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Abstract. Colorization research has long been a focal point in computer
vision and image processing. However, due to its inherently ill-posed na-
ture, a reasonable assessment of the quality of their outcomes remains a
challenge. Subjective evaluations are often restricted to a limited num-
ber of participants due to the high costs. This along with the existence
of individual differences and subjective biases makes it difficult to de-
rive convincing conclusions. Despite no need for participants in objective
evaluation metrics, the currently widely applied objective metrics fail to
accurately reflect the quality of colorization results, thereby impeding
the attainment of consistency with subjective user opinions. Facing the
above problems, we propose a novel Statistical Color Distribution-based
Objective Evaluation Metric (SCD) for better consistency with human
opinions. We first segment images into semantic regions. For each se-
mantic type, a novel two-dimensional natural color distribution w.r.t.
hue and saturation is collected to better align with human perceptual
observations during image assessment. An adjacency weighted matrix
considering surrounding neighboring regions smooths the color distribu-
tion table, enabling a more reliable quality assessment. The application of
probability density eliminates the issue of frequency anomalies caused by
human visual insensitivity, ensuring more accurate evaluation. Through
extensive and comprehensive experiments involving two distinct datasets
with the participation of 1321 volunteers, this paper demonstrates that
the proposed SCD is more consistent with subjective user opinions com-
pared with current objective metrics for evaluating colorization.

Keywords: colorization evaluation · objective metrics · statistical color
distribution

1 Introduction

Image colorization techniques add colors to input images, which is well studied
in computer graphics and computer vision, where multiple related problems have
been studied. Among them, natural image colorization has garnered significant
attention due to its wide-ranging application scenarios. The characteristic of
natural image colorization tasks, where multiple plausible colors can be assigned
to the same object, presents a typical ill-posed problem. This essence of natural
image colorization tasks, with the inherent ambiguity and subjectivity, renders
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the quality evaluation both crucial and challenging, which makes researchers
prefer to adopt a combination of objective metrics, subjective assessments, and
user studies to effectively provide a convincing evaluation.

Objective metrics [26, 30] commonly used for evaluating colorization results
focus on the fidelity between the original and colorized images. However, the pri-
mary goal of colorization is to achieve visually pleasing results, where subjective
satisfaction is influenced by natural color priors and personal aesthetics rather
than similarity to the original image. Therefore, relying solely on similarity for
evaluation may overlook perceptual differences and contradict the natural color
distribution. Subjective evaluation involves human observers visually assessing
colorization results for quality and satisfaction, providing direct feedback on
visual quality, color accuracy, and perceptual satisfaction. However, individual
differences and biases can cause inconsistent feedback. To mitigate this, a large
number of observers are typically recruited for more comprehensive and consis-
tent assessments. However, these user studies are resource-intensive and costly,
making them challenging to implement in practice.

Given the existing research landscape, this paper proposes a novel statistical
color distribution-based objective metric (SCD), which facilitates the accurate
and cost-effective evaluation of colorization results. By leveraging statistical in-
formation of object colors, SCD assigns scores to the plausibility of colors at each
pixel, providing a quantitative measure achieving high consistency with human
opinions. Our main contributions are summarized below:

– This paper innovatively proposes an objective evaluation matrix (SCD) from
a statistical perspective. A proper hue-saturation natural color distribution
in HSV space is collected to approximate human perception.

– We further apply adjacency weight matrices and probability densities to han-
dle different bin sizes in statistical analysis to ensure consistent prediction.
This is necessary due to human perceptual insensitivity to hues when sat-
uration is low, and such cases are treated with a bin that includes all hue
values.

– Experimental results demonstrate that SCD achieves higher consistent with
human subjective opinion compared with existing objective metrics.

2 Related Work

In computer graphics and computer vision, proper evaluation metrics are crucial
for advancing technology. For example, using Random Forests to assess color
transfer quality [7], employing Gaussian RBF kernels to evaluate image genera-
tion models [10] and using a binary classifier to measure texture tilability [19].
In natural image colorization research, common metrics roughly fall into two
categories: Full-Reference (requiring a reference image) and No-Reference (not
requiring one). In this section, the common metrics are introduced and their
correlation with user perception is explored in Section 2.3.
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2.1 Full-Reference Metrics

In this subsection, nine common colorization evaluation metrics that require
input of a reference image or original image are introduced.

