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Abstract. Bridge maintenance is a complex system involving multiple stakeholders and multi-scale 

constraints. The traditionally used multi-criteria decision-making (MCDM) and heuristic algorithms 

have shortcomings such as subjectivity, weak scalability and long calculation time. Reinforcement 

learning is a data-driven method capable of learning decision-making strategies from large amounts 

of data. The purpose of this paper is to explore a universal decision-making framework to maximize 

the health performance of the bridge throughout its life cycle and optimize the cumulative 

maintenance economic cost. The U.S. National Bridge Inventory (NBI) data set was used to 

construct a bridge deterioration model. A decision-making model based on Deep Q-learning was 

trained, and its decision-making performance gradually increased with the number of training 

iterations. This article also simulated the trained model 100 times, and the results showed that 98% 

of the cumulative rewards were higher than the expected value. 

1. Introduction 

Bridges are significant elements of the modern transport system; however, with increasing 

traffic, the health of many bridges is deteriorating dramatically[1]. Reports indicate that a 

certain number of bridges are in poor health conditions in countries such as the United Kingdom, 

the United States, China, and Canada; moreover, the cost of bridge maintenance and renovation 

is expensive[2]. In the bridge maintenance process, in addition to the structural data of the 

bridge itself, the operating data and environmental data are usually taken into consideration. 

Recent research considers structural data, such as stress and strain, operating data like traffic 

volume and sufficiency rating, as well as environmental data, including temperature and 

humidity, for decision-making in bridge maintenance[3-5]. 

Bridge maintenance is a complex system. Traditionally, decisions based on the experience of 

engineers are often subjective and hysteretic[1]. Decision-making models provide a more 

sensible and objective way to help experts make decisions. Multi-criteria decision-making 

(MCDM), as a typical decision model, quantifies the priority of alternatives by evaluating the 

relationship between influencing factors, decision objectives and alternatives[6]. However, 

these kinds of methods are still based on expert knowledge, which is highly subjective. The 

heuristic algorithms obtain optimal maintenance policies by searching for the maximum or 

minimum value of the quantized equation[5], which requires the establishment of specific 

mathematical equations for a particular optimization problem, and the resulting decision model 

is challenging to apply to other vectors because it is not universally applicable. 

The data-driven approach is effective in diminishing the impact of subjectivity on decision-

making using statistical and machine learning techniques to identify hard-to-notice 

relationships and patterns from large amounts of data[7]. Supervised learning models have been 

developed to predict the deterioration of bridges[8]. However, the generality of supervised 

learning, where patterns and relationships are obtained through labelled samples, is limited by 

data labelling compared to methods that learn from unlabeled data. Unsupervised learning can 

learn relationships that are generalizable from a large amount of data, while its model training 

process has limited human involvement, which can largely avoid subjectivity. Nevertheless, 
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there needs to be more cases of unsupervised learning algorithms being used in the field of 

bridge maintenance decision-making to validate the feasibility of using this approach for bridge 

maintenance decision-making systems. The agent in reinforcement learning can obtain rewards 

by interacting with the environment and accumulate experience in the process of accumulating 

rewards to choose a more wisdom action, which not only effectively avoids subjectivity in 

decision-making but also accumulates rewards in the process of iteration, which positive 

significance for the whole lifecycle bridge maintenance. 

This study investigates the development of a deep reinforcement learning based universal 

framework for maintenance decision-making recommendations over the entire life cycle of 

bridges. The model offers decision recommendations on a 30-year cycle, which improves the 

health performance of bridges over the entire life cycle and reduces the cumulative maintenance 

economic cost. The proposed decision-making framework uses the U.S. National Bridge 

Inventory dataset, and the model agent learns decision-making strategies from historical health 

data and maintenance data of 1,426 bridges of different types to improve the generalizability of 

the model for different bridge types. 

2. Background 

Since 2018, the potential for the application of reinforcement learning in bridge maintenance 

has been progressively discovered, and reinforcement learning-based decision-making 

frameworks for bridge maintenance have begun to be progressively applied. Wei et al. proposed 

a deep reinforcement learning framework using deep neural networks to learn state-action Q-

values and conducted a case study with a simple bridge deck with 7 components and a large-

span cable-stayed bridge with 263 components, verifying that deep reinforcement learning can 

efficiently find optimal strategies for maintenance tasks of both simple and complex 

structures[9]. Lei et al. used a regional probabilistic model to simulate the stochastic process of 

bridge deterioration to maximize the life cycle maintenance cost-effectiveness of maintenance 

actions and maintain the health of regional bridges by developing a 100-year maintenance 

strategy for highway bridges that meets different budgetary constraints[10]. Ao and Alireza 

developed a parametric DQN model that synergistically integrates adaptive sequential decision 

support, life-cycle cost analysis, and probabilistic risk assessment for long-term bridge asset 

management systems[11]. Zhou et al. proposed a multi-intelligence reinforcement learning 

framework, which defines each bridge component as an intelligence interacting with the bridge 

environment to improve the ability to deal with complex maintenance decision-making 

problems[12]. Zachary and James-A proposed a hierarchical reinforcement learning framework, 

which naturally adapts to the structure of information and decision-making layers and improves 

the scalability of reinforcement-based learning decision-making framework[13]. 

