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Learning Discriminative Motion Models for
Multiple Object Tracking

Yi-Fan Li, Hong-Bing Ji, Senior Member, IEEE, Wen-Bo Zhang, and Yu-Kun Lai, Member, IEEE

Abstract—Motion models are vital for solving multiple object
tracking (MOT), which makes instance-level position predictions
of targets to handle occlusions and noisy detections. Recent
methods have proposed the use of Single Object Tracking (SOT)
techniques to build motion models and unify the SOT tracker
with the object detector into a single network for high-efficiency
MOT. However, three feature incompatibility issues in the re-
quired features of this paradigm are ignored, leading to inferior
performance. First, the object detector requires class-specific
features to localize objects of pre-defined classes. Contrarily,
target-specific features are required in SOT to track the target of
interest with an unknown category. Second, MOT relies on intra-
class differences to associate targets of the same identity (ID). On
the other hand, the SOT trackers focus on inter-class differences
to distinguish the tracking target from the background. Third,
classification confidence is used to determine the existence of tar-
gets, which is obtained with category-related features and cannot
accurately reveal the existence of targets in tracking scenes. To
address these issues, we propose a novel Task-specific Feature
Encoding Network (TFEN) to extract task-driven features for
different sub-networks. Besides, we propose a novel Quadruplet
State Sampling (QSS) strategy to form the training samples
of the motion model and guide the SOT trackers to capture
identity-discriminative features in position predictions. Finally,
we propose an Existence Aware Tracking (EAT) algorithm by
estimating the existence confidence of targets and re-considering
low-scored predictions to recover missed targets. Experimental
results indicate that the proposed Discriminative Motion Model-
based tracker (DMMTracker) can effectively address these issues
when employing SOT trackers as motion models, leading to
highly competitive results on MOT benchmarks.

Index Terms—Multiple object tracking, Motion models, Single
object tracking.

I. INTRODUCTION

MULTIPLE object tracking (MOT) is the task of es-
timating the locations of objects of interest on each

frame and temporally linking identical objects with consistent
identities (IDs) to form trajectories. As a fundamental task
in computer vision, MOT has a wide range of applications,
including autonomous driving, video surveillance, and human-
computer interaction. Although significant improvements have
been achieved with the help of advanced object detection
techniques, MOT is still challenging in crowded scenes with
occlusions, distractors, and camera motion.
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Fig. 1. Illustration of the unified framework that combines the object detector 
and SOT tracker into a single network with multi-task learning. The object 
detections and SOT-based position predictions are performed simultaneously 
for all targets by sharing backbone features.

Most previous methods in MOT adopt the Tracking-by-
Detection (TBD) paradigm [1]–[3], in which off-the-shelf 
detectors provide framewise detections. Then, the MOT is 
treated as a data association problem that links the detected ob-
jects temporally with existing tracks. The Joint-Detection-and-
Tracking (JDT) [4]–[6] framework is proposed to eliminate 
the separation issue in TBD by integrating the object detector 
and the tracking-related networks into a unified network. 
Appearance features [1], [3], [7] are widely adopted for data 
association. However, these methods are less reliable under 
occlusions and camera motions since the discrimination and 
consistency of features are impaired in these scenarios.

Motion models are widely adopted that provide instance-
level position predictions to compensate for noisy detections, 
recover missing targets, and provide motion features where re-
liable appearance features are absent. Among different motion 
models, linear motion models [1], [5], displacement regression 
networks [8], [9], and complex learnable networks [10], [11] 
are commonly used for position predictions. However, linear 
models and displacement regression networks are insufficient 
for modeling complex motion patterns and lack identity in-
formation, and learnable networks are heavily dependent on 
training data. Thus, these motion models are vulnerable to 
occlusions and distractors, degrading the tracking performance 
in crowded scenes.

Single Object Tracking (SOT) techniques are employed to 
build motion models to predict target positions and provide 
tracking candidates in recent methods [12]–[17]. SOT models 
are more discriminative and face similar challenges to MOT, 
including occlusions, distractors, target drift, and motion blur. 
Unlike MOT, a specific object of interest with an unknown 
category is tracked in SOT [18]–[25]. It is intuitive to think 
that MOT can be solved by applying SOT multiple times on
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a per-object basis for each frame. However, the computational
cost dramatically increases in crowded scenes since the visual
features of targets are extracted separately and repetitively.
Moreover, SOT-based predictions are prone to drift in MOT
scenes where intra-class occlusions and distractors are com-
monly observed. To improve the tracking accuracy and reduce
the computational burden, as shown in Fig. 1, some methods
integrate the SOT techniques and the object detectors into a
single network [14]–[17] to avoid repetitive feature extraction
and accelerate the tracking speed. By doing so, all targets are
tracked in a single forward propagation with shared backbone
features, significantly reducing the computational complexity
and inference time.

Despite the effectiveness, three feature incompatibility is-
sues are ignored when employing SOT trackers as motion
models and unifying them with the detectors in a single
network. The first is the incompatibility of the required fea-
tures between the object detection and the SOT. The detector
is trained to localize objects of pre-defined classes, which
requires class-specific features. In contrast, the SOT tracker
relies on target-specific features since only the target of interest
is tracked. Therefore, this difference will lead to incompati-
bility in required features between the detector and the SOT
tracker, resulting in an inferior performance for both tasks.
The second incompatibility is the required features between
SOT and MOT. Only the specific target of interest with an
unknown class is tracked in SOT. In contrast, an arbitrary
number of targets of interest categories are tracked in MOT.
Therefore, SOT trackers are sensitive to inter-class differences
and learn to discriminate tracking targets from backgrounds,
while MOT trackers concentrate on intra-class differences and
capture identity-discriminative features to temporally associate
the same target. This difference will confuse the SOT-based
motion models and degrade the accuracy of position pre-
dictions in MOT scenarios. The third incompatibility is the
required features between classification and the existence of
targets. The classification confidence is used to determine the
existence of targets while tracking. However, it is obtained
with category-related features instead of existence cognition,
only revealing only the probability of category. Thus, the
classification confidence cannot accurately reflect the existence
of targets, and classification-based judgment will lead to
missing targets and track fragmentation.

To address the above issues, we propose a novel Discrimi-
native Motion Model (DMM) by building an enhanced region-
based Siamese tracker as the motion model. We unify the
proposed motion model with a region-based detector [26]
to form the DMMTracker. In detail, we propose a Task-
specific Feature Encoding Network (TFEN) to decouple shared
backbone features and encode task-driven features for different
tasks. Class-specific and target-specific features are captured
respectively for the detector and SOT tracker with TFEN,
alleviating the incompatibility between the two tasks. Then,
we propose a novel Quadruple State Sampling (QSS) strategy
to form training samples of the motion model by incorporating
four MOT tracking states while training the SOT tracker. The
QSS enables the SOT tracker to be sensitive to the intra-
class differences and extract identity-discriminative features

to distinguish distractors of the same class, thus enhancing
the identity consistency of predicted tracks and mitigating
the differences in required features between SOT and MOT.
Finally, to deal with the feature incompatibility between the
classification and the existence, we augment the SOT tracker
by estimating the existence confidence of the targets. Then,
we propose an Existence Aware Tracking (EAT) algorithm
for identity management, which enables the missed targets
to be recovered, increasing the accuracy of existence judg-
ments. Incorporating all the proposed modules, the resulting
DMMTracker significantly improves the SOT-based methods
and achieves highly competitive results in MOT benchmarks.

