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Abstract—This article introduces a novel Artificial Neural
Network (ANN) structure magentadetermination process, based
on the Cardiff Model (CM), to determine ANN-based transistor
non-linear behavioral models. By relating the CM formulation
and coefficients to the Taylor series expansion of the ANN model,
a novel approach for determining the required values of a Fully
Connected Cascaded (FCC) ANN structure has been formulated.
The proposed method provides the chance to escape from the
possible time-consuming ANN magentadetermination process.
Experiments proved that the proposed ANN models using the
magentadetermination method can provide accurate prediction
for the behavior acquired from load-pull characterizations of a
Wolfspeed 10 W packaged gallium nitride (GaN) High Electron
Mobility Transistor (HEMT) simulation at 3.5 GHz, and a dense
load-pull measurement of WIN NP12 4x75 um GaN HEMT at
20 GHz, with Normalized Mean Square Error (NMSE) levels
lower than - 40 dB.

Index Terms—Artificial Neural Network (ANN), behavioral
model, yellowLoad-Pull measurement, yellowgallium nitride
(GaN), power amplifier.

I. INTRODUCTION

VARIOUS large-signal models for HEMT transistors have

been reported in the literature. Those commonly used

in CAD design are state function, current-voltage (I-V) and

charge-voltage (Q-V), time-domain based compact models.

While physically motivated from an equivalent circuit topol-

ogy perspective, they generally use user-defined empirical

closed-form mathematical expressions to fit the measured I-

V and Q-V response [1], [2]. CAD implementations have

also used look-up tables [3], [4], or a pure ANN based

model [5]. Recently, especially for GaN HEMTs, state func-

tion formulations that are more physics-based have emerged,

such as Advanced Spice Model (ASM) HEMT [6] and MIT

Virtual Source GaN-HEMT (MVSG) [7] models, where the

closed-form mathematical expressions are derived from either

surface-potential or charge based analysis and so provide more

insight of how the device operates and ideally better scalability

vs. device geometry.
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The state function modeling approach, while providing a

robust general purposed CAD model unfortunately involves

gathering extensive DC and S-parameter data, coupled with

complex parameter extraction procedures, which can be very

time-consuming. Behavioral models, typically formulated in

the frequency domain, provide an alternative less general but

more time-efficient approach. For example, the Poly-Harmonic

Distortion (PHD) Model [8], the X-parameter Model [9],

and the Cardiff Model [10], require no prior knowledge of

the internal device structure but provide good model accu-

racy [11], [12] since they effectively enable the direct use of

measurement data in non-linear CAD design.

Considering that the Artificial Neural Network (ANN) tech-

nique has been one of the research hotspots for transistor

model extraction in recent decades. This work focuses on

exploring the possibility of further enhancing behavioral model

performance through the application of the ANN technique.

The ANN technique has provided RF designers with flexibility

in the model structure to account for more complexity, and

the possibility of a faster optimization procedure to create

models for fitting different measurement datasets [13]–[17].

More importantly, it potentially allows a better extrapolation

prediction ability [12], [18], and flexibility on model param-

eter variation for a robust selection on the model’s accuracy,

regardless of the dataset for model extraction (explored later

in this work). The design of RF power amplifiers is a good

application area, for the ANN technique, to provide the

required transistor non-linear behavioral models. However, the

challenge is determining the appropriate ANN structure.

Dataset

Establish

ANN Model

[with weights and biases]

Initialize

ANN Model 

Structure

Error Cal

[model prediction vs. dataset]

Update

ANN Model Parameters

Train

ANN Model

Fig. 1. Brief general flow diagram for the ANN training process.
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Under different scenarios, the ANN structure is not fixed

for systems with different non-linearity [19]–[21]. Therefore,

different structures might be required for better prediction of

behavior. The existing research recognizes that the Multilayer

Perceptron (MLP) feedforward neural network structure [22],

[23], and the Levenberg–Marquardt (LM) backpropagation

algorithm [20], [24], [25], which provide efficient ANN-based

model with lower complexity and reduced computational

requirement training process, can be chosen for utilizing for

solving non-linear RF device behavioral modeling problems

[26]. However, as briefly shown in Fig.1, the ANN model

fitting process generally requires an initial setup for the values

of the hidden neuron numbers, weights, and biases. Different

initialization points used when training ANNs yield differ-

ent results with different associated errors [23], [27]–[29].

Overdetermining the values may lead to the phenomenon of

overlearning [22], [30]. The optimization methods for finding

the optimal configuration of an ANN behavioral model may

rely on the necessary experience from the operator. In all cases,

a successful ANN model training session may require multiple

attempts.

Non-linear transistor behavioral models used in RF design,

the look-up table based, curve-fitted mathematical formu-

lations are typically black-box models. Consider, however,

the Cardiff Model (CM), which provides a physics based

mathematically formulated non-linear model [10], [31], [32].

It works by transferring the load-pull measurement data of

the RF transistors to a set of mixing theory based coef-

ficients. But it is typically extracted over a limited load-

pull impedance range, due to both measurement system

limitations and transistor operation constraints, which may

lead to the non-convergence or non-physical solution when

used in CAD optimization tools [26]. Knowing the system

level non-linearity determined polynomial order, hence the

required number of CM coefficients, it is able to provide

reliable accurate models using tailored datasets [33]. If the

CM could be used to indicate the structure of the ANN

and influence parameter magentadetermination (values of the

weights and biases), it would remove the requirement for

random ANN structure selection and parameter initialization.

Simultaneously, as an ANN model structure, the possibility to

overcome the converging issues with reasonable extrapolation

predictions [26] can be improved.

The article is organized as follows: In yellowSection II,

a novel method that does allow the ANN model structure

and magentainitial parameter values to be determined from

the CM is presented. In yellowSection III, the verification of

the proposed method will be undertaken, using firstly, a set

of load-pull simulation data from ADS on a Wolfspeed GaN

device. Secondly, a dense set of data acquired from the load-

pull measurement done on the WIN GaN on-wafer device is

used to further prove the method’s robustness in yellowSection

IV. The CM and ANN models extracted from the WIN device

measured data will be used to highlight the extrapolating

advantages of using the ANN solution. Finally, the discussion

and conclusion are given in yellow Sections V and VI.

II. METHOD PROPOSING PROCEDURE

The overview of the proposed method is shown as a flow

diagram in Fig. 2.