According to the above review, the potential of the Reinforcement Learning framework to be 

applied in the decision-making domain of bridge maintenance has been effectively validated. 

However, the established decision models usually focus on maximizing the efficiency of whole-

life maintenance or on improving the flexibility and extensibility of the decision models so that 

they can be adapted to different types of bridges or decision scenarios with different information 

structures. There is still a vacuum in the research of full-life-cycle bridge maintenance decision 

models with high generality. 
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3. Methodology 

This study aims to develop a deep reinforcement learning based framework for maintenance 

decision-making recommendations over the entire life cycle of bridges. The primary focus is to 

establish a degradation model using probability distributions integrated into a Markov decision 

process framework, subsequently constructing the decision-making system of bridge 

maintenance based on Deep Q-learning. The framework of the Decision-Making System is 

shown in Figure 1. 

 

Figure 1: Framework of universal decision-making system for life cycle maintenance  

of bridge based on deep reinforcement learning 

In the data cleaning stage, the data that was irrelevant to building a reinforcement learning 

model and the data with fewer observations were removed. The processed data was used to 

calculate the state transition matrix of bridge health and the average cost of each maintenance 

worker type based on Bayesian theory. Based on this, a bridge deterioration model was built, 

and an interactive environment for the reinforcement learning model was established. The 

actions that the agent of the reinforcement learning model can take are defined according to the 

type of maintenance work after data cleaning, and Deep Q-network is introduced to learn the 

decision-making strategy. 

3.1 Markov Decision Process 

Markov decision process (MDP) is a widely used theoretical basis for developing degradation 

models. The MDP provides a mathematical framework for quantifying sequential decision-

making problems in stochastic environments [14]. The problem of developing maintenance and 

repair policies for the bridge can be modelled as a finite-state, discrete-time MDP[15]. Each 

state in the MDP is associated with a set of possible actions, and the transitions between states 

are probabilistic, influenced by the chosen actions and modelled using a probability distribution. 

The transition probabilities, 𝑃(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1), represent the likelihood of moving from state 𝑠𝑡 to 

state 𝑠𝑡+1  under action  𝑎𝑡 . These probabilities are derived from historical data and expert 

assessments concerning the impact of different maintenance actions on the state of the bridge. 

In this study, Bayesian theory is used to calculate the state transfer probability distributions of 

bridges in the three initial states of Good, Fair and Poor. An MDP-compliant probabilistic 

model of bridge deterioration is built based on the matrix of state distributions of the bridge's 

health condition, which is the basis of the model presented in Chapter 4. 
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3.2 Deep Q-Learning 

The basis of the reinforcement learning model learning to maximize the cumulative reward 

strategy is the interaction between the agent and the environment; the agent selects the action 

𝑎𝑡  based on the current state 𝑠𝑡  of the environment, the reward 𝑟𝑡+1 and the state 𝑠𝑡+1  after 

taking the action 𝑎𝑡 will be fed back to the agent by the environment. Deep Q-Learning aims to 

learn the optimal policy by using a deep neural network to approximate the Q-function[13]. The 

Q-function 𝑄(𝑠𝑡, 𝑎𝑡) is often updated using the temporal difference (TD) method during the 

iterative process [16]. The Bellman equation used in neural network training is as follows: 

 𝑄𝑛𝑒𝑤(𝑠𝑡, 𝑎𝑡) ← (1 − 𝛼) ⋅ 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼 ⋅ (𝑟𝑡+1 + 𝛾 ⋅ 𝑚𝑎𝑥
𝑎

(𝑠𝑡+1, 𝑎𝑡)) 

Where 𝛼  is the learning rate, 𝛾  is the discount factor, rt+1 is the reward received after 

transitioning from state 𝑠𝑡 to 𝑠𝑡+1, and 𝑚𝑎𝑥
𝑎

(𝑠𝑡+1, 𝑎𝑡) represents the maximum reward that can 

be obtained from the next state. 

3.3 Simulation and Prediction 

The trained Q function is used to simulate the state transition of the bridge over 30 years, and 

the maintenance actions selected for each year are listed. The simulation iterates through each 

time step, starting from the current state of the bridge. At each step, the model calculates the 

optimal maintenance action by selecting the action 𝑎∗ with the maximum Q-value for the 

current state 𝑠𝑡: 

𝑎∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥(𝑠𝑡, 𝑎𝑡) 

These actions are recommended to the bridge maintenance team. The decision-making system 

considers the immediate and long-term implications of maintenance actions to ensure optimal 

resources allocation and prolongation of the bridge's lifespan. 