The contributions of our method are summarized as follows:
• We propose a novel Task-specific Feature Encoding Net-

work (TFEN) to alleviate the incompatibility in required
features between the detection and SOT by extracting
class-specific features and target-specific features on top
of the shared backbone features.

• We propose a new Quadruplet State Sampling (QSS)
strategy to eliminate the difference in required features
between SOT and MOT by sampling training triplets
of the SOT trackers, which enables the motion models
to be sensitive to the intra-class differences and capture
identity-discriminative features in position predictions.

• We propose to enhance the SOT tracker by estimating
target existence confidence and associating targets with
an Existence Aware Tracking (EAT) algorithm, which can
recover missed targets and bridge the gap between the
classification and the existence of targets.

Extensive ablation experiments and benchmark datasets
results demonstrate the effectiveness of our proposed DMM-
Tracker. The remainder of this paper is organized as follows:
Sec. II reviews related works. Sec. III illustrates the proposed
method. The experiments and discussion are presented in Sec.
IV. Finally, Sec. V concludes this paper.

II. RELATED WORK

Motion models are commonly employed in MOT for target
position predictions, which can compensate for occlusions and
noisy detections and provide geometric information and candi-
date bounding boxes. This section reviews motion models used
in deep learning-based MOT methods, including linear models,
regression-based models, learnable network-based models, and
SOT-based models.

A. Linear Motion Models

Appearance embeddings are discriminative in identifying
targets and are widely utilized as representative features for
data association. Most appearance-based methods apply a
simple linear motion model to compensate for contaminated
appearance embeddings under the assumption that objects
move linearly. The Kalman Filter (KF) is widely used in these
methods by treating detections as observations, and it provides
geometrical constraints for similarity measurements, such as
in the two-stage methods DeepSORT [1] and ByteTrack [3]
and in the one-shot methods JDE [4] and FairMOT [5].
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An improved KF-based motion model is proposed in OC-
SORT [27] to handle the accumulation of errors caused by
traditional linear state estimation. A simpler model with a
constant velocity assumption is used in TMOH [28].

Despite their simplicity, real-world motions are much more
complicated and are difficult to predict. Thus, linear motion
models cannot handle long-term occlusions and fast camera
motion, resulting in missing targets, target drifts, and ID
switches. In contrast, our DMMTracker takes advantage of
advanced SOT techniques, which can model complex motion
patterns and accurately predict target positions by capturing
discriminative visual features.

B. Regression-based Motion Models

Some motion models make position predictions by regress-
ing displacements of bounding boxes and center points. The
regression-based method Tracktor [8] is developed from Faster
R-CNN [26] by reusing its regression head, and the target
locations are obtained by regressing the displacements of the
bounding box between consecutive frames. Attention networks
are proposed in TADAM [29] to enhance the regressor by
guiding the network to focus more on targets and less on
distractors. Similarly, CenterTrack [9] regresses the offsets
of the target centers between adjacent frames and links each
updated center to the nearest target to assign identities.

However, displacement regressions are predicted based on
regional visual features, which are unaware of the identities
of targets and predict in an identity-agnostic way. Thus,
these methods suffer heavily from intra-class occlusion and
distractors of similar appearance, yielding ID switches and
missing targets. On the contrary, our DMMTracker can capture
identity-discriminative features and predict positions in an
identity-aware fashion. Moreover, DMMTracker can handle
noisy detections and missing targets by prioritizing SOT
predictions in forming trajectories.

C. Learnable Network-based Motion Models

Some methods construct complex deep networks to build
learnable motion models to learn motion dynamics and predict
positions. The sequence learning and memory ability of RNN
(Recurrent Neural Networks) enable it to be a motion model.
The RNN-based probabilistic autoregressive motion model is
proposed in [10] by learning the multi-modal distribution of
natural tracks. The RNN-based trajectory estimator is intro-
duced in [30] as the motion model based on mixture density
networks. In addition, learnable short-term and long-term
motion models are proposed in MotionTrack [11] to associate
trajectories from short to long ranges. A Transformer-based
motion model is proposed in [31] by considering the motion of
the target and the camera simultaneously. Moreover, learnable
motion predictors are also used in vehicle tracking [32], [33].

However, the parameters of learnable motion models are
tuned on the assumptions of specific distribution and built with
complex networks, thus making it difficult to generalize to
new scenes and other methods. Conversely, our DMMTracker
learns a matching function with pixel-level supervision on top
of visual features without motion priors. Therefore, it can

accurately localize targets in new scenes, and more advanced
SOT techniques can be implemented for further enhancement.

D. SOT-based Motion Models

The computational costs of directly applying SOT in MOT
dramatically increase when there are a large number of tar-
gets and repetitive feature extractions. Therefore, the unified
network paradigm is proposed by adapting the SOT trackers
to sub-networks to facilitate tracking efficiency and reduce
training complexity. STAM [12] and DMAN [34] assign
each target a SOT tracker for position estimation to generate
tracklets and handle occlusions with spatial-temporal attention
networks. End-to-end trainable methods that unify the SOT
trackers and data association modules have been proposed
in recent works. For example, the SOT tracker is integrated
with data association networks by cross-correlation operations
in FAMNet [13] to recover missed targets. DASOT [14]
integrates the SOT tracker and data association network into
a single network by sharing backbone features. Similarly, the
SOT tracker and metric learning module are integrated into a
unified triplet network in UMA [15].

Unlike previous methods, recent trackers prioritize SOT
predictions in extending trajectories. SOTMOT [17] proposes
to extend CenterNet [35] by adding a SOT branch to benefit
from the discriminative power of the SOT, and trajectories
are formed based on SOT predictions. The region-based SOT
tracker [18] is adopted and combined with Faster R-CNN to
form the region-based MOT tracker SiamMOT [16]. Object
detection and position predictions are performed simultane-
ously in these trackers, and trajectory extension and identity
assignments are performed based on SOT predictions. DMM-
Tracker is built on top of SiamMOT, and we enhance the
tracker by solving the incompatibility issues that arise when
employing SOT techniques as motion models.

III. METHODOLOGY

In this section, we first review the preliminaries of the
Siamese SOT tracker in Sec. III-A and provide an overview of
our method in Sec. III-B. Afterward, Sec. III-C introduces the
proposed Task-specific Feature Encoding Network (TFEN).
Sec. III-D presents the Quadruplet State Sampling (QSS)
strategy. Sec. III-E describes the Existence Aware Tracking
(EAT) algorithms. Finally, we illustrate the details of training
and inference in Sec. III-F.

A. Preliminaries

The region-based Siamese SOT tracker [18], [19] is em-
ployed as the motion model in our DMMTracker. This method
transfers the SOT into a template matching problem that finds
the most similar patch in the search region, and it shows
superior performance and high efficiency in SOT. Specifically,
a Siamese network is utilized to extract features φ(Z) for
template Z and φ(X) for search region X . The template
patch is the bounding box of the existing track, and the search
region is obtained by expanding the template patch by a pre-
defined factor. A channel-wise correlation layer is employed to
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Fig. 2. Overview of the proposed tracker DMMTracker. The existing tracks on the frame It and detections of the frame It+τ are used as input. The backbone
network extracts shared features Fshared. The proposed Target-specific Feature Encoding Network (TFEN) encodes task-specific features FDet and FSOT ,
which are used for the object detector and SOT tracker, respectively. The Siamese tracker is trained with training triplets sampled by the proposed Quadruplet
State Sampling (QSS) strategy. The target existence is estimated by building an existence prediction network on the Siamese tracker. The final MOT results
are obtained by merging the SOT predictions and the object detections with the proposed Existence Aware Tracking (EAT) algorithm.

produce a pixel-level response map f , which contains massive
amounts of semantic information about instance-level motion
and is calculated based on φ(Z) and φ(X) as follows:

f(Z,X) = φ(Z) ∗ φ(X), (1)

where ∗ represents the channel-wise cross-correlation oper-
ation. Based on this dense response map, three branches
are built with convolutional layers: a classification branch,
a regression branch, and a centerness branch. The classifica-
tion branch estimates the foreground-background probabilities.
The regression branch predicts the locations of the bounding
boxes. The centerness branch determines the closeness of each
location relative to the center of the target. The centerness
predictions help to remove outliers since the locations far away
from the center are prone to producing low-quality predictions.
Moreover, cosine window and scale change penalty are em-
ployed [18] to discourage dramatic changes in position and
shape to promote smooth trajectories.

