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Abstract. Infrastructure owners and operators around the world are facing escalated maintenance 

requirements of large number of bridge assets. The bridge maintenance decision-making requires 

reviewing numerous bridge inspection data while these data sets are fragmented in different systems 

or formats, and their value in bridge management are not fully explored. This study presents a 

solution for bridge defect data storage in graph database supported by graph-based bridge element 

model and maintenance method recommendation informed by historical data using binary 

classification-based link prediction model. The supervised machine learning pipeline in Neo4j is 

utilised and features are engineered with GraphSAGE to suit the bridge engineering practices. The 

solution is validated via real-world bridge maintenance dataset, demonstrating that the proposed 

method is capable of recommending potential repair methods based on historical maintenance 

decision-making records. 

 

 

1 Introduction 

Decision-making in bridge maintenance requires the thorough review of extensive bridge in-

spection data, combining with specialised domain knowledge of bridge practitioners. The pro-

cess can be labour extensive and cognitively demanding, while less rewarding due to its repet-

itive nature. So there exists both demand and potential to automate the process with software 

tools and machine learning.  

To represent the domain knowledge of bridge practitioners, some efforts pivoted in ontology 

for knowledge representation (Zangeneh and McCabe, 2020) and extraction of links among 

knowledge entities (Xu et al., 2023). While the ontology-based knowledge graph (KG) frame-

works are not designed for effective integration of large number of inspection data and subse-

quential data-driven machine learning tasks. Meanwhile, Neo4j as a graph database manage-

ment software tool, has been utilised to store bridge inspection data and fabricate bridge man-

agement systems on the basis of bridge maintenance KG. Two recent studies using Neo4j are 

maintenance cost estimation (Lee and Chi, 2023) and data mining of bridge networks and en-

vironmental information (Lin, 2020), but both lack in discussing capturing features from the 

dataset and learning a model from extracted features.  

Notably, a study with similar vision presented by Tiwary, Patro and Sahoo (2022) leveraged 

DeepWalk (Perozzi, Al-Rfou and Skiena, 2014) embedding technique for variables and relative 

features on the high-level summarisation of bridge structural performance.  This approach can 

be effective for relatively static database where the nodes and their attributes have been fixed. 
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For a dynamic and evolving graph database, the transudative learning algorithm exposes short-

coming as it needs re-run when new nodes are added to obtain embeddings of all nodes. There-

fore, the potentials and practicability of building a bridge maintenance database with connected 

machine learning pipelines has not been fully investigated.  

While the scenario of combing graph-based modeling of bridge and bridge inspection data has 

not been much explored. Hence, this study proposes a schema for integrating bridge graph-

based modeling, bridge defect data storage and link prediction from defects instances to repair 

methods. Neo4j is selected as the graph database implementation tool as it supports various 

graph analytics in the built-in machine learning pipelines.  

 

2 Formation of Graph-based Bridge Element Model 

The conceptual development of bridge maintenance KG is a combination of industrial practices 

and functions of knowledge graph. The Network Rail standards NR/L2/CIV/035 (Network Rail, 

2022a) and NR/L3/CIV/006 (Network Rail, 2022b) together describe a methodology for bridge 

structural assessment - each bridge is composed of hierarchical levels of elements (e.g. major 

elements and minor elements) which are assessed individually and then the repair method is 

determined respectively according to the inspection results. This engineering practice moti-

vates the building of an element-wise bridge KG with incorporated defect and repair infor-

mation.   

Various types of KGs are available for this task. A hierarchical KG present components in hi-

erarchical relationships while a labelled property KG can be used to query basic information, 

such as latest maintenance log and corresponding status,  stored in each node (Xia et al., 2022). 

Hence, a combined hierarchical and property KG is considered as an ideal solution to represent 

the bridge structure model and stored bridge inspection data.   

 

 

Figure 1: Implementation of Graph-based Bridge Element Model in Neo4j 
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Several options exist for incorporating defects information on the graph-based bridge element 

model: 

• As descriptions in the attribute of the bridge element node where the defect is identified. 
• Each defect type as a node while every defect instance as a link/edge between the ele-

ment node and the defect node. 

