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Abstract—Recent years have witnessed many advancements in
the applications of 3D textured meshes. As the demand continues
to rise, evaluating the perceptual quality of this new type of media
content becomes crucial for quality assurance and optimization
purposes. Different from traditional image quality assessment,
crack is an annoying artifact specific to rendered 3D meshes that
severely affects their perceptual quality. In this work, we make
one of the first attempts to propose a novel Perceptual Crack De-
tection (PCD) method for detecting and localizing crack artifacts
in rendered meshes. Specifically, motivated by the characteristics
of the human visual system (HVS), we adopt contrast and
Laplacian measurement modules to characterize crack artifacts
and differentiate them from other undesired artifacts. Extensive
experiments on large-scale public datasets of 3D textured meshes
demonstrate effectiveness and efficiency of the proposed PCD
method in correct localization and detection of crack artifacts.
Moreover, to quantify the performance of the proposed detection
method and validate its effectiveness, we propose a simple yet
effective weighting mechanism to incorporate the resulting crack
map into classical quality assessment (QA) models, which creates
significant performance improvement in predicting the perceptual
image quality when tested on public datasets of static 3D textured
meshes. A software release of the proposed method is publicly
available at: https://github.com/arshafiee/crack-detection-VVM

Keywords—Artifact detection, crack artifact, 3D textured mesh,
quality assessment, human perception

I. INTRODUCTION

With the advancement of 3D acquisition technologies and
3D processing tools and displays, the interest in immersive
media has grown substantially in recent years. 3D mesh
is one of the most promising media forms for 3D content
representation and demonstrates great potential in many real-
world applications such as medical imaging/modeling, creative
storytelling, social virtual reality, and video gaming [1]–[3].
A 3D polygonal mesh is defined by a set of vertices in the
3D space. In addition to the xyz coordinates of the vertices,
connectivity information is needed to form polygons (typically
triangles). To colorize such 3D structures, either (1) color
values are defined for each vertex, in which case the mesh is
called a vertex-color mesh; or (2) a 2D texture map is provided
separately along with the 3D data to form colored textured
meshes. Mapping information between the 3D model space
and the 2D texture space (UV mapping information) is then

Fig. 1. Sample snapshots of a pair of reference (left) and distorted (right)
3D textured meshes. Crack artifacts are present all over the distorted object.
Two local windows are cropped and enlarged for better visualization.

included in the 3D data to help the rendering method unfold
the 2D texture map onto the 3D colorless object [4].

3D textured meshes undergo a variety of processing op-
erations including but not limited to simplification, quantiza-
tion, compression, transmission, post-processing and render-
ing, throughout the multimedia supply chain. These operations
will inevitably cause diverse distortions that degrade the per-
ceived quality of the contents. Among those distortions, crack
creates highly noticeable perceptual artifacts, as exemplified
in Fig. 1. Crack artifacts are fractures or holes that appear on
the surface of objects. They are specific to 3D meshes and
are rarely observed in either distorted natural images/videos
or other forms of 3D content. Different sources of distortions
may cause crack artifacts depending on their strength level and
the characteristics of the 3D content. However, crack artifacts
appear mostly because of vertex position and UV quantization
and drastically degrade the perceived quality of 3D objects.
Consequently, a tool that can detect and localize crack artifacts
is highly desirable and may be employed (1) to boost the
performance of existing 3D quality assessment (QA) methods;
and (2) to help optimize various mesh processing algorithms
to detect, localize, reduce and rectify cracks.

Existing 3D mesh QA methods can be generally catego-
rized as model-based and image-based metrics. While model-
based metrics operate on the 3D object itself, image-based
methods take 2D snapshots of the 3D objects as input [4].
Many model-based [5]–[10] and image-based [11]–[14] meth-
ods have been proposed for 3D mesh QA over the years, but



Fig. 2. PCD framework, where TAD represents the truncated absolute
difference. The sample reference and distorted frames are obtained from
Nehmé et al. dataset [13].

to the best of our knowledge, no image-based or model-based
method has been yet developed to detect and localize crack
artifacts of textured meshes despite their severe impact on the
perceived quality of 3D objects.