The Siamese tracker is built based on the Region Proposal
Network (RPN) [26] and transfers the SOT as a one-shot
detection task. Hence, the Siamese tracker can be adapted
as a sub-network and unified with the region-based object
detector [26] to form an MOT tracker [16], where shared
backbone features are shared and fed into the object detector
and the SOT tracker simultaneously. More specifically, given
the existing tracks of the frame It and detections of the
frame It+τ with random τ frame gaps, each existing target
is assigned a SOT tracker and is used as the template patch
to find the most similar target patch in the frame It+τ by
the assigned SOT tracker. All targets are predicted simul-
taneously in one forward propagation, significantly reducing
the computational complexity and running time. The identities
of tracks are transferred with the position prediction process,
eliminating the necessity of complex data association methods.
Therefore, this tracking paradigm solves MOT by multiple
template matching, and the final MOT results are obtained
by merging SOT-based predictions with object detections.

B. Overview

The proposed DMMTracker is built based on the region-
based method SiamMOT by enhancing its motion models. The
overview of DMMTracker is shown in Fig. 2, where a region-
based Siamese tracker is employed as the motion model for
position predictions and is unified with a region-based object
detector [26] in a single network.

To alleviate the incompatibility regarding the required fea-
tures between the SOT and detection, we propose a Target-
specific Feature Encoding Network (TFEN), which is used
to encode task-driven features for each sub-task, i.e., class-
specific features for the object detector and target-specific
features for the Siamese tracker. In addition, the training
samples of the Siamese tracker are constructed with the
proposed Quadruplet State Sampling (QSS) strategy, which
aims to guide the Siamese tracker to be sensitive to intra-
class differences and capture identity-discriminative features
in template matching, eliminating the issue of feature incom-
patibility between SOT and MOT. Moreover, as shown in
Fig. 2, the existence confidences of targets are estimated by
building a prediction network on the Siamese tracker, which
can capture existence-related features and recover the missed
targets that are wrongly suppressed in traditional classification-
based identity management. The final trajectories are obtained
with the proposed Existence Aware Tracking (EAT) algorithm.

C. Task-specific Feature Encoding Network

The superior performance demonstrates the effectiveness of
integrating detectors and SOT trackers into a unified network.
This one-shot framework can balance the accuracy and speed
of the tracker. However, the difference in required features
between the detection and SOT methods is deleterious for
feature extraction, degrading the tracking performance. In
detail, the object detector is trained to predict the scale and
location of all targets that belong to pre-defined classes. The
semantic features of these categories are needed. Therefore,
class-specific features are essential for detectors. In contrast,
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Fig. 3. Overview of the proposed Target-specific Feature Encoding Network
(TFEN), which encodes class-specific features for the object detector and
target-specific features for the Siamese tracker, alleviates the incompatibility
regarding the required features between the detection and SOT.

the SOT trackers are trained to distinguish the specific object
of an unknown class from the surrounding background. Thus,
the target-specific features are imperative for SOT trackers.
Since the backbone features are shared and fed into two sub-
networks, neither network can obtain task-dependent features,
which inevitably deteriorates the MOT performance.

To resolve the incompatibility issue between the object
detector and the SOT tracker, we propose the Target-specific
Feature Encoding Network (TFEN) to capture task-dependent
features for the two sub-networks. The structure of the TFEN
is shown in Fig. 3, which comprises three parts (A, B, and C)
obtained by stacking convolutional layers. The TFEN encodes
task-related features in networks A and C for different tasks,
captures mutual information between two tasks in network
B, and finally yields the class-specific features FDet for the
detector and target-specific FSOT for the SOT tracker.

In detail, we first pass shared features Fshared through
a 1x1Conv layer and Softmax, which are used as attention
mechanisms to re-weight the channels of Fshared to obtain F 1

D

and F 1
S since different channels of Fshared focus on different

feature aspects. To aggregate local features, we use other
3x3Conv-GN-ReLU layers in A and C for feature extraction
on top of Fshared. Then, we fuse them with F 1

D and F 1
S by

element-wise addition to obtain self-related features F 2
D and

F 2
S for different branches before mutual information is passed

on. The 3x3Conv and 1x1Conv represent convolution layers
with 3 × 3 and 1 × 1 kernels, respectively. The GN denotes
the Group Normalization [36]. These processes are produced
as follows:

F 1
D = F 0

D ∗ Softmax(Wd1F
0
D), (2)

F 2
D = ReLU(GN(Wd2F

0
D)) + F 1

D, (3)

F 1
S = F 0

S ∗ Softmax(Ws1F
0
S), (4)

F 2
S = ReLU(GN(Ws2F

0
S)) + F 1

S , (5)

where Wd1, Wd2, Ws1, and Ws2 denote the learnable weights
of the four projection layers shown in Fig. 3, implemented as
convolution layers in A and C. The fused F 2

D and F 2
S contain

different self-related local features from Fshared for the object
detector and Siamese tracker, respectively.

As shown in Fig. 3, other 3x3Conv-GN-ReLU layers are
employed in B to extract and pass mutual features for each
sub-task, which is then fused with features F 2

D and F 2
S to

obtain the more compact middle features F 3
D and F 3

S . These
processes are shown as follows:

F 3
D = ReLU(GN(Wd3F

2
D)) +ReLU(GN(Ws4F

2
S)), (6)

F 3
S = ReLU(GN(Ws3F

2
S)) +ReLU(GN(Wd4F

2
D)), (7)

where Wd3, Wd4, Ws3, and Ws4 denote the learnable weights
for the four linear projections shown in Fig. 3, implemented
as convolution layers. F 3

D and F 3
S are high-level features

incorporating massive task-driven local features enhanced by
mutually beneficial features of different tasks.

Finally, the other two 3x3Conv-GN-ReLU layers are utilized
for further feature aggregation on top of F 3

D and F 3
S , and

the residual links from the input features F 0
D and F 0

S are
employed to incorporate low-level features to form the desired
task-specific features FDet and FSOT , respectively. These
processes are implemented as follows:

FDet = ReLU(GN(Wd5F
3
D)) + F 0

D, (8)

FSOT = ReLU(GN(Wd5F
3
S)) + F 0

S , (9)

where Wd5 and Ws5 are two learnable weight matrices, as
shown in Fig. 3. The fused features FDet and FSOT are sepa-
rately fed into the corresponding branch for further processing.
The detection-required features FDet capture class-specific
(e.g., pedestrians for MOT) information, which is beneficial
for estimating target locations and scales. Meanwhile, the SOT
branch can extract target-specific features for each assigned
target, enhancing the accuracy of template matching and
boosting the identity consistency of tracks. Therefore, the
proposed TFEN can relieve the incompatibility in features
between the detection and SOT.