Mean Squared Error (MSE) widely applied in colorization methods [2, 17, 25]
is commonly used to measure the degree of difference between colorized images
and original image. Root Mean Squared Error (RMSE), which is the square root
of MSE, is also widely applicable in practical scenarios. Mean Absolute Error
(MAE) is less sensitive to outliers because it uses absolute values to measure
errors rather than squaring them.

Structural Similarity Index (SSIM) [26] widely applied in colorization meth-
ods [14, 28] compares the structural information and pixel value distribution
between images by simulating the way human eyes perceive images. It helps us
understand differences in structure, brightness, and contrast between two im-
ages, but only capture the above differences based on single channel, e.g. grey.
Multi-Scale Structural Similarity Index (MSSSIM) [27] applied in colorization
methods [1, 17, 25] is an extended version of SSIM that takes into consideration
the structural similarity of images at multiple scales (multiple resolution levels).

Peak Signal-to-Noise Ratio (PSNR) applied in colorization methods [1, 28,
25, 17] quantifies the relationship between the highest attainable power in a
signal and the level of unwanted noise (measured as the difference between the
colorization result and ground truth) that distorts its accurate representation.

Learned Perceptual Image Patch Similarity (LPIPS) [30] employs a pre-
trained neural network (VGG [21]) to extract feature of images, capturing low-
level textures and high-level semantic information.

Fréchet Inception Distance (FID) [6] widely applied in colorization methods
[1, 3, 14, 28] utilizes a pre-trained deep neural network (Inception [24]) to extract
high-level semantic features from images. It computes mean and covariance of
Gaussian distributions for ground truth and colorized images, then calculates
Fréchet distance to evaluate their difference.

CDR [11] (Cluster Discrepancy Ratio) discerns the similarity between original
and recolorized images by examining the differences in super-pixel assignments.

2.2 No-Reference Metrics

This subsection introduces two commonly used metrics that do not require a
reference image. Colorfulness [5] widely applied in colorization field [8, 28] rep-
resents colorfulness through a linear combination of statistical properties in the
CIEab color space. Inception Score (IS) is computed from a pretrained Incep-
tionv3 and evaluates the diversity and classification accuracy of a dataset.

2.3 Objective Metrics vs. Human Perception

In natural image colorization research, a single object can have multiple plausible
colors, causing possible inconsistencies with the original image. Therefore, the
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goal of evaluating colorization algorithms is to assess the reasonableness and nat-
uralness of the colors rather than matching the original. Given this fact, existing
Full-Reference metrics may not accurately reflect actual performance, and No-
Reference metrics fail to simulate human perception and judgment effectively,
leading to inconsistent performance with subjective opinions.

Recent research, including the Human Evaluated Colourisation Dataset (HECD)
[18] and the Subjective Evaluation of Colourized Images Dataset (SECID) [25],
has shown that common objective metrics do not strongly align with user sub-
jective opinions. This underscores the urgent need for an objective metric that
better reflects user opinions. In response, this paper introduces SCD, which mea-
sures the naturalness from the color statistical perspective.

Fig. 1: Flowchart of collecting color distribution in Section 3.1.

Fig. 2: Flowchart of scoring input images in Section 3.2.

3 Methodology

3.1 Collections of Color Distributions

Color Space Among various color spaces, this paper opts to employ the HSV
color space for describing and representing color attributes and features, primar-
ily due to the following two reasons:

– In contrast to LAB, YUV, and XYZ color spaces, HSV intuitively decom-
poses colors into hue, saturation, and value, aligning more closely with hu-
man perception, which has also been mentioned in [3, 22] and been widely
embraced in the research field of painting [4, 12, 15].

– The three components of HSV are independent, enabling accurate color
recognition and selection for easier color analysis and processing.

In summary, opting for the HSV color space enhances the representation
of color distributions, making it more effective for colorization evaluation tasks
requiring careful attention to color aspects.
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Color Distribution Dimensions In the HSV color space, hue represents basic
colors, and saturation indicates color intensity. This paper constructs a two-
dimensional color distribution using both hue and saturation to better capture
color characteristics and differences, omitting luminance which is not relevant
for evaluating colorization.