Expand

The tanh function

with the Taylor series expansion

Fully Connected Cascade

(FCC) 

Artificial Neural Network 

(ANN)

Establish 

Analysis and Equations 

for Initializing an FCC ANN Model

Reformulate

CM

[matrix calculation format]

Cardiff Model 

(CM)

Reformulate

FCC ANN

[matrix calculation format]

Compute & Separate

Nonlinear Elements

[with Hidden Bias matrix]

Compare

Reformulated FCC ANN and CM

[in matrix calculation format]

Fig. 2. Flow diagram summarizing the procedure used to establish the
equivalence between ANN and CM coefficients.

It follows these steps in detail:

1) Since ANNs require complex numbers to be processed

with the real and imaginary parts separated, the CM

(structure diagram shown in Fig. 3) needs to be refor-

mulated to accommodate the separation of the complex

variables (following the details explained in Step 1 with

Appendix A).

2) A single hidden layer structure ANN model [13] (con-

ventional structure in Fig. 4) is reformulated, with the

Taylor series expansion being applied to replace the tanh

activation function. This provides a better understand-

ing of how an ANN’s structure operates on non-linear

segments from layer to layer with the tanh activation

function.

3) Following the details explained in Step 2 with Appendix

B, it is important to note that the tanh function generates

both linear and constant terms as well as higher order

terms. To account for the linear and constant terms,

a Fully Connected Cascaded (FCC) ANN structure is

selected to ensure accurate prediction (interpolation) of

measured results. It is the higher order terms that con-

tribute to an improved extrapolation ability [12], [18].

4) After the ANN and CM models have been reformulated,

their elements are matched to establish a new set of

equations for identifying the required FCC ANN model

configuration.

5) Finally, the proposed method for magentadetermining an

FCC ANN model parameters is derived.

A. Step 1: CM Equations Reformulation

The original CM mathematically relates the input and output

power waves of the device through a set of model coefficients
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Input Matrix Coefficient Matrix Output Matrix

𝑀2,ℎ,𝑚,𝑛[𝐴2,1] [𝐵2,ℎ]
𝐴2,1 0∠𝐴2,10

𝐴2,1 𝑚∠𝐴2,1𝑛⋮

Polynomial 

Populated  

Matrix

𝐴2,1 1∠𝐴2,11 ∑
Fig. 3. Conventional CM model diagram.

Hidden LayerInput Matrix Output MatrixOutput Layer

𝑡𝑎𝑛ℎ𝐻𝐵
𝐻𝑊 𝑂𝑊𝐴2,1𝑅𝐴2,1𝐼 𝐵2,1𝑅𝐵2,1𝐼

Fig. 4. Conventional ANN model diagram.

‘Mp,h,m,n’ [33], [34]. The formulation is phased normalized

to A1,1 for fundamental load-pull measurement datasets is as

(1):

Bp,h =
∑

r

∑

n

Mp,h,m,n

∣

∣A2,1

∣

∣

m
(∠A2,1)

n

(1)

where ∠A2,1 represents the complex exponential of the phase

of A2,1, the ‘p’ and ‘h’ subscripts denote the respective port

and harmonics.

The exponents choice is driven by mixing theory, which

makes the model physically meaningful. ‘m’ and ‘n’ denote

the coefficient related power wave’s magnitude and complex

exponential of the phase respectively. The ‘m’ and ‘n’ are

related as ‘m = |n| + 2r’, where ‘r’ is the magnitude

indexing term is limited to integer values from 0 to 1 because

of extrapolation concerns [31], [33], [34]. The simple CM

diagram can be shown as in Fig. 3.

Having the ‘A2,1’ stimulus incident waves separated into

real and imaginary parts the CM can be reformulated as (2).

[

BR
p,h

BI
p,h

]

=
[

M0

]

+
[

M1

]

[

AR
2,1

AI
2,1

]

+
[

M2

]







(

AR
2,1

)2

AR
2,1A

I
2,1

(

AI
2,1

)2







+
[

M3

]















(

AR
2,1

)3

(

AR
2,1

)2
AI

2,1

AR
2,1

(

AI
2,1

)2

(

AI
2,1

)3















...

+
[

Mo

]





·
(AR

2,1)
m−k(AI

2,1)
k

·





(2)

where ‘R’ and ‘I’ represent the real and imaginary parts of

the complex data segments, the [Mo] matrix is computed

from sets of model coefficient ‘Mp,h,m,n’, exponent pairs

(m,n), associated with the respective mixing order [10], and

’k’ ranges from 0 to ’o’, where ’o’ represents the expanded

polynomial order. More details can be found in Appendix A.

In this case, the reformulated CM equation (2) can also be

presented by the structure diagram shown in Fig. 5. When

observing the structure of both models, as in Fig. 4 and 5,

the similarities between the two model structures can be seen.

The coefficient matrix columns in Fig. 5 can fulfill a similar

process as the hidden layer and output layer in Fig. 4.

[𝑀1][𝑀2][𝑀3]

[𝑀0]Input Matrix Coefficient Matrix

…

Output Matrix

[𝑀𝑜]
∑𝐴2,1𝑅𝐴2,1𝐼 𝐵2,1𝑅𝐵2,1𝐼

Fig. 5. Diagram of the CM model reformulated for Real and Imaginary parts.

B. Step 2: General ANN Equations Reformulation

Before moving on to the FCC ANN model structure, the

general ANN model structure shown in Fig. 4, is first pre-

sented. Since the ANN-based model necessitates having any

input and output matrices split from the complex form into

separate real and imaginary matrices, it executes the following

mathematical formulation:
[

BR
p,h

BI
p,h

]

= [OW ] tanh

(

[HW ]

[

AR
2,1

AI
2,1

]

+ [HB]

)

(3)



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. XX, NO. X, MAY 2024 4

where ‘R’ and ‘I’ are the abbreviations of real and imaginary

parts of the complex data segments, while parameters ‘[HW]’,

‘[HB]’ and ‘[OW]’ represent the number of hidden weights,

hidden biases, and output weights respectively.

Inside the ANN structure, the non-linear transfer character-

istic function tanh, also called the activation function [35], is

the key to creating non-linearity within any ANN system. By

formulating the tanh activation function with its Taylor series

expansion, the non-linearity terms are clearly separated (the

expanded version is shown in Appendix B) and so provide a

formulation that can be compared with the reformulated CM

structure.