• Each defect instance as a node connecting to the bridge element node where the defect 

is identified.  

The first option introduces negligible featuers into the graph as neither nodes/edges nor the 

layout of the graph is affected. The second and the third options, based on the two graph mod-

eling approaches - TimeTree Model (Graphaware, 2014) and Entity-State Model (Neo4j, 2017), 

consider defects as states of the bridge element. The two options can largely manipulate graph 

features so that graph learning can be enabled. Unlike a trouble-shooting proposed KG pro-

posed by Xia et al. (2023) where a specific type of defect is indicated as one node, in this study 

the KG is implemented as graph database to store defect information, so the third option is 

considered optimal to encompass the benefits of the other two alternatives. As the final step of 

the graph creation, repair techniques are added as a separate layer of nodes in the graph and 

each of them is linked to the corresponding node of defect instance.  

To digest the conceptual design explained above, the desired graph shall be partitioned into 

three layers: 1) bridge structure layer which represents graph-based bridge model; 2) defect 

information layer describing the type, extent and severity of the defect and 3) maintenance 

layer which reflects repair methods. With the bridge maintenance dataset (samples shown in 

Table 1), where there are 178 ‘Defect’ nodes and 21 ‘Proposal’ nodes, a Graph-based and 

Maintenance-oriented Bridge Element Model is created in Neo4j as per the illustration in Fig-

ure 2. 

Table 1: Samples of Bridge Maintenance Dataset 

Major 

Element 

Sub 

Element 

Component Location Defect Proposal 

Span 1 Main Girder 2 MGE2 (Ex-

ternal Face) 

Stiffener 

Crank 

(MGE2 - EF) 

Section Loss - 

Over 50% 

Cut out corroded section and 

weld a new plate in its place like 

for like.  

Span 1 Cross Girder 1 Cross Girder 

1 

Bottom 

Flange 

(XG1) 

Section Loss 

& Rivet Head 

Loss and Thin-

ning 

Carry out a flange repair Full 

width of the bottom flange to 

NR/CIV/SD/828 AFC Repair 

type B. 

Span 1 Deck 2 DCK2 (Be-

tween Cross 

Girder 3 & 4) 

Deck Plate 

(DK2 - 

XG3/XG4) 

Holes - New Weld a new plate to the under-

side of the steel deck using a 

6mm CFW; new plate to extend 

a minimum of 100mm past the 

defect area. 
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Figure 2: Implementation of Graph-based and Maintenance-oriented Bridge Element Model in Neo4j 

 

3  Graph Learning for Link Prediction  

The business logics of the original dataset is to document all the defects identified in a bridge 

inspection and recommend repair method for each of the defect, preparing for review of other 

stakeholders. With the Graph-based and Maintenance-oriented Bridge Model, the second stage 

of the study is to automate the process of generating recommendation with graph machine 

learning.  

From the original dataset and the established graph-based bridge model, the following patterns 

can be observed: 1) The appearance of defects follow some simple patterns (e.g. same type of 

defect tend to appear on certain types of bridge element); 2) There are only a limited number 
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of potential defect repair techniques and 3) the selection of repair techniques depends on the 

bridge element where the defect is identified and the type (including severity and extent) of the 

defect. Based on the reasons described above, the recommendation procedure can be formu-

lated as a link prediction based supervised machine learning task - training a model to learn the 

features of the targeted node-pairs in the graph, where relationships should exist. Thus, the 

trained model could match the newly added ‘Defect’ node to the most likely ‘Proposal’ node. 

 

Figure 3: Illustration of Graph Embeddings and Link Prediction Pipeline 

 

As identified from the original dataset, maintenance method decision-making is determined by 

two types of features: 1) defect location – which bridge component that the defect is developed 

upon, and 2) defect evaluation in terms of extent and severity. Therefore, the proposed approach 

of feature engineering is to capture the above two characteristics by obtaining the topological 

representation of the defective component (i.e. ‘Location’ node for the defect instance) and the 

defect type.  The procedures of obtaining the graph features and conducting binary classifica-

tion are illustrated in Figure 4 and explained in Sections 3.1 and Section 3.2. 