To address this issue, we propose an image-based Percep-
tual Crack Detection method (PCD) based on the characteris-
tics of the human visual system (HVS) such as visual masking
[15], [16] and psychometric saturation [9] effects. Given a pair
of snapshots of distorted and reference 3D objects, our pro-
posed algorithm creates a crack likelihood map that indicates
locations of cracks at pixel-level. Furthermore, to quantify the
performance of the proposed PCD method and confirm its
effectiveness, an efficient method is proposed to convert the
crack map into a weight map, which is subsequently combined
with quality maps generated by existing QA models to greatly
enhance their performance in predicting the perceptual quality
of the distorted meshes when tested using two large-scale
subject-rated datasets.

II. PROPOSED METHOD

A. Crack Detection

We propose a novel and effective crack artifact detection
and localization method called PCD, drawing upon various
HVS theories. Fig. 2 summarizes the proposed method. Sup-
pose that xi and yi are the i-th gray-scale pixels of the cor-
responding snapshots (frames) of the reference and distorted
3D objects, respectively. They should be taken from the same
viewpoint, covering the same angle of the 3D objects. First,
the absolute difference between the corresponding pixels of
the two frames is computed, i.e. |di| = |xi − yi|. Observe
that |di| ∈ [0, 1],∀i. When a pixel i in the distorted frame
corresponds to a crack artifact, |di| tends to be closer to 1. To
avoid magnifying undesired minor artifacts in later stages, we

truncate smaller values of |di|, i.e. if the absolute difference
value |di| is smaller than a threshold, it is set to 0. The
threshold is empirically set to 0.1. As shown in Fig. 2, the
output of this first stage is the truncated absolute difference
(TAD) map denoted by |di|.

We then exploit the visual masking effect of HVS [15],
[16] to modulate the resulting TAD map. We note that crack
artifacts occurring in low-contrast (smooth) local regions are
more visible and annoying compared to those emerging around
the edges and high-contrast (textured) local regions of the 3D
object. In other words, textured local regions can provide a
masking effect for crack artifacts to some extent [8], [9], [21]
following the well-established visual masking effect of HVS.
Therefore, we normalize each pixel i of the TAD map by the
local contrast of its corresponding pixel in the reference frame,
denoted by σi, i.e.

mi =
|di|

σi + C1
, (1)

where m denotes the resulting contrast normalized map, and
the constant C1 = 0.01 is included to avoid instability in
division. To account for local contrast, we adopt the same
setting as in the structural similarity (SSIM) approach [19]
by employing a sliding Gaussian window with a standard
deviation of 1.5, but a smaller window size of 5× 5.

To account for the sensitivity of HVS to high-frequency
changes in the appearance of 3D objects, the resulting map
is enhanced by a second modulation step with the absolute
Laplacian map of the distorted frame denoted by |li|, i.e.

m̃i = mi · |li| =
|di| · |li|
σi + C1

, (2)

where m̃ denotes the initial crack map, and m̃i ≥ 0,∀i.
This enhancement step is also motivated by the fact that
crack artifacts create strong local edges in the distorted frame.
As such, an unexpected sharp edge in the distorted frame
that corresponds to a low-contrast region in the reference
frame with a highly different intensity results in a large value,
resonating interestingly with our visual definition of the crack
artifact.

Finally, as shown in Fig. 2, a truncated sigmoid non-
linearity is used to create the final crack likelihood map:

mi = f(m̃i) =

{
sigmoid( m̃i−T1

T1
) m̃i > T1

0 otherwise
, (3)

where by definition mi ∈ {0} ∪ (0.5, 1],∀i. The bigger the
value of mi, the more likely the i-th pixel is contaminated
by the crack artifact. The use of sigmoid is motivated by
(1) the psychometric saturation effect of the visual system,
which states that human observers’ ability to discriminate
between two different distorted stimuli decreases as the stimuli
surpass a threshold of degradation [9]; and (2) its capability
of generating probability-like outputs for QA tasks [22], [23].