It must be noted that the constant and linear elements

inside the Taylor series reformulated ANN model will not

be independent of the higher-order non-linearities. Hence,

analysis done on the Taylor Series expansion starts from the

higher order elements, respectively, because the parameters

(‘[HW]’, ‘[HB]’ and ‘[OW]’) are shared between linear and

non-linear elements, so lower order elements will be affected

by the higher order elements due to the calculation operation

order. Therefore, extra weight ‘[CW]’ (Cascaded Weights)

and bias matrices ‘[OB]’ (Output Bias) will be required for

correcting the constant and linear elements provided by the

Taylor series expansion. Also, knowing from [18] that the

Knowledge-based Neural Network structure is proven to be

more robust than the multilayer perceptron (MLP) structure,

especially when the dataset is insufficient. The general ANN

structure, in Fig. 4, will then be transformed into the FCC

ANN structure [22], which is a basic KBNN, shown in Fig.

6.

Hidden LayerInput Matrix Output MatrixOutput Layer

𝑡𝑎𝑛ℎ𝐻𝐵
𝐻𝑊 𝑂𝑊

𝑂𝐵𝐶𝑊 ∑𝐴2,1𝑅𝐴2,1𝐼 𝐵2,1𝑅𝐵2,1𝐼

Fig. 6. FCC ANN model diagram.

C. Step 3: FCC ANN Equations Reformulation

The Taylor series formulation of this FCC ANN model can

be written as:

[

BR
p,h

BI
p,h

]

= ([OB] + [OW ] [α])

+ ([CW ] + [OW ] ∆ [α] [HW ])

[

AR
2,1

AI
2,1

]

+ [OW ] ∆2 [α]
[

HW 2
]







(

AR
2,1

)2

AR
2,1A

I
2,1

(

AI
2,1

)2







+ [OW ] ∆3 [α]
[

HW 3
]















(

AR
2,1

)3

(

AR
2,1

)2
AI

2,1

AR
2,1

(

AI
2,1

)2

(

AI
2,1

)3















...

+ [OW ] ∆o [α] [HW o]





·
(AR

2,1)
o−k(AI

2,1)
k

·





(4)

’NH’ here represents the number of hidden neurons used in

the ANN structure. And this is used to compute the Taylor

series terms:

[α] = tanh [HB] (5)

∆o [α] =
1

o!

∂o tanh ([HB])

∂ ([HB])
o . (6)

where [HB] is given by:

[HB] =







HB1,1

...

HBNH,1






(7)

and the [HW ] is given by:

[HW ] =







HW1,1 HW1,2

...

HWNH,1 HWNH,2






. (8)

Since the defined FCC ANN model deals with datasets

that consist of real and imaginary pairs, the two elements in

(8) associated with each hidden neuron in the [HW ] matrix,

will also represent the real and imaginary parts of the same

complex number. Hence, [HW ] can be re-written as follows:

[HW ] =







ρ1 cos θ1 ρ1 sin θ1
...

ρNH cos θNH ρNH sin θNH






(9)
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𝑂𝐵Hidden LayerInput Matrix Output Matrix
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∑
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Fig. 7. Reformulated FCC ANN model diagram.

Defining the [HW ] matrix in the polar form provides an

easier way to explore possible suitable values. This format is

then used to determine corresponding [HW o] matrices:

[HW o] =







ρ1 0 . . . 0
...

. . .
...

0 . . . 0 ρNH





















·

(

o

k

)

(cos θ1)
o−k(sin θ1)

k
·

...

·

(

o

k

)

(cos θNH)o−k(sin θNH)
k

·















(10)

Note, the expansion of [HW o] matrix follows the binomial

theorem. ’k’ ranges from 0 to o, and ’o’ refers to the poly-

nomial order number. The positive integer

(

o

k

)

= o!
k!(o−k)!

is known as the binomial coefficient. More details about the

reformulation process can be found in Appendix B.

By using the matrices formulation, shown in (4), the FCC

ANN structure can be re-drawn as shown in Fig. 7. It is now

clear how the levels of non-linearity in the system are being

processed by different weights and biases inside the FCC ANN

model. A direct comparison can now be done between the

reformulated CM (Fig. 5) and the FCC ANN model (Fig. 7).

D. Step 4: Equating Formulations and ANN Model Structure

Identification

Comparing equations (2) and (4), and also Fig. 5 and 7,

the non-linearities inside the two systems can be equated

as follows: where the first line of the matrices’ calculation

in (4) will match with the constant [M0] matrix in (2); the

second line of the matrices’ calculation in (4) is generating

the fundamental part of the response; and the 2nd and 3rd

order responding output non-linearities are generated by the

third and fourth row of the matrices’ multiplication in (4),

respectively. Hence, a set of equations (11) - (15) can be

extracted by equating the linear and non-linear terms inside

the calculation processes:
[

M0

]

= [OB] + [OW ] [α] (11)
[

M1

]

= [CW ] + [OW ] ∆ [α] [HW ] (12)

[

M2

]

= [OW ] ∆2 [α]
[

HW 2
]

(13)

[

M3

]

= [OW ] ∆3 [α]
[

HW 3
]

(14)

...

[

Mo

]

= [OW ] ∆o [α] [HW o] (15)

These equations provide a method for linking CM complexity

and coefficients to FCC ANN based model structure and

parameters.

By knowing the number and dimensions of the [Mo] ma-

trices required from the identified CM, the associated ANN

matrices dimensions, [OW ], [HB] and [HW ], necessary to

ensure that the matrix equations (11) - (15) are self-consistent,

can now be determined. The ANN structure with the required

hidden neuron number can now be directly identified, by

analyzing load-pull data complexity using the CM. Consider

the case where the accurate modeling of the load-pull data

is found to require a 3rd order non-linear CM [33]. In this

case, we need an ANN structure that can satisfy (11) -

(14). Following the contribution of the non-linearities inside

the expanded ANN structure, the higher order non-linearities

segment will be analysed first, by solving (13) - (14), then the

linear segment can be calculated, by solving (11) - (12).

The size of the [M2] matrix, given by the CM, in this case,

is [2 × 3]. Hence, the matrices dimensions on the right hand

side of (13), [OW ] ∆2 [α]
[

HW 2
]

, must also result in a [2×
3] matrix, hence implying an ANN structure with 3 hidden

neurons. There is the same scenario for solving (14). The size

of the [M3] matrix, given by the CM, is [2 × 4]. Hence the

[OW ] ∆3 [α]
[

HW 3
]

product must also result in a [2 × 4]
matrix, implying an ANN structure with 4 hidden neurons.

However, in a given FCC ANN model the number of hidden

neurons is a single value, hence different sizes for the required

weights ([OW ] and [HW ]), and bias ([HB]) matrices is not

possible. This can be addressed by using the sum of the two

different matrix sizes which, in this case, leads to an FCC

ANN structure with 7 hidden neurons.