Although the proposed TFEN is built in a symmetric
structure, the outputs FDet and FSOT are used as inputs for
different tasks and are supervised by different loss functions.
Thus, task-driven parameters are learned independently from
different training samples for different branches of the TFEN.
The effectiveness of TFEN is proven by the enhanced object
detection and position prediction performance in experiments.

D. Quadruplet State Sampling

The SOT technique is deployed as the motion model for
position predictions, and the balance between accuracy and
speed is achieved by integrating the SOT tracker and ob-
ject detector into a single network with multi-task learning.
Despite the effectiveness, the incompatibility of the required
features between the SOT and MOT degrades the tracking
performance. More specifically, the specific target of interest
with an unknown category is tracked in SOT. Therefore, the
SOT tracker is sensitive to inter-class differences since it learns
to distinguish targets from backgrounds. On the contrary,
multiple targets belonging to the same class are tracked in
MOT, emphasizing intra-class differences to maintain identity
consistency across frames. Hence, employing SOT trackers
as motion models in MOT needs to alleviate this feature
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incompatibility issue and guide the motion model to capture
identity-discriminative features during position predictions.

Since network feature extraction is highly related and
heavily relies on the training data [23], [37], we propose a
novel Quadruplet State Sampling (QSS) strategy to construct
the training sample of the motion model to address the
above incompatibility issue. The QSS guides the Siamese
tracker to focus more on the intra-class differences and extract
identity-discriminative features through network training to
better handle the challenging scenarios in MOT. Specifically,
the region-based Siamese tracker learns a matching function
in the training process with the dedicated sampled training
triplet Θt,t+τ

i =
(
Rt

i, S
t+τ
i , Rt+τ

i

)
from the selected image

pairs, where Rt
i denotes the template patch, St+τ

i is the corre-
sponding search region on frame It+τ obtained by expanding
Rt

i , and Rt+τ
i is the tracking target of Rt

i in the frame
It+τ . The template patch Rt

i is provided by RPN outputs
and selected with IoU-based matching following [18] while
training. We also use proposals of the RPN to form the tracking
targets Rt+τ

i via IoU-based selection, which can provide more
contextual information on tracking scenes during training.

The proposed QSS provides four tracking states of the
MOT by forming corresponding tracking scenarios in the
training triplets. Four types of training triplets are composed
of positive triplets (P), hard positive triplets (HP), negative
triplets (N), and hard negative triplets (HN). In detail, for the
ith training triplet Θt,t+τ

i , if the tracking target Rt+τ
i of the

template Rt
i exists in the search region St+τ

i , this makes a
continuous tracking scenario, and the states of the template,
search region, and tracking target are all marked as 1. Thus,
the positive triplet (P) represents the continuous trajectory of
the Rt

i , and we denote this positive triplet as P = (1, 1, 1). The
target Rt+τ

i is selected from the proposals of the RPN whose
assigned ID is the same as the ground truth of template Rt

i .
However, suppose that the search region St+τ

i does not
include the tracking target of the template Rt

i , i.e., the search
region includes targets of different identities or has no valid
targets. This case may be caused by occlusions or the target
leaving the scene. Thus, there is no valid tracking target
of the same ID as the template Rt

i in this training triplet.
This scenario makes the hard positive (HP) triplet, denoted as
HP = (1, 0, 0). We employ a dummy bounding box (whose
coordinates and ID are set to -1) as the tracking target Rt+τ

i

to form this hard positive training triplet.
Conversely, suppose there is no valid object in the template

Rt
i (i.e., dummy template), and the search region St+τ

i has not
been assigned with any valid IDs. In this case, the tracking
target Rt+τ

i is a dummy bounding box, and this scenario
results in a negative triplet (N), denoted as N = (0, 0, 0).
However, if the search region St+τ

i contains targets with valid
IDs while the template Rt

i does not, the target Rt+τ
i will still

be a dummy bounding box. This training triplet makes the
hard negative (HN) case and is marked as HN = (0, 1, 0). We
equally sample these four types of training triplets to construct
the training samples of the SOT tracker.

Among the training triplets formed with the QSS strat-
egy, the positive triplets can guide the SOT tracker to learn
what to track, and the hard positive triplets provide exam-

Fig. 4. Examples of the EAT algorithm. (a) shows the trajectories obtained by
determining the existence of targets based on classification confidence. The
correct prediction (shown in the red dashed box) is suppressed, resulting in
FN and IDS. (b) shows the trajectories produced by the proposed EAT, where
the occluded targets are continuously tracked with consistent ID.

ples of track terminations. The negative triplets provide the
scenarios of no tracking targets, which can guide the SOT
tracker to recognize the background, and the hard negative
triplets help the tracker to identify distractors to reduce false
predictions and ID switches. Therefore, the QSS can help
the SOT tracker better recognize intra-class differences, cap-
ture identity-discriminative features to distinguish targets, and
make correct decisions when encountering state transitions.

E. Existence Aware Tracking

The classification confidence is widely used to suppress
redundant bounding boxes in MOT. If the overlap between two
bounding boxes is higher than a pre-defined threshold, they
are regarded as representing the same target [38]. Those with
lower classification scores are suppressed, and the surviving
ones remain for identity assignments. However, the classifi-
cation score reveals the confidence of an object belonging
to a specific category. Thus, it cannot accurately reflect the
existence of predicted targets in tracking scenes. We argue that
this classification-based procedure is not optimal for determin-
ing the existence of targets since classification is estimated
based on classification-related features instead of existence-
related features. Some methods have attempted to mitigate
this problematic decision-making process by referring to the
historical information of trajectories [39] and re-considering
the lower-scored detections [3]. Although reasonably effective,
the difference in required features between the classification
and the existence of targets remains.

As shown in Fig. 4 (a), low-scored target predictions, which
are caused by contaminated features under occlusions, are not
equivalent to false positives. Motivated by this, we propose to
re-consider low-scored predictions to recover missed targets
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and boost the accuracy of the existence judgment. We enhance
the Siamese tracker by estimating the existence confidence
of targets and bridging the gap between existence and classi-
fication by the Existence Aware Tracking (EAT) algorithm.
To train this added existence prediction network, we first
construct the instance-level existence labels for all targets
by transforming the target visibility scores. The visibility
scores are provided by MOT datasets, which reveal the visible
proportion for each target. We assume that a target exists in
tracking scenes if its visibility score is higher than 0.1, and
we set the corresponding existence label Ê to 1. Conversely, a
target with visibility lower than 0.1 is regarded as leaving the
scene or completely occluded, and its existence label Ê is set
to 0. Thus, the existence label Ê is obtained as follows:

Ê =

{
1 visibility ≥ 0.1

0 otherwise.
(10)

We add a 3×3 convolutional layer and Softmax on top
of the response map to estimate the instance-level existence
confidence, which is built in parallel with the classification
and centerness branches on the Siamese tracker, as shown in
Fig. 2. The predicted existence confidence ranges from 0 to
1, showing the probability that a target exists in the tracking
scenes, irrespective of its location and classification score.
The existence-related features are captured in this prediction
network. Thus, the existence estimation is less affected by
occlusions and distractors than in the classification branch.
We take the predicted existence confidence into consideration
when deciding the survival of predicted targets.

