay, population numbers and sample process efficiency could have significant impacts on 
the validity and accuracy of predicted disease prevalence using WBE. To assess this, we grouped the models by the variable(s) used to 
normalise N1 gene fragment concentration, identifying the best combination by the minimum RMSE or RMSE normalised by the sites’ 

Fig. 3. Combined site and delay comparison of normalisation variables. a) Depicts the normalised-root-mean-square-error (NRMSE; RMSE nor-
malised by the site standard deviation) of each combination of normalisation variables for all sites and all delays. The centre lines indicate the mean 
NRMSE and the tails indicate the 95 % confidence intervals with a t distribution. The dashed line is centred on the mean unnormalised SARS-CoV-2 
N1 gene fragment abundance, identifying variables that have a greater likelihood of improving the model fit with a lower NRMSE to its left, as 
indicated by the Fit arrow to the left of the y-axis. b) NRMSE of crAssphage (crAss) normalisation variables with and without pre-normalisation 
where the bar indicates the mean, and tails indicate the 95 % confidence intervals with a t distribution. c) NRMSE of all normalisation variables 
with and without square root transformation. 
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standard deviation (NRMSE) when multiple sites were compared together. First, we assessed normalisation variables using data from 
the best selected delay by individual sites (Fig. 2, see Table S3 for full list of normalisation variables). Then, we assessed normalisation 
variables using data with all sites and delays combined (Fig. 3). All normalisation variables were useful for some sites, however, after 
selecting for the best delay, their effectiveness varied greatly: some sites (e.g. Chester and Llangefni) saw improvements with very few 
variables, while others (e.g. Flint and Kinmel Bay) saw improvements with almost all. Notably, crAssphage, and particularly crAss-
phage combined with Phi6/MNV recovery and concentration factor, had the greatest likelihood of improving prediction accuracy 
through normalisation (Fig. 3a). In contrast, orthophosphate concentration combined with MNV and the combination of crAssphage, 
orthophosphate and ammonium (combi) still gave some improvements to the model. Thus, crAssphage or combined crAssphage 
(combi) normalisations improved prediction accuracy over unnormalised N1 gene fragment abundance at all eight sites (Fig. 2). 
Additionally, on average, pre-normalisation of crAssphage improved prediction accuracy, but the means could not be assumed 
different (Welch’s two sample t-test: t = 1.84, df = 3062.4, p-value = 0.065; Fig. 3b). In comparison, square root transformation 
reduced prediction accuracy but, similarly, the means could not be assumed to be different (Welch’s two sample t-tests: t = − 0.53, df 
= 9464, p-value = 0.593; Fig. 3c). Despite this, the single best predictor had square root transformations in five of the eight sites 
(Fig. 2). 

3.3. Shedding from infected individuals follows logistic decay, but does not influence wastewater monitoring performance 

Prolonged shedding of virus RNA from previously infected individuals combined with current positively tested individuals has been 
suggested to influence the use of WBE for SARS-CoV-2 by overestimation (Hoffmann and Alsing, 2023; Puhach et al., 2023). To 
evaluate the effect of post-symptomatic faecal shedding, we applied a logistic decay to normalised and unnormalised N1 gene fragment 
values, with half-lives between 0 and 100 hours, predicting the expected quantity at the following timestep if there were no new 
infections. This continued shedding is subtracted from the value measured in the wastewater (see Section 2.10 for details). A logistic 

Fig. 4. RMSE of linear models predicting case rates with normalised and unnormalised wastewater variables with an assumed logistic decay 
shedding profile with half-lives between 0 and 100 h. The normalised variables had a mean optimum half-life of 20.0 h, whilst the unnormalised 
variable had a mean optimum of 28.2 h. Comparing the RMSE without decay and with the optimum decay had a mean improvement of 0.004 with 
normalised variables and 0.005 with unnormalised SARS-CoV-2 N1 gene fragment abundance values. 
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decay in faecal shedding profile was supported by an improved RMSE in seven of the eight sites, with an optimum half-life of 20.0 h for 
normalised variables, and 28.2 h for unnormalised N1 gene fragment abundance, with the best delay selected (Fig. 4). The normalised 
variables improved by a mean RMSE of 0.004 cases after decay was incorporated, and the unnormalised N1 gene fragment abundance 
improved by 0.005 cases (Fig. 4). Shedding profile by individual sites varied considerably, with three showing minimal improvement 
(< 0.001 RMSE) with a decay function applied (e.g. Conwy, Llangefni and Wrexham), and one saw reduced performance with an 
increased RMSE (Chester) (Fig. 4). However, of the sites which were improved considerably using the decay function, the optimum 
half-life generally fell between 15 and 60 h, for normalised variables (Fig. 4). 