 

3.1 Graph Embeddings of Nodes  

As a pre-processing step, graph data shall be engineered to produce features that are amenable 

to machine learning algorithms. In this case, the location information and the defect evaluation 

are considered as categorical variables, so encoding technique for categorical data shall be ap-

plied to convert them into numerical form for downstream machine learning tasks.  

One-hot encoding is selected to convert string properties to numeric arrays. Though this con-

version increases dimensionality of data, it is effective in preventing unintended biases based 

on the order of categories (Oyebamiji Micheal, 2023). This advantage is a more important fac-

tor compared with the possible growth in computational complexity introduced by encoding. 

After the encoding of types of bridge elements and defects, there are a few algorithms available 

to obtain the embeddings of the node, such as Fast Random Projection (Chen et al., 2019), 

node2vec (Grover and Leskovec, 2016), HG-GNN (Chen et al., 2023), etc. However, most of 
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the node embedding generation frameworks are transudative and do not efficiently generalise 

to unseen nodes or across different graphs. To meet the requirement of this application where 

new nodes and relationships are constantly added in the graph,  GraphSAGE algorithm (Ham-

ilton, Ying and Leskovec, 2017) is utilised. As an inductive learning algorithm, it can generate 

embeddings for unseen nodes without re-producing embeddings of the existing nodes. In addi-

tion, it is able to convert not only the topology of the neighbourhood of the node, but also the 

properties of the node and its neighbouring nodes (i.e. defect information), into embedding 

vectors.  

The basic principle of GaphSAGE is to initiate the nodes aggregate information of their neigh-

bouring nodes layer by layer and reach further parts of the graph with iteration of this process 

and finally generate node representation for the whole graph.  The number of layers for infor-

mation aggregation is referred to as Search Depth k, the aggregating architecture can be imple-

mented by various architectures including mean, pool, etc.  

     

3.2 Model Training for Link Prediction  

The bridge maintenance knowledge graph is heterogeneous therefore the link to be predicted 

is between nodes of different types (e.g. bridge element, defect instance, maintenance proposal, 

etc.), this is where traditional graph algorithms (e.g. graph traversal, topological sort, etc.) can 

expose limited capability. Whereas supervised machine learning algorithm can be directed to 

learn only a specific relationship type between specific source and target nodes. 

In the link prediction model training pipeline, the existing links in the graph are labelled as 

positive samples and some non-existent links are created as negative samples. Then the positive 

and the negative samples are separated into training and test sets. After that, link features are 

derived by combining node properties of the node-pair. Three feature combining techniques 

are trialed to evaluate the predication performance: Cosine, L2 and Hadamard product.  

In this study, link prediction is transformed to a binary classification problem:  

𝑌 =  𝐶𝐸(𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑥 +  𝑏))                                                    (1) 

where Y is possibility of the existence of the link, X is the combined feature of the node-pair, 

W is the coefficients for the features of the link and b is bias. The classification model is trained 

by minimizing a loss function which depends on a weight matrix and on the training data. The 

loss function of the Adam optimiser, a gradient descent type algorithm, can be defined as: 

𝐿𝑜𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  𝐶𝐸(𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑥 +  𝑏)) (2) 

where CE is the cross-entropy loss and x is a feature vector training sample. As a gradient 

descent-based training, the best weights for the model is sought after, through processing train-

ing dataset to compute the loss and the gradient of the weights in each epoch. These gradients 

are then used to update the weights.  

This model shall be trained for “Defect - Proposal” node pairs. The trained model can then be 

applied to the graph to create new relationships containing the predicted links. These potential 

links shall have an attribute to store the predicted probability of the link, which can be seen as 

a relative measure of the model’s prediction performance. A threshold can be defined to include 

only predictions with probability greater than certain value (i.e. 50%) and those with high prob-

ability are recommended as proposed maintenance methods.  
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4 Experiment and Results 

The experiment was conducted with different settings of the pipeline, including hyperparame-

ters of the GraphSAGE model (shown in the Table 2) and feature combining algorithms (Co-

sine, L2 and Hadamard) to provide quantitative insight of the proposed approach as trials and 

errors. The objective is to identify how the proposed schema performs and which set of mod-

eling settings is optimal. 