We propose to tackle the incompatibility issue between
existence and classification with the Existence Aware Tracking
(EAT) algorithm by referring to the existence confidence
in identity management. Specifically, for pixel (i, j) on the
response map f , assume that the predicted classification con-
fidence is Si,j

cls and that the centerness score is Si,j
cen. The

original existence score of the location (i, j) can be calculated
as Si,j = Si,j

cls · Si,j
cen, reflecting the confidence of the location

(i, j) being the center of the tracking target, and Si,j is used
for the existence management.

If Si,j is higher than the threshold η1, this prediction can
form a high-scored trajectory. The corresponding predicted
target is deemed to exist in the scene and added to the tracking
set T1, where the successfully tracked targets lie. For targets
whose Si,j is lower than η1, instead of removing them as in
previous methods, we further consider the potential of this
target existing in the scene. A low-scored target is a potential
true positive if its predicted existence confidence Si,j

exi is higher
than a threshold η2. The high-scored Si,j

exi indicates that this
target may still exist in the scene and is partially occluded.
Thus, we collected this target and added it to the set T2 for
further consideration. The remaining tracks with low existence
confidences are no longer considered.

In the proposed Existence Aware Tracking (EAT) algorithm,
we first merge the predicted targets in T1 with the detections
D via NMS with a threshold of 0.5 by prioritizing the SOT
predictions to remove redundant bounding boxes. Then, we
process the targets in T2 in the second round. The unmatched

detections in the first association are denoted as D1
un, and

we calculate the bounding box overlaps between the predicted
targets in T2 and detections in D1

un to obtain the spatial sim-
ilarities between them. We associate two sets of targets with
the Hungarian algorithm, i.e., we spatially match predictions
with detections to verify the existence of targets in T2. The
remaining unmatched detections are initialized as new tracks.

The advantages of the proposed EAT algorithm are twofold.
For one thing, all tracks are simultaneously predicted by
their own assigned SOT trackers. The identities are kept and
transferred with SOT predictions, turning the MOT into a
template-matching problem and eliminating the complexity
of data association. For another thing, with the predicted
existence confidence, partially occluded and missed targets
are recovered, as shown in Fig 4 (b), reducing FNs and ID
switches and mitigating the issue in the difference of required
features between classification and existence of targets.

F. Training and Inference

Unifying the object detector and SOT tracker into a single
network enables DMMTracker to be trained end-to-end, and
the training loss comprises three parts: LRPN for the RPN,
LDet for the object detector, and LSOT for the Siamese
tracker. The training of the RPN and detector follows [26]
by adding up the losses of classifications and regressions.
The proposed QSS strategy samples the training triplets for
the Siamese tracker, where four types of training triplets are
equally distributed. As shown in Fig. 2, the prediction heads
of the Siamese tracker have four outputs, including classi-
fication, regression, centerness, and existence. The losses of
classification Lcls and regression Lreg in the Siamese tracker
are obtained with Focal Loss and IoU Loss, respectively.

The centerness of the location (x, y) is defined as:

Cx,y =

√
min (x− x0, x1 − x)

max (x− x0, x1 − x)
· min (y − y0, y1 − y)

max (y − y0, y1 − y)
,

(11)
where (x0, y0) and (x1, y1) denote the top-left and bottom-
right coordinates of the ground truth bounding box. Obviously,
the centerness Cx,y contrasts with the distance between the
location (x, y) and the corresponding target center, and Cx,y
is set to 0 if (x, y) is located in the background area. The loss
of the centerness branch is calculated as follows:

Lcen =
−1

N

∑
x,y

Cx,y · logAcen
x,y + (1− Cx,y) · log

(
1−Acen

x,y

)
,

(12)
where Acen denotes the predicted centerness heatmap, and N
represents the total number of valid points inside the target.

As illustrated in Sec. III-E, the target existence confidence
is predicted based on its ground truths Ê in Eq. 10, and the
training of the existence estimation network is supervised by
Cross Entropy Loss as follows:

Lexi = CrossEntropy
(
E , Ê

)
, (13)

where E is the predicted target existence. Therefore, the loss
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of the Siamese tracker LSOT can be formed as follows:

LSOT = Lcls + Lreg + Lcen + Lexi. (14)

The overall loss L of the proposed DMMTracker is:

L = LRPN + LDet + LSOT . (15)

At the inference stage, we adopt the scale change penalty
and the cosine window function [18] to refine the classification
score. The final tracking results are obtained by merging
detections and SOT predictions following the proposed EAT
algorithm. The targets that fail in predictions by the SOT
tracker are kept inactive for 30 frames instead of being termi-
nated, and the SOT tracker continuously searches for targets in
future frames along with active tracks to handle occlusions and
target re-appearance. Moreover, our DMMTracker follows the
public tracking paradigm, i.e., we do not initialize new tracks
unless provided by the benchmark detections.

IV. EXPERIMENTS

In this section, we first present the evaluation datasets,
metrics, and implementation details. Then, we demonstrate
the effectiveness of the proposed Task-specific Feature En-
coding Network (TFEN), Quadruplet State Sampling (QSS)
strategy, and Existence Aware Tracking (EAT) algorithm by
ablation studies. Finally, we compare our method with those
of previous works to demonstrate the superior performance of
DMMTracker and discuss its limitations.

A. Datasets and Metrics

We evaluate our tracker on MOTChallenge Benchmark
datasets, including MOT16, MOT17 [40], and MOT20 [41].
The MOT16 and MOT17 contain the same 7 sequences for
training with publicly available ground truths and 7 sequences
for testing. However, the frame-wise detections of MOT16
are provided by DPM [42], while MOT17 provides more
accurate annotations from detectors DPM, Faster R-CNN, and
SDP [43]. The MOT20 contains 4 training and 4 testing
sequences with detections provided by Faster R-CNN under
extremely crowded scenes. To make fair comparisons, we
conducted all experiments with the public detection regime
to avoid the discrepancy introduced by detectors.

We follow the common practices of adopting the CLEAR
MOT metric [44] for evaluation. Specifically, metrics includ-
ing Multi-Object Tracking Accuracy (MOTA), ID F1 Scores
(IDF1) [45], False Positives (FP), False Negatives (FN), ID
switches (IDS), Most Tracked (MT), Most Lost (ML) and
Frames Per Second (FPS) are assessed. The MOTA primarily
evaluates tracking convergence, and IDF1 describes identity
consistency. FPS indicates the inference speed. In addition,
the newly released metric Higher Order Tracking Accuracy
(HOTA) [46], which balances the effect of detection, associ-
ation, and localization into a single metric, is also employed
for comparison.

B. Implementation Details

We utilized DLA-34 [47] with FPN [48] as the backbone
network. The training strategy mostly follows the baseline

method [16]. Specifically, our network is pre-trained on 
CrowdHuman [49] with a learning rate of 5 × 10−3 and batch 
size of 16 under the image-based training strategy and then 
fine-tuned  on  MOT17/MOT20  with  a  learning  rate  of  1.5 
× 10−3 and batch size of 8 under the video-based training 
strategy. Image pairs are used as the input for our tracker, and 
the outputs of the RPN provide the training candidates by 
sampling 256 image regions. We resize the image pair to ensure 
that its shorter side has 800 pixels.