3.4. Machine learning and normalisation allow accurate prediction of future clinical cases 

To assess the prediction improvements investigated through normalisation and advanced machine learning approaches, we fitted 
four sets of models to each site, predicting clinically derived case rates at the best selected delay based on the leave-one-out cross- 
validated RMSE. The first and second set of models were fit using single linear regression with unnormalised SARS-CoV-2 N1 gene 
fragment abundance and the best normalised N1 gene variable, respectively (see Table S5 for best variable). For the third and fourth, 
we fitted lasso regression models with random forest modelled residuals, re-optimising the best time delay, and utilising only 
unnormalised variables for the third and a subset of all normalised and unnormalised variables for the fourth. Normalisation improved 
the cross-validated prediction accuracy in all sites, and the use of lasso regression with random forest modelled residuals with nor-
malised variables improved the prediction accuracy over all other models, reducing the mean RMSE from unnormalised N1 by 46 % 
(Table 1). Furthermore, pairwise comparisons using Wilcoxon signed rank exact tests suggest models one, two and four were all 
significantly different from one another, as well as models three and four (p-value < 0.05 with the Holm-Bonferroni (H-B) adjustment 
method; Holm, 1979). However, model three was not significantly different from models one and two (p-value > 0.05 with the H-B 
adjustment method). 

The fit of the fourth and final model accounted for most of the main trends, particularly in Flint, Conwy and Wrexham - the three 
sites with the highest COVID-19 case rates (Fig. 5; mean daily case rate > 8). However, some variation was still missed, largely in sites 
with lower case rates, including Chester, Bangor and Llangefni, suggesting the need for additional variables. These results suggest 
positive clinical case rates can be predicted up to fourteen days ahead with reasonable accuracy (mean RMSE: 4.16 cases; Table 1). 
Although, with the inaccuracy of some of the smaller sites, a prediction of up to five days is likely more reasonable (Fig. 5). Estimates 
from the lasso regression indicated an optimal model for Holyhead, Kinmel Bay, Llangefni and Bangor with only an intercept, sug-
gesting no wastewater variable improved the linear fit (Fig. 6a). Wrexham, Flint and Conwy, on the other hand, were optimised with 
multiple variables including N1 normalised with pre-normalised crAssphage by concentration factor, and non-N1 variables including 
ammonium level and concentration factor. Additionally, Chester utilised a single variable (N1 normalised by orthophosphate) albeit 
with a very small coefficient, reduced by the l 1 penalised regression (Eq. (13)). The random forest fit to the lasso regression residuals 
found greater non-parametric importance in wastewater variables (Fig. 6b). SARS-CoV-2 N1 gene fragment abundance normalised by 
crAssphage was used for all sites and the most important variable for six sites, which was combined with or pre-normalised by Phi6 or 
concentration factor for four sites. Phi6 or MNV, was utilised in all sites, with each being used in six sites. Orthophosphate and 
concentration factor were also important, each being used for five sites, whilst NH4

+-N was less important, being utilised for three sites. 
These results further support the use of multiple normalisation variables to improve predictions of COVID-19 prevalence in 
communities. 

4. Discussion 

The protocol described here combined multi-normalisation and machine learning to generate accurate wastewater-based 

Table 1 
Model comparison based on leave-one-out cross-validated RMSE. Comparing single linear regression to a lasso regression with random forest re-
siduals; model 1 consisted of unnormalised SARS-CoV-2 N1 gene fragment values, model 2 used the best normalised N1 gene variable, model 3 used 
only unnormalised variables, and model 4 was a subset of all normalised and unnormalised variables.  