In practice, if the agent always chooses the action with the highest value at every step, it could 

make exploring unused sequences difficult. To avoid being stuck in the so-called best choice 

and achieve a good balance between exploration and exploitation, the exploration-exploitation 

strategy, such as the epsilon-greedy strategy, is widely used[13]. 

4. Development 

4.1 Data Preparation 

The U.S. National Bridge Inventory (NBI), which is maintained by the FHWA Office of Bridge 

and Structures, provides the data support for this study. The inventory contains essential 

information, construction condition ratings and maintenance records for more than 620,000 

highway bridges located in each state in the U.S. from 1992 to 2023. The evaluation 

specifications and data coding in the database are based on National Bridge Inspection 

Standards and the Recoding and Coding Guide for the Structure Inventory and Appraisal of the 

Nations Bridges[17].  

In the NBI database, the condition rating of the bridge’s components was categorized into ten 

classes from 0 (Failed condition) to 9 (Excellent condition). The conditions of the bridges were 

classified according to the lowest condition rating among the components: Condition ratings 

from 7 to 9 are defined as good condition, condition ratings of 5 and 6 are fair condition, and 

condition ratings of less than 4 are poor condition. Additionally, the content of the type of work 

recorded in the inventory is shown in Table 1. The rating criteria mentioned above and Work 
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Type definitions provide the foundation for constructing a reinforcement learning environment 

and defining the actions of the agent in the following pages. 

Table 1: Description of type of works 

Code  Description 

31 Replacement of bridge or other structure because of substandard load 

carrying capacity or substandard bridge roadway geometry. 

32 Replacement of bridge or other structure because of relocation of 

road. 

33 Widening of existing bridge or other major structure without deck 

rehabilitation or replacement; includes culvert lengthening. 

34 Widening of existing bridge with deck rehabilitation or replacement. 

35 Bridge rehabilitation because of general structure deterioration or 

inadequate strength. 

36 Bridge deck rehabilitation with only incidental widening. 

37 Bridge deck replacement with only incidental widening. 

38 Other structural work, including hydraulic replacements. 

4.2 State transition matrix construction 

According to Bayesian theory, the data of this study is preprocessed. The frequency of bridge 

health condition transfer for the same bridge number under different work types from 2016 to 

2021 was approximated as the probability of bridge health condition transfer. The data with 

low statistical significance, such as the work types 32, 36, and 37, were removed. The situation 

in which no work type was taken was defined as doing nothing, which represents the natural 

course of bridge deterioration in the absence of any maintenance measures. The calculated state 

transfer matrix for the bridge condition is shown in Table 2 to Table 7. 

Table 2: Doing Nothing State transition probability      Table 3: Work 31 State transition probability 

State Good Fair Poor  State Good Fair Poor 

Good 0.99 0.01 0  Good 0.87 0.05 0.08 

Fair 0 0.98 0.02  Fair 0.02 0.97 0.01 

Poor 0 0 1  Poor 0.21 0.1 0.68 

 

Table 4: Work 33 State transition probability                Table 5: Work 34 State transition probability 

State Good Fair Poor  State Good Fair Poor 

Good 0.99 0.01 0  Good 0.87 0.13 0 

Fair 0 0.98 0.02  Fair 0.03 0.97 0 

Poor 0 0 1  Poor 0 0 1 
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Table 6: Work 35 State transition probability                Table 7: Work 38 State transition probability 

State Good Fair Poor  State Good Fair Poor 

Good 0.95 0.05 0  Good 0.9 0.08 0.02 

Fair 0.02 0.97 0.01  Fair 0.02 0.97 0.01 

Poor 0.06 0.2 0.74  Poor 0 0.17 0.83 

The NBI dataset also contains the cost incurred for each repair, and incorporating this type of 

data into the decision model can effectively improve its comprehensive ability to consider not 

only the health of the bridge but also the maintenance cost of the bridge over its entire lifecycle. 

The average cost for different types of work is shown in Table 8. 

Table 8: Average cost of Actions  

Action Cost/ 103 $ Type of Work 

0 0 None-action 

1 2279.69 Work 31 

2 1018.62 Work 33 

3 766.76 Work 34 

4 1005.71 Work 35 

5 3126.26 Work 38 

4.3 Reward setting 

The quantification of rewards Deep-Q learning model is a critical aspect that directly influences 

the learning outcomes and efficacy of the decision recommendations. Rewards are assigned 

based on the maintenance outcomes associated with each action taken within the simulation 

environment. Specifically, rewards 𝑅𝑡 are computed by integrating several factors which are 

shows below:  

𝑅𝑡 = 𝑅ℎ𝑡 + 𝑅𝑐𝑡 

Where 𝑅ℎ𝑡 is the reward of health state transition, and 𝑅𝑐𝑡 is the reward of cost efficiency. 