The parameter settings follow the baseline to eliminate the 
influence of fine-tuning and demonstrate the effectiveness of 
the proposed method. Specifically, the detection confidence 
threshold for starting a new track is 0.6, and the threshold η1 is 
set to 0.4 to determine the survival of the SOT-based 
predictions. The threshold η2 is set to 0.3, which is experimen-
tally selected and shown to be optimal for deciding whether to 
re-consider low-scored predictions in the EAT algorithm. In 
addition, we expand the template patch by a factor of 2 for both 
the width and height to obtain the search region of each target 
while predicting positions. All the experiments are performed 
on two NVIDIA GeForce RTX 2080 Ti GPUs, unless stated 
otherwise.

C. Effectiveness of the Proposed Modules

To verify the effectiveness of each component in DMM-
Tracker, we conduct experiments by ablating each proposed
module of this paper. The results are obtained by testing on
the MOT17 test dataset under the public detection protocol to
avoid the influence of overfitting, and the results are evaluated
via the MOTChallenge online submission. The results are
shown in Table I, where the baseline utilizes a vanilla Siamese
tracker [18] as the motion model for instance-level position
prediction. We assembled the proposed TFEN, QSS, and EAT
on top of the baseline for testing.

As shown in Model 1⃝ in Table I, compared with the base-
line, the proposed TFEN can reduce FN and ML and increase
MT, showing that more targets are successfully recovered
and tracked. Consequently, the MOTA improved by 0.6, and
IDF1 increased by 0.5. Similar improvements can be observed
by comparing Models 5⃝ and 6⃝ with Models 2⃝ and 3⃝.
Therefore, task-driven features are captured with the help of
TFEN, as demonstrated by the improved performance of the
detection-related metric MOTA and the identity-related metric
IDF1, and the incompatibility in required features between the
detection and SOT is alleviated at the same time.

Compared with the baseline, the increased IDF1 and MT
verify the enhanced identity consistency of Model 2⃝, which
is attributed to the proposed QSS in guiding the SOT tracker
to capture identity-discriminative features and intra-class dif-
ferences during position predictions. Similar improvements
can be observed by comparing Model 5⃝ with Model 1⃝.
Since using QSS alone enriches training triplets compared
with the baseline, such as hard positives and hard negatives,
the improvements of Model 2⃝ are less prominent than those
of Model 1⃝ when evaluated on the test dataset. However,
significant improvements are achieved in Model 5⃝ when
using TFEN and QSS together, where the task-specific features
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TABLE I
ABLATION STUDIES ON EACH COMPONENT OF THE DMMTRACKER. THE RESULTS ARE OBTAINED ON THE MOT17 TEST DATASET WITH PUBLIC

DETECTION PROTOCOL. THE ARROWS IN THE TABLE INDICATE THE OPTIMAL TREND OF EACH METRIC.

Model TFEN QSS EAT MOTA↑ IDF1↑ HOTA↑ MT↑ ML↓ FP↓ FN↓ IDS↓
Baseline 65.9 63.3 - 34.6 23.9 18098 170955 3040

1⃝ ✓ 66.5 63.8 51.9 39.2 19.8 23656 161786 3411
2⃝ ✓ 66.1 63.4 52.0 39.1 19.7 23955 163584 3811
3⃝ ✓ 66.2 63.4 51.5 39.0 20.4 23542 163719 3304
4⃝ ✓ ✓ 66.2 63.8 51.6 39.1 20.0 25460 161806 3613
5⃝ ✓ ✓ 66.7 64.2 51.9 38.9 19.9 23343 160920 3424
6⃝ ✓ ✓ 66.9 64.3 52.0 39.1 19.7 23583 159865 3227
7⃝ ✓ ✓ ✓ 67.1 64.3 52.1 39.7 19.7 25728 156791 3135

TABLE II
ABLATION STUDIES ON THE TFEN. THE A, B, AND C IN THE TABLE ARE

THREE PARTS OF TFEN.

Model A B C MOTA↑ IDF1↑ FP↓ FN↓ IDS↓
Baseline 64.1 63.6 12151 107325 1460

1⃝ ✓ 64.3 64.2 11521 106887 1878
2⃝ ✓ 64.3 64.5 11580 106594 2070
3⃝ ✓ ✓ 64.4 64.6 11516 105838 2080

TFEN ✓ ✓ ✓ 64.5 65.0 11448 105949 2041

are captured on top, increasing the baseline by 0.8 in MOTA
and 0.9 in IDF1, showing the effectiveness of task-specific
features in facilitating the discrimination of identity features

Reduced FN and ML and increased MOTA in Model
3⃝ over the baseline demonstrate that the existence estimation

and EAT algorithm can help to recover missed targets and form
longer trajectories. The effectiveness of EAT can also be ob-
served from the boosted performance in Model 6⃝ compared
to Model 1⃝. Thus, predicting the existence of targets and
managing identity with the EAT can help to recover more
targets, boost the accuracy of existence judgment, and elimi-
nate the difference in required features between classification
and existence. Moreover, the comparison of the MOTA and
HOTA between Model 6⃝ and Model 3⃝ shows that the target
existence judgments can also benefit from the target-specific
features since existence estimation is a target-dependent task.

D. Ablation Experiment of TFEN

The TFEN is designed to capture task-driven features from
shared backbone features. As shown in Fig. 3, the independent
features for each task are encoded in sub-networks A and C,
and mutual information is aggregated by sub-network B to
contribute to the final task-specific features. To investigate the
effectiveness of each part, we ablate A, B, and C of TFEN, and
the results on the MOT17 training set are shown in Table II.
The baseline in Table II feeds the shared backbone features
into the object detector and SOT tracker without processing.

According to Models 1⃝ and 2⃝ of Table II, feature en-
coding networks A and C can independently improve the
tracking performance. Specifically, network A encodes class-
specific features for the detector, reducing FP and FN and
improving the MOTA and IDF1, as shown in Model 1⃝. More
noticeable improvements are achieved when equipped with
network C in Model 2⃝ , which enhances the performance

TABLE III
ABLATION STUDIES OF THE EFFECTIVENESS OF THE PROPOSED QSS

STRATEGY AND EAT ALGORITHM.

Model QSS EAT MOTA↑ IDF1↑ FP↓ FN↓ IDS↓

SiamMOT
64.1 63.6 12151 107325 1460

✓ 64.4 64.1 10891 107232 1943
✓ 64.2 64.0 12287 107039 1929

DMMTracker
64.6 64.6 12255 105221 1729

✓ 64.7 64.9 11677 105110 2035
✓ 64.7 65.0 12202 105014 1868

of the SOT tracker by capturing target-specific features. The
reason for this improvement difference is that the base network
of our method is Faster R-CNN, which is pre-trained on
a larger detection dataset before being fine-tuned on the
tracking dataset. Thus, the SOT tracker is biased regarding
the feature extraction after fine-tuning, leaving more room
for improvement. This phenomenon also proves the existence
of differences in the desired features between detection and
SOT, which leads to this imbalance feature extraction issue.
It is no surprise that networks A and C can further boost the
performance when used together in Model 3⃝ since they are
designed to extract different task-specific features

The best results are achieved by adding network B on top
of A and C, demonstrating that beneficial mutual information
between the detector and the SOT tracker exists, which can
enrich task-specific features and boost tracking performance.

E. Ablation Experiment of QSS

The core motivation for employing QSS to sample training
triplets of the Siamese tracker lies in the fact that training
samples can guide the feature extraction and affect the predic-
tion accuracy. To understand the impact of QSS on promoting
identity consistency, we conducted ablation studies on the
MOT17 training set by applying the QSS strategy to SiamMOT
and DMMTracker. The results are shown in Table III. Models
without QSS in the table are trained with the vanilla sampling
strategy as in the baseline method.