WWTP site Leave-one-out cross-validated RMSE  

1 2 3 4  
Linear regression N1 
gc/l 

Linear regression best normalised 
N1 

Lasso with random forest (not 
normalised) 

Lasso with random forest 
(normalised) 

Chester 3.09 2.81 2.94 2.65 
Flint 4.03 3.48 3.7 2.99 
Conwy 10.4 4.79 4.71 3.22 
Holyhead 1.51 1.50 1.84 1.46 
Kinmel Bay 8.14 4.35 5.13 4.38 
Llangefni 0.97 0.97 1.15 0.87 
Bangor 3.07 2.96 2.82 2.57 
Wrexham 30.4 24.8 18.3 15.1 
Mean ±

SEM 
7.70 ± 3.43 5.71 ± 2.76 5.07 ± 1.94 4.16 ± 1.61  
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predictions of clinical viral infections within 30 h of sampling, comparable to clinical testing turnaround times 24–48 h (Larremore 
et al., 2021). Importantly, however, the wastewater COVID-19 signal occurred days in advance of clinical presentation, which enables 
mitigation options to be imposed earlier and preparations to be made in advance of patient arrival in healthcare facilities. The potential 
of WBE to identify disease outbreaks earlier and more cost-effectively than clinical testing has previously been demonstrated (Gibas 
et al., 2021; Buscarini et al., 2020). However, wastewater detection is impacted by many more confounding factors than clinical 
sampling, and accurate viral quantification and modelling is challenging (Jiang et al., 2023). Our results show that wastewater 
detection of SARS-CoV-2, normalised with crAssphage and a process control virus reduced the error of positive tests by 46 % and is 
reliable for cities and large towns to predict future case rates. 

While our approach involves testing multiple normalizations, the final models are optimized for each site individually. This site- 
specific optimization is needed to account for the unique characteristics and variability of each sewershed (e.g. Wade et al., 2022; Jiang 
et al., 2023). Our analysis provides clear evidence of a lag time between clinical data and wastewater data of ca. 3 days, consistent with 
delays in clinical case data reported in other work (Wilder et al., 2021; D’Aoust et al., 2021; Hillary et al., 2021). This acknowledges 
that the delay in clinical detection was site-specific. We ascribe site specificity to differences in transport times, community behaviour, 
and interactions with the vaccine in different locations, meaning that delay factor should be optimised for each site. As the virus 
shedding profile may vary during the course of infection, we investigated the effect of introducing virus half-lives into our normal-
isation (Natarajan et al., 2022). Previous work monitoring SARS-CoV-2 RNA in hospitalised patients’ stool samples suggested a logistic 
decay after peak shedding (Hoffmann and Alsing, 2023). A faecal shedding half-life of 34 h was found in these hospitalised patients, 
which more closely matches unnormalised SARS-CoV-2 N1 gene fragment abundance, however it is unlikely that the response of 
hospitalised patients would match that of the general population, where a more rapid decay in shedding profile could be expected 
(Hoffmann and Alsing, 2023). Our results suggest that continued shedding over days and weeks will not have a considerable impact on 
SARS-CoV-2 in wastewater and, therefore, the decay was not applied in further assessment and modelling. 

Fig. 5. Cross-validated results from a lasso regression with random forest modelled residuals predicting case rates with a variety of normalised and 
unnormalised wastewater variables (Fig. 6). Red points indicate the cross-validated model predictions and blue dots indicate true individual testing 
cases rates from positive clinical PCR tests. A LOESS trend line was fitted to both the model prediction and true case rates to identify general trends 
and assess model fit. Models were fit for Chester (n = 47), Flint (n = 37), Conwy (n = 31), Holyhead (n = 26), Kinmel Bay (n = 29), Llangefni (n =
30), Bangor (n = 37), and Wrexham (n = 26) individually. 
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In this study, we utilised normalization factors, such as dilution, viral decay, population dynamics, and sample processing effi-
ciency, which have been shown to significantly impact the accuracy of WBE (Feng et al., 2021; Hsu et al., 2022; Langeveld et al., 2023). 
These variables were consistently important across our sites, suggesting their value in accounting for population dynamics and sample 