GraphSAGE Logistic Regression  

Hyperparameters Values Hyperparameters Values 

Embedding Dimension  128 Penalty [0.001, 10000] 

Learning Rate 0.1 Patience 2 

Batch Size 100 Negative Class Weight 1 

Maximum Epochs 1000 Maximum Epochs 5000 

 Table 2: Configuration of GraphSAGE Model and Logistic Regression Model 

The performance of link prediction pipeline, consisting of embeddings generated by 

GraphSAGE, feature combing algorithms and logistic regression based binary classification, 

was evaluated with the Receiver Operating Characteristic (ROC) and the Area Under the ROC 

Curve (AUC). Starting with the four possible outcomes of binary classification: true positive 

(TP), false positive (FP), true negative (TN) and false negative (FN), ROC is plotted on x-y 

coordinates where x-axis is false positive rate (FPR) and y-axis is the true positive rate (TPR). 

FPR and TPR are defined as below: 

𝐹𝑃𝑅 =  
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
                                                                 (3) 

𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                 (4) 

Then AUC can be calculated by: 

𝐴𝑈𝐶 =  
∑(𝑝𝑖, 𝑛𝑗)

𝑃 × 𝑁
                                                                  (5) 

Where 𝑃 is the number of positive examples, 𝑁 is the number of negative examples, 𝑝𝑖 is the 

prediction score of a positive example and 𝑛𝑗  is the prediction score of a negative example. It 

can be interpreted as the probability that a positive example score is greater than a negative 

example score when they are both sampled randomly. A value of AUC closer to 1 indicates 

better performance while a value around 0.5 suggests a random classifier.  

The link prediction performance of different pipeline settings are summarised in Figure 4 and 

Figure 5. Other parameters were taken as default values as shown in Table 2.  
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Figure 4: Link Prediction Performance of Different Pipeline Settings Part 1 

 

Figure 5: Link Prediction Performance of Different Pipeline Settings Part 2 

It is interpreted that Search Depth 4 is optimal and L2 or Cosine feature combing algorithms 

are better than Hardmard. In addition, on the current dataset using GraphSAGE embeddings, 

Mean Aggregator outperforms in comparison with Pool Aggregator. Variation of Activation 

Function was also tested where Sigmoid outperforms ReLU. It is considered that the search 

depth K is largely graph dependant (as illustrated in Figure 3) while the feature combiner and 

the aggregator architecture is more likely to generalise.  

 

5 Conclusion 

This paper presented a workflow for storage of bridge maintenance data on a graph database 

enabled bridge model and predict the link of the ‘Defect - Proposal’ node-pair via graph learn-

ing of embeddings generated by GraphSAGE. 

The proposed approach was tested with the following variations to find the optimal perfor-

mance of the machine learning model: 1) Tuning of GraphSAGE model and 2) Node pair fea-

ture combining algorithms. This holistic schema allows for efficient management of the iden-

tified defects and development of remediation plans, as well as the automation of bridge as-

sessment procedures defined in the bridge maintenance standards.  



9 

 

The major limitation of the presented solution is that predictions are derived from statistical 

principles and probabilistic reasoning without incorporating validation of the actual success of 

the predicted repair method. To mitigate this issue, feedback from bridge practitioners can be 

collected after each prediction to update the graph model accordingly.   

For the future work, the encoding technique applied for categorical data (i.e. bridge component 

and defect type) can be upgraded to more advanced encoding techniques to capture semantics 

of different bridge element and defect information. On the other hand, the same pipeline and 

learnings can be experimented with dataset from another bridge, then the reasons for perfor-

mance variation of different model hyperparameters can be further investigated. Providing the 

bridge with the same structural arrangement (e.g. steel girder bridge), the pattern of appearance 

of defects captured in embeddings could be migrated so that the knowledge can be accumulated 

and transferred.  
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