Data Selection Color distributions are object-specific, so we estimate them for
each category using diverse natural images. Accurate color distributions require
a substantial number of images with region label information, typically obtained
via semantic segmentation. However, segmentation accuracy is crucial, as errors
can skew the color distribution and affect evaluation criteria. Instead of relying
on current segmentation methods, this paper uses the ADE20K dataset, which
includes over 20,000 high-resolution images, 150 semantic categories, and precise
pixel-level annotations, ensuring accurate color information for each category.

Overall Process As shown in Fig. 1, to collect the color distribution of a
specific object category, we follow these steps: (1) an empty two-dimensional
color distribution table is created for each category. Due to the human difficulty
in accurately distinguishing different colors at low saturation, all colors with
saturation ≤ 10 (out of 100) are placed within one specified bin. (2) All images
that contain regions belonging to the category of interest are gathered. (3) For
each image containing the category of interest, we extract pixels that belong to
the semantic category and assign them to specific bins in the color distribution
table based on their color information and bin size settings.

3.2 Statistical Distribution based Colorization Metric

We utilize the obtained statistical distributions to evaluate the quality of images,
assigning scores based on the plausibility of each pixel and aggregating the results
across the image. The overall flowchart of scoring input images is shown in Fig. 2.

Scoring One Image The overall score for an image is defined as the mean of
the scores for all the pixels, as shown in the formula below:

SCD =
1

N

N∑
i=1

pi, pi =
Si

Smax
(1)

where N represents the total number of pixels, and pi represents the score of the
i-th pixel, which is calculated based on the above formula. Si is the unnormalized
score for the i-th pixel based on its color bin value, and Smax is the highest score
among all bins for that category, representing the most common color. This ratio
reflects how closely the pixel’s color matches the typical color for that category.
A higher score indicates a closer match, while a lower score suggests greater
disparity. Details of Si will be described in the next subsection. This approach
normalizes the final score to a [0, 1] range, ensuring scores for different pixels or
categories are on a similar scale.
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Scoring One Pixel To work out the unnormalized plausibility score of a specific
pixel Si, we first utilize the color distribution of its corresponding semantic
category and find out the corresponding bin (h̃, s̃) where h̃ and s̃ are the bin
indexes for hue and saturation respectively. Let H and Q denote the window
sizes for hue and saturation in terms of bins to obtain smoother plausibility
score estimation. Si is defined as:

Si =

h̃+H−1
2∑

h=h̃−H−1
2

s̃+Q−1
2∑

s=s̃−Q−1
2

W i
hs × PDi

hs, (2)

where the score of the allocated bin of the i-th pixel is the weighted average of
all bins within H × Q regions. W i

hs and PDi
hs are the weight and probability

density for hue h and saturation s.
To work out the weight for a bin, we first calculate the distance of the bin

to the center bin (h̃, s̃) as

Di
hs =

√
(Ei

s × Cs)
2
+

(
Ei

h × Ch

)2 (3)

where Cs and Ch respectively control the change rates in the saturation and hue
dimensions, while Ei

s and Ei
h represent the distances in the saturation and hue

dimensions to the central bin. For the saturation, the absolute difference |s− s̃| is
used as Es, and for the hue, its circular characteristic is taken into account when
working out Eh for hue values h, h̃ ∈ [0, 360), as Eh = min(|h− h̃|, 360−|h− h̃|).

With the distance to the central bin Di
hs and let Di

max be the maximum
distance within the H ×Q neighborhood, W i

hs is defined as

W i
hs = 1− Di

hs

Di
max

. (4)

For PDi
hs, instead of directly using the frequency count Fm(h, s) in the corre-

sponding bin, we calculate the probability density

PDm =
Fm(h, s)

Bs(h, s)×Bh(h, s)
(5)

where Bs and Bh represent the saturation bin size and hue bin size, respectively.