In summary, it has been identified that an FCC ANN

model with 7 hidden neurons is the maximum complexity

necessary to model a 3rd order non-linear system. Note,

once this ANN model has been determined (weights and

biases) through backpropagation training, the corresponding

CM coefficients ‘Mp,h,m,n’/’[Mo]’ matrices, can be computed

from (11) - (14).

E. Step 5: FCC ANN Model Parameter magentadetermination

Now, the ANN model structure identification has been

achieved. There is still a potential situation where the initial

values of the ANN model parameters lead to a non-converging

backpropagation training process. Therefore, having proper

magentadetermined values of the ANN model parameters

[OW ], [HB] and [HW ] can be helpful for the training process.

However, it is not possible to compute the ANN model pa-

rameters, the three matrices [OW ], [HB] and [HW ], directly

from the CM by simply reversing equations (11) - (14). Two of

the ANN model matrices have to be predetermined. Following
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the feed forward process of the ANN structure, the first set of

matrices that should be defined are matrix [HB], and [HW ].
Once determined, [OW ] can then be computed directly using

equations (16) and/or (17).

[OW ] =
[

M2

] [

∆2 [α]
[

HW 2
]]

−1
(16)

[OW ] =
[

M3

] [

∆3 [α]
[

HW 3
]]

−1
(17)

The selection of [HB] is critical to ensuring that equations

(16) and (17) give the same value of [OW ]. It can be seen

from the reformulated CM equation (2) that the [M2] matrix

deals with the 2nd order non-linearity and the [M3] matrix

ideals with the 3rd order non-linearity. To magentadetermine

an FCC ANN using (13) and (14), according to the calculation

through the tanh function, the [HB] matrix can now be used to

enable hidden neurons to target specific orders of non-linearity.

The values of ∆o [α] matrices will be the key in this step.

The 3rd order non-linear systems require an ANN model

with 7 hidden neurons. Hence, [HB] and [HW ] are as follows:

[HB] =





















HB1,1

HB2,1

HB3,1

HB4,1

HB5,1

HB6,1

HB7,1





















(18)

[HW ] =





















HW1,1 HW1,2

HW2,1 HW2,2

HW3,1 HW3,2

HW4,1 HW4,2

HW5,1 HW5,2

HW6,1 HW6,2

HW7,1 HW7,2





















(19)

Fig. 8. Selected bias point (red markers) locations on the tanh(x) function.
Location without a 3rd order derivative (triangle) and location without a 2nd

order derivative (circle).

Referring to the Taylor series expansion of the tanh func-

tion, see Appendix B, if an element of matrix [HB] is set to

0.6585 (bias point Fig. 8-triangle marker) then the 3rd order

element will be filtered out, because the corresponding element

of matrix ∆3 [α] is 0; alternatively when an element of matrix

[HB] equals 0 (bias point Fig. 8-circle marker), then the 2nd

order element will be filtered out because the corresponding

element of matrix ∆2 [α] is 0.

Hence, using the required matrix sizes, mentioned in step

4, set the values of [HB] matrix elements as follows:

[HB] =





















HB1,1

HB2,1

HB3,1

HB4,1

HB5,1

HB6,1

HB7,1





















=





















0.6585
0.6585
0.6585

0
0
0
0





















(20)

hence

[

∆2 [α]
]

=





















0.38
0.38
0.38
0
0
0
0





















(21)

and

[

∆3 [α]
]

=





















0
0
0

−0.33
−0.33
−0.33
−0.33





















(22)

The FCC ANN structure for 2nd and 3rd order non-linear

contributions has now be separated and assigned to hidden

neurons [1− 3] and [4− 7] respectively. There is now no

requirement to solve (16) and (17) simultaneously. They can

be reformulated as follows:

[OW2] = 0.38
[

M2

] [

HW 2
2

]

−1
(23)

[OW3] = −0.33
[

M3

] [

HW 3
3

]

−1
(24)

where the [HW ] and [OW ] have been separated into two parts

based on the non-linear order, as follows:

[

HW
]

=

[

HW2

HW3

]

(25)

and
[

OW
]

=
[

OW2 OW3

]

(26)

1) Segment Analysis for the 2nd Order: Analytical solu-

tions for the 2nd order segment is achievable if (23) can be

solved. This is possible provided the
[

HW 2
2

]

matrix can be

inverted. Since this matrix refers to 3 hidden neurons [1-3]

then
[

HW 2
2

]

, shown below, is a square matrix. A square

matrix can be inverted provided it is non-singular.

[

HW 2
2

]

=




ρ 0 0
0 ρ 0
0 0 ρ









cos2 θ1 2 cos θ1 sin θ1 sin2 θ1
cos2 θ2 2 cos θ2 sin θ2 sin2 θ2
cos2 θ3 2 cos θ3 sin θ3 sin2 θ3





(27)

To make sure that (27) is a non-singular square matrix, the

values the 3 phase angles have to be selected to ensure the

following conditions:



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. XX, NO. X, MAY 2024 7







θ1 ̸= θ2 ± pπ

θ2 ̸= θ3 ± qπ

(28)

where p and q are any positive integer. For example, in this

paper, θ1 = 45◦, θ2 = 90◦ and θ3 = 135◦ have been used.

Then the elements of the [HW 2
2 ] matrix used in (23) can

be calculated by selecting the value of ρ. The example in the

next section will discuss in detail the criteria for the selection

of ρ.

2) Segment Analysis for the 3rd Order : Similarly, an

analytical solution the 3rd order segment, is achievable if (24),

can be solved. This is possible provided the
[

HW 3
3

]

matrix

can be inverted. Since this matrix refers to 4 hidden neurons

[4− 7], then
[

HW 3
3

]

, shown below, is a square matrix which,

again, can be inverted provided it is non-singular.

[

HW 3
3

]

=








ρ 0 0 0
0 ρ 0 0
0 0 ρ 0
0 0 0 ρ

















cos3 θ4 3 cos2 θ4 sin θ4 3 cos θ4 sin
2 θ4 sin3 θ4

cos3 θ5 3 cos2 θ5 sin θ5 3 cos θ5 sin
2 θ5 sin3 θ5

cos3 θ6 3 cos2 θ6 sin θ6 3 cos θ6 sin
2 θ6 sin3 θ6

cos3 θ7 3 cos2 θ7 sin θ7 3 cos θ7 sin
2 θ7 sin3 θ7









(29)

To make sure that (29) is a non-singular matrix, also follows

the conditions shown with (28) for all the four angles, for

example, θ4 = 36◦, θ5 = 72◦, θ6 = 108◦ and θ7 = 144◦

are used in this paper. Then the value of the
[

HW 3
3

]

matrix

used to solve (24) can be selected by sweeping the value of

ρ, relating to the specific dataset.