Health state transition: Actions that enhance the health state of the bridge receive positive 

rewards. Conversely, actions resulting in health deterioration are penalized. The specific reward 

settings are shown in Table 9. 

Table 9: Reward of health state transition 

State Good Fair Poor 

Good 3 -1 -3 

Fair 2 0 -2 

Poor 5 2 -1 

Cost efficiency: Maintenance actions receive negative reward based on average cost 𝐶𝑎, which 

is calculated as follows: 

𝑅𝑐𝑡 =
1

2
𝐶𝑎  ×  10−6 
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4.4 Construction of Deep Q network 

In this study, a bridge deterioration model is established based on the state transfer matrix of 

the bridge health condition calculated above, and the environment of the reinforcement learning 

model is established based on the bridge state transfer probability and the economic cost of 

maintenance work. The actions are defined as Action 0: None Action, Action 1: Work Type 31, 

Action 2: Work Type 33, Action 3: Work Type 34, Action 4: Work Type 35 and Action 5: 

Work Type 38. The states of bridge health condition are defined in three categories: Good, Fair 

and Poor. The model is trained with 30-time steps as an epoch, and the optimization objective 

is to obtain the highest total reward in 30 years under the combined consideration of bridge 

health and maintenance cost. 

The Deep Q-Network initiates with an embedding layer translating discrete state inputs into a 

10-dimensional vector, followed by three fully connected layers with 64, 128, and 64 neurons, 

concluding with an output layer mapping to the action space.  

The hyperparameters are set as γ=0.95, lr=0.0015, the capacity of the experience buffer is 1000, 

and the training batch size is 32. The loss function is the mean square error (MSE) of the 

predicted and observed values of the total reward. The exploration probability ε is initially set 

to 1, and exponentially decays to a minimum value of 0.1 along with the training 

episodes. Changes in the loss value during the iteration are shown in Figure 2, and the value 

matrix of actions is shown in Table 10. 

 

Figure 2: Mean Squared Error (MSE) Loss over episodes 

 

Table 10: The value of the Action in each state 

 Action 0 Action 1 Action 2 Action 3 Action 4 Action 5 

Good 3.099 1.829 2.106 6.391 2.415 1.187 

Fair 36.315 33.979 35.963 34.001 34.124 33.665 

Poor 17.731 15.201 17.021 17.356 18.443 19.479 

The reward settings of a well-constructed reinforcement learning model are usually based on 

expert knowledge. However, this study uses reward settings that lack the validation of expert 

knowledge to explore the feasibility, which could negatively affect the action value matrix. 
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4.5 Result 

The blue dots in Figure 3 demonstrate the total reward value of this reinforcement learning 

model for each iteration during the 2000 epochs. The red line is the linear regression graph of 

the total reward with respect to the epochs, which represents the trend of the total reward. The 

green line denotes the expectation of the cumulative reward. According to Figure 3, the total 

reward has a higher value of the regression function value in comparison to the expectation 

value. The total reward is increased with the increase in the number of iterations of this model, 

which indicates that the performance of the agent is increased with the number of iterations. 

The trained model was used to perform 100 simulations in the bridge deterioration model to 

simulate the change in the state of the bridge over 30 years under a random initial state and 

simulate the maintenance strategy chosen by the reinforcement learning agent. The total 

rewards of the results of these 100 simulations were compared with the expected cumulative 

rewards. According to Figure 4, 98 simulations resulted in higher total rewards than expected 

rewards, with a frequency of 98%. 

 

Figure 3: Total rewards trend over episodes with expected value 

 

Figure 4: Comparison of simulated total rewards 
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5. Conclusion 

In this study, a universal bridge maintenance decision-making system based on reinforcement 

learning is proposed for predicting the changes in bridge health, simulating the trends of bridge 

health over 30 years, and giving maintenance recommendations for each year, which is capable 

of effectively improving the full-life-cycle health performance of bridges and reducing the 

cumulative maintenance costs. In this study, a deterioration model is constructed based on state 

transfer matrix calculated from bridge data of different lengths and types from different states 

in the U.S NBI dataset. The training results show that the model performs well with a 98% 

frequency of cumulative gains above the expected gains when providing decision 

recommendations for bridge maintenance over 30 years. 

The deterioration model constructed in this study contains limited state space. Additionally, 

only the economic cost of maintenance is included in the evaluation; the follow-up will be from 

the construction of more complex state space as well as the inclusion of the cost of maintenance 

time, the bridge life and other evaluation indexes to improve the decision-making ability of the 

model in complex environments. 
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