4 Evaluation

To effectively reflect the performance of objective colorization evaluation met-
rics, the evaluation section of this paper is conducted on two datasets, Human
Evaluated Colourisation Dataset (HECD) [18] and SECID [25] (to be introduced
in Section 4.1). Then, Section 4.2 compares SCD with nine commonly used ob-
jective colorization evaluation metrics. In Section 4.3, this paper additionally
explores the impact of key factors in the SCD computation process.
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4.1 Datasets Details

HECD [18] used 20 benchmark images from the Berkeley Segmentation Dataset
[16] and collected user ratings for different re-colorized versions. Each image
had 65 variants: six from colorization algorithms (Adobe Photoshop, Colorize
photos, and [13, 29, 31, 9]), and 59 from manual adjustments of chroma, hue, or
overall image offset. This paper evaluates objective metrics using only the six
algorithm-generated variants since they simulate typical colorization scenarios.
SECID [25] used 20 benchmark images from the ImageNet validation set [20],
generating four variants using different methods [13, 29, 9], including two versions
of [9]. Human generally lean towards images that convey a sense of naturalness, a
sentiment that aligns with the findings in SECID [25]. Therefore, the preference
rating data of SECID [25] is selected as the validation data for this paper. To
obtain reasonable semantic segmentation maps, Segmenter [23] known for its
performance on the ADE20K dataset, is used to generate initial segmentation
maps for both datasets. Given the limited number of benchmark images (20),
we make minor manual corrections to enhance accuracy in boundary areas.

(a) HECD dataset [18] (b) SECID dataset [25]

Fig. 3: Rank-based correlation analysis comparing with other metrics under
HECD (a) and SECID (b) datasets in Section 4.2.

4.2 Comparison with Other Objective Metrics

Implementation Details This section compares SCD with nine widely used
metrics: MAE, MSE, RMSE, PSNR, SSIM, MSSSIM, LPIPS, Colorfulness, and
CDR. Evaluations for the first six metrics are conducted in LAB and RGB color
spaces, with scores averaged across all color channels on a single test image. In
LAB color space, the L channel is excluded since it remains consistent across
different re-colorized images. SCD is not compared with IS and FID, as they
focus on overall model performance rather than individual image assessment.

This paper initially uses Spearman and Kendall correlation coefficients to an-
alyze the relationship between objective metric scores and user subjective scores.
A high correlation between the ranking orders suggests strong similarity between
these scores. Following this, mean squared error (MSE) and standard deviation
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(STD) are employed for error analysis to measure difference and dispersion fur-
ther. Results for MSE and STD are multiplied by 10 and displayed with two
decimal places. All metrics and user ratings undergo min-max normalization to
address score range discrepancies before analysis.

(a) HECD dataset [18] (b) SECID dataset [25]

Fig. 4: Error Analysis comparing with other metrics under HECD dataset (a)
and SECID dataset (b) in Section 4.2.

Rank-based Correlation Analysis: Fig. 3(a) and Fig. 3(b) separately show
the rank-based correlation analysis under HECD and SECID.

– RMSE and PSNR which use RGB, as well as MS-SSIM in LAB and RGB,
exhibit consistent trends. However, the performance of RMSE in RGB is
contrary to expectations; the other three metrics (PSNR in RGB, MS-SSIM
in RGB and LAB) show weak correlation.

– MAE, MSE and SSIM show inconsistency across different evaluation datasets.
– Colorfulness exhibits an expected correlation but has 73.60% and 73.0%

lower Spearman and Kendall correlations, respectively, compared to SCD.
– CDR shows consistent positive correlations on both datasets but averages

only 0.09, which is much lower than SCD’s correlation.
– Both versions of LPIPS exhibit consistent negative correlations on two datasets

as anticipated, which are outperformed by SCD.
– SCD achieves the highest and positive (as expected) correlation strength

in all testing scenarios, which indicates that SCD is most consistent with
subjective user opinions.

Error Analysis: The error analysis results are shown in Fig. 4(a) and Fig. 4(b)
for the HECD and SECID datasets, respectively. Despite some differences, both
datasets show similar trends in error analysis.