Compared with models without QSS, we can see that QSS
can help improve identity consistency for both SiamMOT and
DMMTracker. Although IDS increases in both trackers, the
increased IDF1 (0.5 for SiamMOT and 0.3 for DMMTracker)
verifies that the identity consistency is enhanced. Therefore,
by training with four types of triplets sampled by the QSS
strategy, the Siamese tracker is more sensitive to intra-class
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differences and captures identity-discriminative features to dis-
tinguish tracking targets from distractors, leading to improved
identity assignment accuracy. As a result, longer trajectories
are formed with enhanced template-matching accuracy, reduc-
ing the number of FPs and FNs and relieving the issue of
feature incompatibility between the SOT and MOT.

F. Ablation Experiment of EAT
The incompatibility of the required features between the

classification and existence is a long-standing issue in video
understanding tasks. DMMTracker handles this issue by es-
timating target existence confidences and associating targets
with EAT algorithms. We conduct ablation studies on the
MOT17 training set to verify its effectiveness by applying
target existence estimation and EAT algorithm to the baseline
SiamMOT and DMMTracker. The models without EAT use
traditional classification-based determinations.

It can be observed from Table III that when manag-
ing identities with the EAT algorithm, both SiamMOT and
DMMTracker can recover missed targets to reduce FN and
outperform their counterparts in Table III. The reason for
the increased FP of SiamMOT when applying EAT is that
some false positives are mistakenly recovered. However, the
improved MOTA and IDF1 verify that more true positive
targets are recovered and some false identity assignments are
revised, leading to the formation of high-quality trajectories.

In addition, we investigate the effectiveness of the IoU-
based detection matching verification step in the EAT al-
gorithm. Although MOTA increases slightly (from 64.5 to
64.6) by recovering high existence confidence targets without
detection matching verification, the FP increases sharply (from
11448 to 11861), leading to decreased IDF1 (from 65.0 to
64.5). Therefore, we only recover the low-scored predictions,
which are matched and verified via detection.

The threshold η1 in EAT determines the survival of predic-
tions of the SOT tracker, and η2 is the threshold for deter-
mining whether a low-scored prediction is re-considered. An
ablation experiment is conducted on the MOT17 training set
to investigate the parameter settings, and the results are shown
in Table IV. As expected, a higher threshold η1 increases FN
since more predictions are suppressed. In contrast, a lower η1
would inevitably increase FP and IDS. We set η1 to 0.4, which
follows the baseline and avoids overfitting. We set η2 to 0.3,
which achieves good performance among different settings.

It can be found that FN decreases as η2 increases in
Table IV, which may be counterintuitive. We conjecture the
reason is that the number of false predictions increases when
a lower threshold η2 is used first. However, these falsely re-
covered targets are difficult to track in later frames since there
are no matching targets in future frames, leading to increased
FN. In contrast, a larger η2 will increase the proportion of
recovered true positives and reduce the incorrectly survived
ones. Therefore, most recovered targets can be continuously
tracked in the later frames, leading to a reduced FN.

G. Benchmark Comparison
We extensively evaluate our DMMTracker by compar-

ing it with the state-of-the-art (SOTA) methods on the

TABLE IV
SENSITIVITY ANALYSIS OF THE THRESHOLD η1 AND THE THRESHOLD η2

ON THE MOT17 TRAINING DATASET.

η1 η2 MOTA↑ IDF1↑ FP↓ FN↓ IDS↓
0.3 0.1 63.9 64.4 12958 106527 2049
0.3 0.2 63.9 64.4 13108 106406 2054
0.3 0.3 63.9 64.3 13272 106329 2065
0.3 0.4 63.9 64.3 13352 106270 2064
0.4 0.1 64.6 64.9 10677 106510 2035
0.4 0.2 64.5 64.9 11236 106244 2039
0.4 0.3 64.5 65.0 11448 105949 2041
0.4 0.4 64.5 65.0 11583 105920 2036
0.5 0.1 65.0 64.6 7235 108839 1932
0.5 0.2 64.9 64.8 7931 108275 1920
0.5 0.3 65.0 65.1 8082 107804 1919
0.5 0.4 65.0 64.9 8342 107568 1923

MOTChallenge benchmarks, including the MOT16, MOT17,
and MOT20 datasets. We follow the public detection paradigm
and submit our results to the MOTChallenge online testing
service. The results are illustrated in Table V. We only consider
methods of public detection paradigms that are comparable to
our tracker.

The proposed DMMTracker achieves very competitive re-
sults with public detections in all datasets. In particular,
DMMTracker outperforms the baseline SiamMOT in MOTA
and IDF1 in MOT17, demonstrating the effectiveness of the
proposed discriminative motion model in addressing incom-
patibility issues and boosting tracking performance. Besides,
DMMTracker achieves the best MT, ML, and FN in both
MOT16 and MOT17, showing that more targets are recovered
and longer trajectories are formed. The decreased ML and FN
are attributed to the TFEN and EAT, which enhance target
position prediction and existence management accuracy. The
TFEN and QSS help to promote identity consistency by captur-
ing identity-specific features and leading to increased MT and
IDF1. Therefore, the superior performance of DMMTracker
confirms the effectiveness of our method in enhancing the
accuracy of position predictions and identity assignments.

Compared with other SOT-based trackers, including
DMAN [34], STAM [12], KCF [50], DASOT [14], FAM-
Net [12], UMA [15], and SOTMOT [17], our DMMTracker
achieves the best performances on MOTA, IDF1, and HOTA.
The previous SOTA method, SOTMOT, is developed from
CenterNet [35] and tracks by exploiting center-based SOT pre-
dictions. The superior performance of DMMTracker demon-
strates the advantage of the region-based features in target
position predictions. Moreover, DMMTracker significantly
outperforms trackers that employ regression-based motion
models [8], [55], confirming the superiority of SOT trackers
in making instance-level position predictions in MOT.

Compared with the SOTA method ByteTrack [3], which is a
two-stage tracker that relies on an advanced detector [56]. Our
DMMTracker is a one-stage tracker that can detect and track
all targets in a single forward and benefit from the reciprocal
information between detection and position prediction, signifi-
cantly reducing the complexity of data association. Moreover,
our DMMTracker outperforms the recently proposed SOTA
methods OC-SORT [27] and UTM [52] in MOT17 under the
public detection paradigm.
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TABLE V
COMPARISONS WITH THE STATE-OF-THE-ART METHODS ON MOT16, MOT17, AND MOT20 DATASETS WITH PUBLIC DETECTION PROTOCOL. THE

SECOND COLUMN INDICATES WHETHER THE TRACKER IS A SOT-BASED METHOD. THE BEST RESULTS OF EACH DATASET ARE HIGHLIGHTED IN BOLD,
AND THE SECOND BEST ARE UNDERLINED.