In summary, it has been shown that the proper selection of

the hidden node bias values allows for the allocation of hidden

nodes to a specific non-linear order, thus enabling magentaini-

tial values of the FCC ANN model parameters to be directly

computed from the corresponding CM coefficients ‘Mp,h,m,n’.

III. METHOD VERIFICATION WITH SIMULATIONS

In this section, a set of load-pull simulation data, with

a complete 3rd order data complexity, will be used as the

first step for verifying the method using data that has a very

low noise floor. The way of using the proposed method is

summarized in the flow diagram, shown in Fig.9.

A. Simulation yellowData Acquisition

The load-pull simulation is set up in ADS for a Wolfspeed

10 W device (CG2H40010F), biased at Vgs = - 2.2 V, Vds =

28 V. In Fig. 10-11, the data is collected with a constant input

drive corresponding to 1 dB compression at the optimum load.

According to the analysis in [33], 10 coefficients should be

extracted here for an accurate CM with the -60 dB error thresh-

old (red line in Fig. 11-right). Knowing that the ANN training

process require data normalization before feeding the data in

[26], the CM is extracted after normalizing the data based

on the tanh function range, [-1 1]. The magnitude and phase

restricted terms exponents and the extracted coefficients are

determined, calculated, and listed in Table I. The performance

of the extracted CM will be discussed later in the next step.

Dataset

Analyze

Required Polynomial Order

Establish

ANN Model

[with weights and biases]

Calculate

Values of other weights and biases

[Using the proposed equations]

Extract

CM Coefficients

[Converted in matrix format 

in polynomial order]

Determine

Value of hidden neuron number

[Based on size of  CM coefficient matrices]

Initialize

Value of hidden biases

[To separate the analysis 

in polynomial order]

Determine

Value of hidden weights

[With the magnitude value sweep plan]

Fig. 9. Flow diagram summarizing the proposed ANN magentadetermining
method.
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Fig. 10. A2,1 sample (a) and its Fourier Transformed spectrum (b) on a
trajectory computed using 229 simulated points with the phase modulation
rate of Sp = 19.

B. Method Created Model Analysis with ρ Sweep

According to the identified CM polynomial terms shown in

Fig.11 using the analysis explained in [33], it is now clear

that [Mo] matrices with the value of m up to 3 are all that are

required to model this dataset. As defined in section II-D, a

dataset that requires a 3rd order non-linear CM will determine

a complete FCC ANN model structure as 1 hidden layer with

7 hidden neurons.

Following the analysis process in section II-E, with the

selected phase angles θ1 = 45◦, θ2 = 90◦ and θ3 = 135◦ for

[HW2] and θ4 = 36◦, θ5 = 72◦, θ6 = 108◦ and θ7 = 144◦ for

[HW3], the magentadetermined value of [HW ] and [OW ] can
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Fig. 11. B2,1 sample (b) and its Fourier Transformed spectrum (a) with
error bar (red) on the trajectory computation, and the expected exponents’
|A2,1|m(∠A2,1)n values of the CM for extracting coefficients in (n,m).

TABLE I
THE EXTRACTED CARDIFF MODEL COEFFICIENTS FOR B2,1

M2,1,m,n

index r n m Real Imag.

1 0 0 0 0.7597 0.1

2 0 1 1 -0.5608 -0.0748

3 0 -1 1 -0.0502 0.0390

4 0 2 2 0.0741 -0.1155

5 1 0 2 -0.2547 -0.1019

6 0 -2 2 0.0222 0.0247

7 1 3 3 -0.0638 -0.0333

8 1 1 3 0.0108 0.1137

9 0 -1 3 0.1177 -0.1419

10 0 -3 3 -0.0162 -0.0070

be explored with the CM coefficients (listed in Table I) and a

magnitude element ρ sweep plan for this specific dataset.

The effect brought by the different values of ρ is shown

in Fig.12 and 13. It can be seen from the figures that a

bigger value of ρ results in a bigger coverage on the tanh

function within the acquired dataset range (Fig.12(a)-(b)),

which then generates a B2,1 model with a more complex

Fourier Transformed spectrum, hence an effective ”higher

noise floor” comparing to the collected dataset (Fig.12(c)) and

the CM predictions (Fig.12(d)). Also, as shown in Fig.13(a),

the performance of the determined ANN model and the CM

gets identical when the value of ρ get close to 0. Eventually, as

ρ is swept from 0 up to 3, as shown in Fig.13(b), the accuracy

of the model decreases.

Theoretically, the value of ρ can be selected from any

point where the ANN model is performing an NMSE level

below - 40 dB [32] for an accurate model. However, knowing

from Fig.12 and 13 that the accuracy of determined ANN

model decreases when ρ gets bigger, simultaneously, performs

identically to the CM with ρ approaching 0. In this specific

case, ρ = 0.9 is selected to determine an accurate ANN model,

but also different from the CM. With the defined [HB], [HW2]
and [HW3]. (23) and (24) can now be solved to determine the

associated [OW2] and [OW3] matrices.

Then, the value of [CW ] and [OB] can all be calculated

and listed as follows:

TABLE II
THE EXTRACTED CARDIFF MODEL COEFFICIENTS FOR B2,0

M2,0,m,n

index r n m Real Imag.

1 0 0 0 0.0126 0

2 0 1 1 0.0115 0.0234

3 0 -1 1 0.0115 -0.0234

4 0 2 2 0.0104 -0.0127

5 1 0 2 -0.0487 0

6 0 -2 2 0.0104 0.0127

7 1 3 3 -0.0065 -0.0029

8 1 1 3 0.0226 0.0224

9 0 -1 3 0.0226 -0.0224

10 0 -3 3 -0.0065 0.0029

[!ht]

[

HW
]

=

[

HW2

HW3

]

=





















HW1,1 HW1,2

HW2,1 HW2,2

HW3,1 HW3,2

HW4,1 HW4,2

HW5,1 HW5,2

HW6,1 HW6,2

HW7,1 HW7,2





















=





















0.6364 0.6364
0 0.9

−0.6364 0.6364
0.7281 0.5290
0.2781 0.8560
−0.2781 0.8560
−0.7281 0.5290





















(30)

[

OW
]

=
[

OW2 OW3

]

=
[

OW1,1 OW1,2 OW1,3 OW1,4 OW1,5 OW1,6 OW1,7

OW2,1 OW2,2 OW2,3 OW2,4 OW2,5 OW2,6 OW2,7

]

=
[

0.0581 0.6176 0.9579 0.0191 −0.1231 1.3936 0.3113
0.4517 −0.5826 0.7844 0.7317 −0.4842 0.5626 0.1400

]

(31)

[

CW1,1 CW1,2

CW2,1 CW2,2

]

=

[

0.4053 −1.9500
−0.0343 −1.2136

]

(32)

[

OB1,1

OB2,1

]

=

[

−0.1835
−0.2773

]

(33)

Performing a feedforward process on the generated FCC

ANN, with the weights and biases listed above, results in a

set of B2,1 data that can be compared with the B2,1 data that

is collected from the simulation, see Fig. 14.