– SCD consistently achieves the lowest MSE and STD values. This indicates
both smallest average errors and least dispersion from user subjective ratings,
suggesting closest alignment and greatest stability in SCD’s predicted scores.
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(a) Recolorized A (b) Recolorized B (c) Scores

Fig. 5: Intuitive display about the scores of real examples in Section 4.2. The blue
and orange lines respectively represent the scores for Recolorization A and B.
When a metric’s scores for Recolorization A and Recolorization B are consistent
with the user’s subjective ratings and have similar ranges of variation, it indicates
that the metric better reflects the user’s subjective opinions.

– LPIPS and CDR achieve expected correlation coefficients, but show higher
MSE and STD compared to SCD on both datasets, indicating instability in
generating objective scores.

– MSSSIM in LAB does not surpass SCD in both error and correlation analysis,
emphasizing SCD’s advantage in using natural color statistics for accurate
naturalness assessment.

Intuitive Display of Examples Fig. 5 shows three examples comparing objec-
tive metrics and subjective user ratings. Each row displays images of Recoloriza-
tion A, Recolorization B, and a chart with metric scores and user ratings. Closer
alignment in direction and variations between metric scores and user ratings
indicates better reflection of subjective opinions and naturalness in the images.
All scores are normalized and rounded to two decimal places for readability.

In the first row, Recolorization A is perceived by users as more natural than
Recolorization B. SCD scores for both images align well with user ratings, show-
ing a 0.5 difference that matches the 0.3 difference in user perceptions. PSNR
scores in LAB also aligns with user opinions, but the 0.07 difference of PSNR
in LAB suggests slight naturalness differences contrary to user perceptions (0.3
difference). In the second and third rows, users rate Recolorization A as less nat-
ural than Recolorization B. SCD scores show a minimal 0.08 difference, closely
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(a) Spearman HECD (b) Kendall HECD (c) Spearman SECID (d) Kendall SECID

Fig. 6: Rank-based Correlation Analysis: Window size Effect under HECD ((a)
and (b)) and SECID ((c) and (d)) Datasets in Section 4.3.

matching the human-scored difference, affirming SCD’s accuracy in reflecting
user opinions. PSNR in LAB performs similarly to SCD but shows a much
larger 0.46 difference between images, indicating less precision in capturing nat-
uralness variations. PSNR in RGB and SSIM in LAB align with user opinions
but demonstrate inconsistent correlations across datasets, revealing challenges
in evaluating structural changes and image uncertainties.

Table 1: Ablation study about Im-
pact of Hue bin size in Section 4.3

HECD 6 10 18 24 36

Spearman 0.32 0.33 0.31 0.25 0.15
Kendall 0.25 0.27 0.23 0.20 0.12

SECID 6 10 18 24 36

Spearman 0.48 0.52 0.33 0.37 0.30
Kendall 0.43 0.48 0.32 0.33 0.27

Table 2: Ablation study about Impact
of Saturation bin size in Section 4.3

HECD 6 10 15 30

Spearman 0.30 0.33 0.28 0.27
Kendall 0.24 0.27 0.22 0.22

SECID 6 10 15 30

Spearman 0.46 0.52 0.50 0.45
Kendall 0.43 0.48 0.45 0.40

4.3 Ablation Study

In this section, we will delve into an in-depth exploration of the impact of four
key factors on the final performance during SCD computational process. The
subsequent four sub-sections respectively address the influence of collected color
distributions, the impact of window size, the function of probability density and
the effect of change rates. Due to page limit, the corresponding error analysis
results of the above four different ablation experiments and the detailed analysis
of two more ablation experiments (involving the mean operation and color space
selection) are provided in the supplementary material.

Color Distribution For collected color distributions, different settings for bin
sizes will divide color space to distinct color bins. Thus, although the color
information in images for each category in the ADE20K dataset is fixed, the
color distributions with different bin size settings for the same pixel yield different
scores, directly impacting the accuracy of the final image scores. Two ablation
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Table 3: Ablation study under [1,1]
and [3,3] (default) window sizes in
Section 4.3
Dataset Window Size Spearman Kendall

HECD [3,3] 0.33 0.27
[1,1] 0.27 0.2

SECID [3,3] 0.52 0.48
[1,1] 0.39 0.35

Table 4: Ablation study involving
probability density in Section 4.3

Dataset PD Spearman Kendall

HECD enable 0.33 0.27
disable 0.27 0.23

SECID enable 0.52 0.48
disable -0.09 -0.03

experiments are conducted on the collected color distributions in this paper: in
the first ablation experiment, the saturation bin size is fixed at 10, while the
hue bin size is incrementally increased from 6 to 36 (see Table. 1); in the second
ablation experiment, the hue bin size is fixed at 10, while the saturation bin size
is incrementally increased from 6 to 30 (see Table. 2).