Dataset Method SOT MOTA↑ IDF1↑ HOTA↑ MT↑ ML↓ FP↓ FN↓ IDS↓ FPS↑
MOT16 STAM [12] ✓ 46.0 50.0 37.9 14.6 43.6 6895 91117 473 0.2

DASOT [14] ✓ 46.1 49.4 37.3 14.6 41.6 8222 89204 802 9.0
DMAN [34] ✓ 46.1 54.8 40.3 17.4 42.7 7909 89874 532 0.3
KCF [50] ✓ 48.8 47.2 37.2 15.8 38.1 5875 86567 906 0.1
Tracktor [8] 56.2 54.9 44.6 20.7 35.8 2394 76844 617 1.6
IQHAT [51] 58.6 62.4 49.3 26.1 36.5 4074 71026 636 8.1
TMOH [28] 63.2 62.5 50.7 27.0 31.0 3122 63376 428 0.7
UTM [52] 63.8 67.1 53.1 33.3 28.2 8328 57269 635 13.1
DMMTracker ✓ 67.0 64.7 52.0 37.4 21.3 8532 50827 884 16.2

MOT17 DMAN [34] ✓ 48.2 57.8 42.5 19.3 38.3 26218 263608 2194 0.3
DASOT [14] ✓ 49.5 51.8 41.5 20.4 34.6 33640 247370 4142 9.1
FAMNet [12] ✓ 52.0 48.7 - 19.1 33.4 14138 253613 3072 -
UMA [15] ✓ 53.1 54.4 - 21.5 31.8 22893 239534 2251 -
Tracktor [8] 56.3 55.1 44.8 21.1 35.3 8866 235449 1987 1.5
OC-SORT [27] 58.2 65.1 52.4 18.3 44.8 4379 230449 784 28.6
TADAM [29] 59.7 58.7 - - - 9676 216029 1930 -
CenterTrack [9] 61.5 59.6 48.2 26.4 31.9 14076 200672 2583 17.0
TMOH [28] 62.1 62.8 50.4 26.9 31.4 10951 201195 1897 0.7
ArTIST [10] 62.3 59.7 48.9 29.1 34.0 19611 191207 2062 4.5
SOTMOT [17] ✓ 62.8 67.4 - 24.4 33.0 6556 201319 2017 16.0
UTM [52] 63.5 65.1 52.5 37.4 27.0 33683 170352 1686 13.1
SiamMOT [16] ✓ 65.9 63.3 - 34.6 23.9 18098 170955 3040 -
ByteTrack [3] 67.4 70.0 56.1 31.0 31.2 9939 172636 2387 27.4
DMMTracker ✓ 67.1 64.3 52.1 39.7 19.6 25728 156791 3135 16.1

MOT20 Tracktor [8] 52.6 52.7 42.1 29.4 26.7 6930 236680 1648 1.2
TBooster [53] 54.6 53.4 42.5 32.8 25.5 9486 223607 2038 1.4
MTracker [54] 55.6 65.0 - 35.7 31.2 12297 216986 480 -
TADAM [55] 56.6 51.6 - - - 39407 182520 2690 -
IQHAT [51] 57.1 57.7 45.7 40.8 20.0 32247 187937 1875 7.5
OC-SORT [27] 59.9 67.0 54.3 38.5 26.6 4434 202502 554 27.6
TMOH [28] 60.1 61.2 48.9 46.7 17.8 38043 165899 2342 0.6
UTM [52] 64.4 65.9 53.3 65.0 13.3 82726 98974 2592 6.2
DMMTracker ✓ 62.5 60.5 48.7 49.6 16.4 33795 158057 2043 9.7

H. Qualitative Results and Discussion

We show the qualitative results of our DMMTracker in
crowded scenes of the MOT17 and MOT20 test sequences
in Fig. 5. We can observe that DMMTracker can accurately
track targets under frequent occlusions and maintain consistent
identity across frames. The results of MOT17-03 and MOT20-
04 show that DMMTracker can successfully localize and track
small targets under different lighting conditions. Moreover,
the visualization of MOT17-08 and MOT20-08 shows the
generalization of DMMTracker.

Despite the superior performance, there is still plenty of
room for improvement. We show failure cases of DMMTracker
in Fig. 6. The target indicated by the red arrows in Fig. 6 (a)
intersects with others and reappears after occlusion, and the ID
switch occurs twice. The temporal consistency of target region
features is contaminated under continuous occlusion, degrad-
ing the accuracy of template matching and identity assignment.
This issue can be resolved by referring to global features [57]
and dynamically updating the cached features [11] to reduce
the reliance on recent tracking results.

Fig. 6 (b) shows the ID switches caused by large target
scale changes and long-term occlusions. The reasons for these
ID Switches are twofold. First, the tracker lacks long-term
occlusion solutions, i.e., the cached features of unmatched
targets are removed from the memory after long-term oc-
clusions. In addition, the appearance changes dramatically,
breaking the temporal consistency of features and reducing
the accuracy of visual similarity. This issue can be resolved

TABLE VI
COMPARISON IN TRACKING SPEED BETWEEN DMMTRACKER AND ITS

LITE TRACKER DMM-LITE.

Model MOTA↑ IDF1↑ FP↓ FN↓ IDS↓ FPS↑
DMMTracker 64.5 65.0 11448 105949 2041 18.2

DMM-lite 63.1 62.4 12276 110213 1839 25.4

by using dedicated memory modules [58] and dynamic target 
feature update schemes [59].

Although the proposed DMMTracker achieves superior per-
formance, the tracking speed is not very fast, it cannot meet 
the demands of real-time applications, and it becomes worse as 
the number of targets increases. To satisfy the requirements of 
real-time tracking, we propose a lite version by simplifying the 
structure of DMMTracker in two ways. First, we remove the 
FPN network from the backbone to reduce the computation 
burden. Second, we build a simplified TFEN by removing 
network B and simplifying networks A and C since favorable 
results can be achieved with these sub-networks. We test the 
tracking speed of this lite tracker (denoted as DMM-lite) on a 
3090 Ti GPU and compare the performances of DMMTracker 
and DMM-lite in the MOT17 under the same experimental 
settings. The results are shown in Table VI.

From the table, we can see that the DMM-lite can track 
faster, which can achieve real-time tracking speed. However, 
the MOTA and IDF1 decrease by 1.4 and 2.6, respectively, and 
the numbers of false predictions and missing targets increase
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Fig. 5. Qualitative results of the proposed tracker DMMTracker in crowded scenes. From top to bottom: MOT17-03, MOT17-08, MOT20-04, and MOT20-08.
Four video sequences are shown with crowded scenes containing frequent target occlusions and intersections.

Fig. 6. Examples of failure cases. (a) shows the ID switches caused by 
frequent object intersections. (b) illustrates the ID switches caused by long-
term occlusions and large-scale variations.

simultaneously. Thus, the tracking speed can be expedited by 
pruning the network structure and sacrificing some tracking 
robustness. In our future work, we will focus on facilitating 
tracking speed by applying more advanced SOT methods [60],
[61] and referring to knowledge distillation techniques [22] 
to build the lite tracker, whereby the tracking speed can be 
boosted without harming tracking performance.

V. CONCLUSION

In this paper, we discussed the issue of feature incompat-
ibility when employing the SOT trackers as motion models
for position predictions in MOT. We resolved these issues
by proposing a region-based discriminative motion model.
A novel Task-specific Feature Encoding Network (TFEN)
was proposed to alleviate the incompatibility between object
detection and SOT by extracting task-dependent features for
each sub-network. Then, we proposed a novel Quadruplet
State Sampling (QSS) strategy to construct the training sample
of the SOT tracker, which can guide the motion model to
capture identity-discriminative features in position predictions
and mitigate the incompatibility between the SOT and MOT.
Finally, we proposed an Existence Aware Tracking (EAT)
algorithm to eliminate the incompatibility between the clas-
sification and the existence of targets by estimating the target
existence confidence and re-considering the low-scored pre-
dictions for identity assignment. The experiments demonstrate
the effectiveness of the proposed DMMTracker in alleviating
the incompatibility issues of applying the SOT tracker as
the motion model in MOT, and very competitive results are
achieved in MOT benchmarks.
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