C. Repeated Analysis for DC yellowComponent

The B2,0, which is the drain current collected from ADS

simulation, is shown in Fig. 15, also has a spectrum com-

plexity consistent with a model order of 3. Therefore, 10 CM

coefficients are extracted for the ANN magentadetermination

calculation, listed in Table II. The FCC ANN model can be

magentadetermined for B2,0 with the same 7 hidden neuron

structure, using the same process as in the previous sections.

Here, ρ = 0.9 is still the selected case following the ρ

sweep. Therefore, the value of [HB] and [HW ] will stay the

same as previously listed with the phase angles determined

in section II-E. The calculated values of weights and biases

(using (34)-(36)) are listed below. Performing a feedforward

process on the determined ANN model, the predicted set of
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Fig. 12. The dataset coverage on the tanh(x) function range without the 3rd/2nd order segment (two leftmost plots) location after magentadetermined
weights and biases. The Fourier Transformed spectrum comparison plot (two rightmost plots) of the modeled B2,1(blue) and the B2,1 samples from the
simulation (red) and the calculated from the CM (orange) with error bar (redline) on the trajectory computation.
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Fig. 13. The FCC ANN performance for B2,1 prediction changing trend with
ρ sweep from 0 to 3.

B2,0 data can be compared with the B2,0 data that is collected
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Fig. 14. The B2,1 prediction from the magentadetermined FCC ANN
(blue stars) and the B2,1 acquired from the simulation with complete data
complexity (red circles).

from the simulation, see Fig. 16.
[

OW
]

=
[

OW2 OW3

]

=
[

OW1,1 OW1,2 OW1,3 OW1,4 OW1,5 OW1,6 OW1,7

OW2,1 OW2,2 OW2,3 OW2,4 OW2,5 OW2,6 OW2,7

]

=
[

0.0084 0.1328 0.1711 −0.0985 0.0303 0.2010 0.1425
0 0 0 0 0 0 0

]

(34)

[

CW1,1 CW1,2

CW2,1 CW2,2

]

=

[

0.3148 −0.4240
0 0

]

(35)

[

OB1,1

OB2,1

]

=

[

−0.1677
0

]

(36)

When considering the coefficients in Table II, a clear pattern

can be seen when the coefficients are extracted as conjugated
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Fig. 15. B2,0 sample (a) and its Fourier Transformed spectrum (b) with
error bar (red) on the trajectory computation, and the expected exponents’
|A2,1|m(∠A2,1)n values of the CM for extracting coefficients in (n,m).
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Fig. 16. The B2,0 prediction from the magentadetermined FCC ANN
(blue stars) and the B2,0 acquired from the simulation with complete data
complexity (red circles).

pairs. This will result in having the [Mi] matrices simplified in

dimension because the sum of the imaginary parts is 0. In this

case, the imaginary part from the output of the FCC ANN does

not have to be hard-wired to 0 as when using the conventional

ANN structure. The imaginary part will be 0 directly after the

calculation.

D. Power and Efficiency yellowContour Plots

With both B2,1 and B2,0, the prediction results for the

output power and efficiency contours are shown in Fig. 17.

The NMSE calculated between the proposed method ( ma-

gentadetermined FCC ANN model) and the simulated dataset

demonstrates an NMSE error level lower than - 50 dB [32]

for both of the output power and efficiency contours. In this

case, the proposed method for magentadetermining the FCC

ANN behavioral model structure using the CM coefficients is

proven accurate.

IV. METHOD VERIFICATION WITH MEASUREMENT

The proposed method will now be verified with a dataset

acquired from load-pull measurements.

A high-density load-pull measurement was set up for a WIN

NP12 4×75 GaN on-wafer device at 20 GHz, biased with

VDS = 15V , IDS = 30mA (setup as in [36]). In Fig. 18-19,

the data is collected with a constant input drive corresponding

to 3 dB compression at the optimum load for acquiring a

dataset with higher complexity. To follow the analysis in [33],

a dataset equivalent to a modulated stimulus signal A2,1 is

chosen from the measurement data points, as shown in Fig.
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Fig. 17. The predicted and simulated output power (a) and efficiency contours
(b) comparison of the Wolfspeed device.
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Fig. 18. Selected A2,1 samples (a) from the calculation (blue circles)and
picked from measurement (red dots) and its Fourier Transformed spectrum
comparison (b, calculated shown in red and measured shown in blue) on a
trajectory computed using 229 simulated points.

TABLE III
THE EXTRACTED CARDIFF MODEL COEFFICIENTS FOR B2,1

M2,1,m,n

index r n m Real Imag.

1 0 0 0 0.7589 0.7178

2 0 1 1 0.0010 -0.5840

3 0 -1 1 0.0599 -0.0622

4 0 2 2 0.0374 -0.0629

5 1 0 2 -0.1485 -0.1334

6 0 -2 2 -0.0098 0.0125

7 1 3 3 0.0021 -0.0319

8 1 1 3 0.0534 0.0152

9 0 -1 3 0.0130 0.1072

10 0 -3 3 0 0

19. To get a clean spectrum plot with a noise floor lower than

-60 dB, the selected measurement A2,1 dataset, needs to be a

good match, at least within - 35 dB error level, to the ideal

modulated A2,1 dataset.

A. cyanModel Determination

According to the response Fourier Transformed spectrum

in Fig. 19, 9 pairs of magnitude and phase restricted terms

exponents can be defined. The correlated extracted coefficients

are calculated and listed in Table III. Based on the CM

reformulation (2), all the exponents pairs related coefficient

components are required for a 3rd polynomial order case,

because of the [Mo] matrices. When any of them do not exist

on the spectrum plot, the coefficient values will be set to 0.
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Fig. 19. B2,1 sample (a) and its Fourier Transformed spectrum (b) with
- 60 dB error bar (red) on the trajectory computation, and the expected
exponents’ |A2,1|m(∠A2,1)n values of the CM for extracting coefficients
in (n,m).
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Fig. 20. The FCC ANN performance for B2,1 prediction changing trend with
ρ sweep from 0 to 3.
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Fig. 21. The B2,1 prediction from the magentadetermined FCC ANN (blue
stars) and the B2,1 acquired from the measurement with the analysed data
complexity (red circles).