Fig. 6. Variable selection and importance for the lasso regression, with random forest modelled residuals fit to each site at the best selected delay for 
the final model. a) Lasso regression non-zero variable coefficients. b) Random forest variable importance indicated by the percentage decrease in 
mean-squared-error (MSE) attributed to each variable. Crass: crassphage, n1: SARS-CoV-2, NH4: ammonium, P: orthophosphate. 
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processing efficiency. Interestingly, the faecal indicator virus crAssphage proved to be the best normalisation variable. This was despite 
its previously stated difficulties in measuring viruses accurately in wastewater (Haramoto et al., 2018). Our results are supported by 
previous studies assessing crAssphage normalisation, which found it resulted in better correlations to clinical test data (Wilder et al., 
2021; Greenwald et al., 2021). However, due to variations in crAssphage abundance in the population, crAssphage should only be used 
at sites serving more than 5600 people (Langeveld et al., 2023). Potentially, variability introduced by PCR inhibition during the 
measurement of crAssphage DNA is proportional to that for SARS-CoV-2 RNA. Thus, after normalisation, crAssphage may simulta-
neously adjust for population faecal input relative to dilution, as with ammonium and orthophosphate, and PCR inhibition. Further 
improvements by normalising with the process control virus, Phi6, could then be explained by the viral genome structure due to 
differential interactions between chemical inhibitors and the non-enveloped DNA virus crAssphage, versus the enveloped RNA viruses 
Phi6 and SARS-CoV-2 (Gendron et al., 2010; Stachler et al., 2017). The combined use of DNA/RNA faecal indicators have shown to 
improve normalisation previously (Mitranescu et al., 2022) as well as in this study. Interestingly, previous studies have suggested that 
normalisation with process control virus (bovine coronavirus) and with faecal indicators, such as pepper mild mottle virus (PMMoV) 
and HF183 gene, reduced SARS-CoV-2 wastewater signal correlation with case data (Feng et al., 2021; Hsu et al., 2022; Maal-Bared 
et al., 2023). This implies that the efficiency of faecal indicators and virus recovery methods may vary, highlighting the importance of 
careful selection. 

Ammonium and orthophosphate normalisation produced site dependent mixed results, and were not selected in the final models for 
every site, potentially due to competition during model fitting with crAssphage. These wastewater indicators have previously been 
used successfully for normalisation (Been et al., 2014; Van Nuijs et al., 2011), reflecting the complexity of wastewater and inherent 
variability between sites. Other chemicals, such as pharmaceuticals or lifestyle-associated markers, and water flow may also be useful 
for normalisation (Hsu et al., 2022; Kasprzyk-Hordern et al., 2023; Langeveld et al., 2023; Maal-Bared et al., 2023; Mitranescu et al., 
2022). As such, all normalisation variables should be assessed in further studies as the use of multiple normalisation variables in the 
final models improved accuracy significantly. 

Despite the improvements in accuracy achieved in this study, it is potentially limited by the sampling methodology and frequency. 
Data used in this study was generated from wastewater collected by grab sampling, which captures a sample at a single time point and 
may not be representative of the general shedding patterns over the day (Gerrity et al., 2021; Wu et al., 2020; Wade et al., 2022). The 
use of 24-hour composite sampling can provide a more representative data point and, thus, may reduce model by lowering mea-
surement variance (Gerrity et al., 2021; Wu et al., 2020). However, this is not conclusive and a previous study indicates that is may 
provide negligible improvement (Farkas et al., 2023). Regardless, the effectiveness of normalisation using composite SARS-CoV-2 
measurements remains unresolved. Secondly, due to limited access to WWTPs during the pandemic, sampling frequency was incon-
sistent during the study period, particularly at Kinmel Bay and Wrexham. This inconsistency may impact selection of the optimal lag 
time between the wastewater and clinical signal. In addition to these limitations, the methodology is still impacted by inherent 
variability of equipment and detection limits, which still require considerable development, as addressed in other work (Zhu et al., 
2021b; El Soufi et al., 2024). 