Table. 1 demonstrates the impact of hue bin size variations on the HECD
and SECID datasets. Optimal performance are consistently achieved under all
evaluation conditions when the hue bin size is set to 10. Although, in the last two
rows of Table. 1, the SECID dataset obtained local optimal performance when
the hue bin size is 24, its performance on Spearman Correlation and Kendall
Correlation are still lower than that of the bin size set to 10, with percentages of
28.85% and 31.25%, respectively. Table. 2 illustrates the distinct effects of satu-
ration bin size variations on the HECD and SECID datasets. Both tables exhibit
a consistent trend of initially increasing and then decreasing. Furthermore, in all
experiments, the optimal performance is attained when the saturation bin size
is set to 10. Based on the above experimental analysis, this paper defaults to
setting both the saturation bin size and hue bin size to 10.

Window Size Different window sizes determine the range of neighboring bins
considered, aiming to reduce sensitivity to individual pixels and mitigate local
noise or outliers’ impact on pixel scores. Ablation experiments with varying win-
dow sizes (ranging from 3 to 9 for saturation and 3 to 13 for hue) are conducted to
assess their impact on results. Fig. 6 shows correlation performances with differ-
ent window sizes on the HECD and SECID datasets. Each subplot includes axes
for hue window size, saturation window size, and correlation strength (Spear-
man or Kendall), demonstrating their relationships. Fig. 6 shows that increasing
window sizes generally decrease consistency with subjective opinions. In Fig. 6
(c) and (d), a local peak occurs at saturation and hue window sizes of 7 for
the SECID dataset, but performance remains below optimal levels. Across all
conditions, the highest correlation with user opinions occurs with a window size
of [3,3]. Further analysis with a [1,1] window size in Table. 3 confirms inferior
performance compared to [3,3] window size, highlighting the importance of ad-
jacent bins. Thus, this study adopts a default setting of [3,3] for both saturation
and hue window sizes.
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(a) Effect of Hue Change Rate (b) Effect of Saturation Change Rate

Fig. 7: Rank-based Correlation Analysis: Change Rate Effect under both
Datasets in Section 4.3.

Probability Density This section validates the importance of probability den-
sity (PD) through substituting it with frequency. As detailed in Table. 4, results
show that enabling PD consistently improves correlation with human subjective
judgments compared to using frequency (disabling PD) across both HECD and
SECID datasets. This highlights PD’s role in normalizing data for fair compar-
isons between color bins.

Change Rate This paper conducted two change rate ablation experiments: one
fixed the saturation change rate at 1 and adjusted the hue change rate from 0.1
to 4.9, while the other fixed the hue change rate at 1 and adjusted the saturation
change rate similarly. Based on the Fig. 7, optimal performances across datasets
are observed when saturation and hue change rates are set at [1:1.2] and [0.8:1],
respectively. This indicates that slightly higher hue change rates contribute to
superior performance for SCD. Based on these findings, the paper sets saturation
and hue change rates at [1:1.2].

5 Conclusion

This paper proposes a novel objective metric SCD for evaluating colorized im-
ages quality based on statistical color information. This approach initiates from
the HSV color space, which aligns closely with human perception of images,
collecting two-dimensional color distributions for various objects. Subsequently,
employing various normalization methods, including probability density and a
locally weighted variant, the study conducts a systematic and reasonable scoring
of the coloring images. Next steps may involve enhancing SCD by (1) integrating
additional datasets with precise semantic segmentation information to improve
accuracy in natural color distribution across object categories, (2) proposing ex-
tra mechanisms to measure color shifts, color bleeding, and biases in local regions
to enhance overall performance and (3) extending SCD to High Dynamic Range
imaging.
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