The required analysis with the ρ sweep plan and the

calculation is done. According to the results shown in Fig. 20,

ρ = 1.2 is selected in this case for a good model performance.

The prediction results for the B2,1 are shown in Fig. 21.

Repeating the same procedure for the DC component, B2,0,

which is the drain current. As shown in the spectrum plot from

Fig. 22, there are 3rd order terms located close to the - 60 dB

noise floor, highlighted in yellow, which could be potentially
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Fig. 22. B2,0 sample (a) and its Fourier Transformed spectrum (b) with
- 60 dB error bar (red) on the trajectory computation, and the expected
exponents’|A2,1|m(∠A2,1)n values of the CM for extracting coefficients in
(n,m).

TABLE IV
THE EXTRACTED CARDIFF MODEL COEFFICIENTS FOR B2,0

M2,0,m,n

index r n m Real Imag.

1 0 0 0 0.0036 0

2 0 1 1 0.0096 0.0192

3 0 -1 1 0.0096 -0.0192

4 0 2 2 -0.0009 -0.0025

5 1 0 2 -0.0213 0

6 0 -2 2 -0.0009 0.0025
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Fig. 23. The B2,0 prediction from the magentadetermined FCC ANN (blue
stars) and the B2,0 acquired from the measurement with the analysed data
complexity (red circles).

picked. However, the experiment demonstrates that the FCC

ANN models magentadetermined without the 3rd order terms

are accurate enough, performing an NMSE level lower than

- 40 dB. Here, with the 6 extracted CM coefficients listed in

Table IV, the FCC ANN model magentadetermined using the

proposed method with 3 hidden neurons in the hidden layer

is providing B2,0 predictions as in Fig. 23.

With both B2,0 and B2,1, the prediction results for the

output power and efficiency contours for the WIN device

are shown in Fig. 24. The NMSE calculated between the

proposed method ( magentadetermined FCC ANN model) and

the measured dataset are both below - 40 dB [32] for the output

power and efficiency contours.

B. Model Extrapolation Ability

While the range of A2,1 values is limited during measure-

ment because of transistor operation and measurement system

limitations, much larger values of A2,1 corresponding to loads

covering the whole Smith Chart are possible during CAD
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optimization. The extrapolation capability of both models

therefore needs to be tested using an appropriately expanded

A2,1 range.
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Fig. 26. Modeled efficiency vs. output power for the WIN device models,
including the extrapolation region. CM (red circles) and ANN (blue line). The
ANN does not show any of the CM unrealistic response.

The corresponding output power and efficiency contours are

shown in Fig. 25. Zooming in a problem region identifies

that the CM has some erroneous behavior. This can result in

erroneous performance predictions, see Fig. 26. These features

and erroneous predictions are not presented in the results

offered by the proposed method determined ANN model.

V. DISCUSSION

The method developed has proven to be robust enough

to determine both an appropriate FCC ANN model structure

and magentaprovide an initial determined set of ANN model

parameters, weights and bias values, using both simulated and

measured transistor load-pull data-sets.

A number of significant, additional, observations, need to be

discussed. The phase angles selection, mentioned in Section

II-E, highlights there are multiple valid, non-singular, solutions

that can magentabe used for determining values for the [HW ]
matrix, hence multiple magentadetermination options for the

ANN model parameters. All these solutions provide similar

model performance. Also, there are multiple (repeating) so-

lutions of the [HW ] matrix, that provide an invalid, singular

matrix condition.

Consider now the selection of ρ, which defines tanh function

operational range of the ANN hidden nodes and the accuracy

of the magentadetermined ANN model, could also influence

the ANN backpropogation process. Therefore, further inves-

tigation will need to be undertaken to determine if there is

an optimal selection for ρ. can be further investigated for

a method for optimal selection. Besides, although there is

no ANN training process presented in this paper, there is a

potential that varying the value of ρ can have an impact on

the training if required.

Alternatively, a pseudo inverse can also be applied to the

calculation process. In this case, a square matrix is no longer

required for the matrix calculation, hence neuron numbers

could potentially be reduced without compromising the model

accuracy.

VI. CONCLUSION

In this paper a process, based on the Cardiff Behavioral

Model (CM), that determines the structure of a Fully Con-

nected Cascaded (FCC) Artificial Neural Network (ANN)

model, which is appropriate for non-linear transistor modeling,

has been developed. In addition, a method for determining the

values of the ANN model parameters, from the coefficients of

the CM has been formulated.

With the dataset collected from the Wolfspeed GaN device

load-pull simulation in ADS, the method has produced an

accurate ANN model with an error level lower than -50 dB.

For the WIN GaN device measurement data, the new proposed

method also produces an accurate ANN model with an error

level lower than -40 dB. In addition, the extrapolation ability

of ANN models determined with the proposed methods are

proven to be more reasonable than the CM.
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APPENDIX A

CARDIFF MODEL REFORMULATION

The original CM formulation (1) can be rearranged as

follows:

Bp,h = Mp,h,0,0

+Mp,h,1,1A2,1 +Mp,h,1,−1A
∗

2,1

+Mp,h,2,2 (A2,1)
2
+ 2Mp,h,2,0A2,1A

∗

2,1

+Mp,h,2,−2

(

A∗

2,1

)2

+Mp,h,3,3 (A2,1)
3
+ 3Mp,h,3,1 (A2,1)

2 (
A∗

2,1

)

+ 3Mp,h,3,−1A2,1

(

A∗

2,1

)2
+Mp,h,3,−3

(

A∗

2,1

)3

+ . . .

+
[

· Mp,h,m,n ·
]

·









·
(

m

k

)

(A2,1)
m−k(A∗

2,1)
k

·









(37)

where the value of n can now be calculated with n = m− 2k,

the value of m equals to the polynomial order number [10] and

k ranges from 0 to m. The positive integer

(

m

k

)

= m!
k!(m−k)! is

known as the binomial coefficient.

Rearranging (37) into matrix format with real and

imaginary parts separated, then the

[

BR
p,h

BI
p,h

]

matrix

can be calculated following the expansion of the dot

product from matrices [ · (MR
p,h,m,n+jMI

p,h,m,n) · ] and




·




m

k



(AR
2,1+jAI

2,1)
m−k(AR

2,1−jAI
2,1)

k

·



. Hence, the formulation

can be written with the binomial coefficients in the A2,1

matrix expansion folded into the CM coefficients matrices, as

(2).