To prevent overestimation of model accuracy due to overfitting, we employed leave-one-out cross-validation to assess model 
performance. Cross-validation assesses how well models generalise to unseen data and provides a realistic estimate of a model’s 
predictive performance (Zhang et al., 2019). Furthermore, we utilized lasso regression, which performed feature selection and reg-
ularization, to mitigate overfitting and enhance model interpretability (Tibshirani, 1996). 

More generally, the methodology presented has broad applications beyond its use for SARS-CoV-2, primarily with other emerging 
viral pathogens. Furthermore, normalisation with process controls and factor calculations could be used to assess any quantified 
genomic data and other analytes in WWTPs, particularly those requiring concentration or purification steps. Broader still, multi- 
normalisation prior to machine learning, when using algorithms robust to multi-collinearity (e.g. random forest and lasso regres-
sion), could result in considerable improvements in accuracy for many alternate applications. These include the prediction of water 
sources from downstream samples based on physiochemical and microbial data, and identifying potential functions for new drugs 
based on physicochemical and structural attributes (Wang et al., 2021; Vamathevan et al., 2019). Both Wang et al. (2021) and 
Vamathevan et al. (2019) utilised random forest algorithms, but neither combined this with multi-normalisation. Other recent studies 
on COVID-19 WBE also utilised random forest models, however, without normalising for sample process efficiency (Dejus et al., 2023; 
Li et al., 2023). Our work improved these applications with the use of a single focal independent variable showing that exhaustive 
normalisation with population and sample process efficiency factors could be carried out, where every variable is manipulated by one 
another in every unique combination, prior to variable subset selection. The broader applications of this work pave the way for im-
provements in many other fields. 

5. Conclusions  

- Results suggest a common two to five-day delay between the wastewater signal and an increase in clinical positive tests.  
- Multi-comparison of normalisation factors for the SARS-CoV-2 N1 gene target found that normalisation by crAssphage, process 

control virus recovery and concentration factor were the variables with the highest likelihood of improving prediction accuracy.  
- Our evidence suggests that continued shedding of SARS-CoV-2 from previously infected individuals does not significantly influence 

WBE for clinical case rate estimation.  
- The use of multi-normalisation and a lasso regression model with random forest modelled residuals reduced the prediction error of 

positive tests by 46 %, allowing major trends to be predicted, up to five days in advance. 
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- The lasso regression and random forest identified crAssphage normalisations as the most frequently and important, followed by 
process control virus recovery, orthophosphate concentration and concentration factor. NH4

+-N normalisations were less important, 
but may still improve normalisation at some sites.  

- The approach described here integrates multi-factor normalization, process controls, and advanced machine learning techniques to 
improve the accuracy and reliability of WBE. 

CRediT authorship contribution statement 

Kata Farkas: Writing – review & editing, Writing – original draft, Supervision, Methodology, Investigation, Conceptualization. 
Cameron Pellett: Writing – review & editing, Writing – original draft, Methodology, Formal analysis, Conceptualization. Eleanor 
Jameson: Writing – review & editing, Writing – original draft, Methodology. Andrew J. Weightman: Writing – review & editing, 
Writing – original draft, Funding acquisition. Matthew J Wade: Writing – review & editing, Writing – original draft, Methodology, 
Conceptualization. Rachel C Williams: Writing – review & editing, Writing – original draft, Supervision, Methodology, Investigation. 
Davey L Jones: Writing – review & editing, Writing – original draft, Supervision, Methodology, Funding acquisition, Conceptuali-
zation. Gareth Cross: Writing – review & editing, Methodology, Funding acquisition. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgements 

This work was funded by UK Research and Innovation (UKRI) under the COVID-19 Rapid Response Programme (Projects NE/ 
V004883/1 and NE/V010441/1), the Centre for Environmental Biotechnology Project funded though the European Regional 
Development Fund (ERDF) by Welsh Government and the Welsh Government COVID-19 surveillance programme. We particularly 
thank Steve Cobley at Welsh Government and Tony Harrington and staff at Dŵr Cymru Welsh Water. We thank Prof Ian Goodfellow 
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