In (2), the [Mo] matrices with o as the polynomial order

equals up to 3 are shown in the following as examples:

[

M0

]

=

[

MR
p,h,0,0

M I
p,h,0,0

]

(38)

[

M1

]

=





(

MR
p,h,1,1 +MR

p,h,1,−1

) (

−M I
p,h,1,1 +M I

p,h,1,−1

)

(

M I
p,h,1,1 +M I

p,h,1,−1

) (

MR
p,h,1,1 −MR

p,h,1,−1

)





(39)

[

M2

]

=





(

MR
p,h,2,2 +MR

p,h,2,0 +MR
p,h,2,−2

)

. . .
(

M I
p,h,2,2 +M I

p,h,2,0 +M I
p,h,2,−2

)

. . .









. . . 2.
(

−M I
p,h,2,2 +M I

p,h,2,−2

) (

−MR
p,h,2,2 +MR

p,h,2,0 −MR
p,h,2,−2

)

. . . 2.
(

−MR
p,h,2,2 −MR

p,h,2,−2

) (

−M I
p,h,2,2 +M I

p,h,2,0 −M I
p,h,2,−2

)





(40)

[

M3

]

=





(

MR
p,h,3,3 +MR

p,h,3,1 +MR
p,h,3,−1 +MR

p,h,3,−3

)

. . .
(

M I
p,h,3,3 +M I

p,h,3,1 +M I
p,h,3,−1 +M I

p,h,3,−3

)

. . .









. . .
(

−3M I
p,h,3,3 −M I

p,h,3,1 +M I
p,h,3,−1 + 3M I

p,h,3,−3

)

. . .

. . .
(

3MR
p,h,3,3 +MR

p,h,3,1 −MR
p,h,3,−1 − 3MR

p,h,3,−3

)

. . .









. . .
(

−3MR
p,h,3,3 +MR

p,h,3,1 +MR
p,h,3,−1 − 3MR

p,h,3,−3

)

. . .

. . .
(

−3M I
p,h,3,3 +M I

p,h,3,1 +M I
p,h,3,−1 −M I

p,h,3,−3

)

. . .









. . .
(

M I
p,h,3,3 −M I

p,h,3,1 +M I
p,h,3,−1 −M I

p,h,3,−3

)

. . .
(

−MR
p,h,3,3 +MR

p,h,3,1 −MR
p,h,3,−1 +MR

p,h,3,−3

)





(41)

The format (2) allows for the CM equation format to be

compared to the ANN equation format.

APPENDIX B

ARTIFICIAL NEURAL NETWORK MODEL REFORMULATION

Following the original Artificial Neural Network (ANN)

model structure, the calculation process can be presented in

the matrix format, as (3). The tanh function is defined as:

tanh (x) =
2

1 + e−2(x)
− 1 (42)

The Taylor series expansion theory:

f(x) ∼= f(x0) +
f

′

(x0)

1!
(x− x0)+

f
′′

(x0)

2!
(x− x0)

2 +
f

′′′

(x0)

3!
(x− x0)

3 + ...

(43)

The tanh function part in (3) can be reformulated as:

tanh

(

[HW ]

[

AR
2,1

AI
2,1

]

+ [HB]

)

= [α]

+ ∆ [α] [HW ]

[

AR
2,1

AI
2,1

]

+∆2 [α]
[

HW 2
]







(

AR
2,1

)2

AR
2,1A

I
2,1

(

AI
2,1

)2







+∆3 [α]
[

HW 3
]















(

AR
2,1

)3

(

AR
2,1

)2
AI

2,1

AR
2,1

(

AI
2,1

)2

(

AI
2,1

)3















...

+∆o [α] [HW o]





·
(AR

2,1)
o−k(AI

2,1)
k

·





(44)

where according to (5) and (6), the [HB] matrices can be

calculated and shown in detail as:

∆ [α] =
∂ tanh ([HB])

∂ ([HB])
= sech2 ([HB]) (45)
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∆2 [α] =
1

2

∂2 tanh ([HB])

∂ ([HB])
2 = − tanh ([HB])sech2 ([HB])

(46)

∆3 [α] =
1

6

∂3 tanh ([HB])

∂ ([HB])
3 =

sech2 ([HB])

3
{tanh ([HB])

2
− sech2 ([HB])}

(47)

Therefore, the original ANN model equation shown in (3)

can now be reformulated as follows:

[

BR
p,h

BI
p,h

]

= [OW ] [α]

+ [OW ] ∆ [α] [HW ]

[

AR
2,1

AI
2,1

]

+ [OW ] ∆2 [α]
[

HW 2
]







(

AR
2,1

)2

AR
2,1A

I
2,1

(

AI
2,1

)2







+ [OW ] ∆3 [α]
[

HW 3
]















(

AR
2,1

)3

(

AR
2,1

)2
AI

2,1

AR
2,1

(

AI
2,1

)2

(

AI
2,1

)3















...

+ [OW ] ∆o [α] [HW o]





·
(AR

2,1)
o−k(AI

2,1)
k

·





(48)

where as mentioned, the two elements in (8) given by one

hidden neuron in [HW ] matrix represent the real and imag-

inary parts of a complex number, because the defined FCC

ANN model deals with datasets in real and imaginary parts

respectively. Under this scenario, the [HW ] can written in the

complex polar form as shown in (9).

Then [HW o] can then be simply computed (49).

[HW o] =







[ρ1(cos θ1 + sin θ1)]
o

...

[ρNH(cos θNH + sin θNH)]
o






(49)

since ρNH is set to limit the spread range of when the data

is biased on the tanh activation function without exceeding

a proper coverage range according to the non-linearity, it

will be defined respectively unrelated to the phase angles

when analysing the values of the [HW ] matrix. Therefore,

the definition of the [HW ] matrices follows (8)-(10).

Bringing in the Fully Connected Cascaded (FCC) ANN

structure for the dependent constant and linear elements inside

the reformulated expanded equation in (48). Adding extra

weights and biases in for correcting the constant and linear

element generated by analyzing the 2nd and 3rd order respec-

tively, where the original format of an FCC ANN equation

(50) will then be reformulated as (4).
[

BR
p,h

BI
p,h

]

= [OB] + [CW ]

[

AR
2,1

AI
2,1

]

+ [OW ] tanh

(

[HW ]

[

AR
2,1

AI
2,1

]

+ [HB]

) (50)
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