Fig. 3. Crack maps of local windows of four different input pairs of reference and distorted frames obtained from the Nehmé et al. [13] (first two rows) and
TSMD [17] (last two rows) datasets. GMSD [18], SSIM [19], and IW-SSIM [20] quality maps are also generated and binarized with optimized thresholds and
added as baselines for comparison with the proposed PCD method.

B. Integration with IQA Models

To demonstrate the effectiveness of the proposed PCD
method and quantify its performance, we adopt an important
feature of HVS and propose a simple yet efficient method to
integrate it with existing QA models that produce pixel-level
quality maps and observe how it impacts the quality prediction
performance of the QA model.

Given the input reference and distorted frames, we first
symmetrically crop both frames around the bounding box of
their 3D objects. This step helps eliminate the background
pixels irrelevant to the perceived quality. The crack likelihood
map m is then incorporated using a weighting scheme, where
the weight wi of the i-th pixel is given by

wi =
1 + C2

1−mi + C2
, (4)

where a small constant C2 = 0.0001 is included to avoid
division instability and to reflect the sensitivity of the weight
values to the crack artifacts. By doing so, a non-crack pixel
(mi = 0) is mapped to a weight value of 1, whereas a definite
crack pixel (mi = 1) results in an extremely larger weight
value. The design of the weighting scheme is inspired by the
non-uniform perceptual behavior of HVS towards high-quality
and low-quality regions of an image. Specifically, low-quality
regions have a stronger influence on perceived quality than
high-quality regions [24].

In the final step, the weight map is integrated with the
quality map of a given QA model, resulting in an overall
quality score:

Q =

∑N
i=1 wiqi∑N
i=1 wi

, (5)



Fig. 4. Ablation study for contrast and Laplacian modulation components of the proposed PCD method for two sets of input pairs of reference and distorted
frames obtained from the TSMD dataset [17].

where qi denotes the i-th pixel of the quality map and N is the
total number of pixels. The proposed method can be integrated
with any given QA model that outputs a perceptual quality
map, aiming to enhance their performance by emphasizing the
impact of crack artifacts on the perceived quality.

III. EXPERIMENTS

A. Experimental Setup

To validate the performance of the proposed PCD method
and quantify its effectiveness, we run experiments on two
large-scale public datasets of 3D textured meshes, which, to
the best of our knowledge, are the only datasets that contain
crack artifacts: (1) the Nehmé et al. dataset [13], and (2) the
TSMD dataset [17].

The Nehmé et al. dataset [13] is the largest public dataset
of 3D textured meshes. It contains 55 3D source models, each
distorted by a mixture of simplification, (vertex position and
UV) quantization, texture sub-sampling, and texture compres-
sion distortions with different strength levels, leading to a total
of 343,750 distorted stimuli [13]. A subset of 3000 stimuli was
selected and judged by 4513 subjects through crowdsourcing
[13]. The method of subjective study was the double stimulus
impairment scale with five scales, and subjects were asked
to watch videos of rotating 3D objects before rating them
[13]. In our experiments, we use the published videos of 3000
distorted stimuli, their corresponding reference videos, and
their reported mean opinion scores (MOSs). The videos are
8 seconds long and in 650× 550 resolution with a frame rate
of 30 fps [13].

The TSMD dataset [17] contains 42 3D source models.
Similar distortion types as in Nehmé et al. dataset [13] are
mixed and applied to each source 3D mesh to generate five
distorted meshes per reference mesh, resulting in a total of
210 distorted stimuli. All distorted stimuli were rendered as
videos and then judged by 74 viewers through crowdsourcing.

The method of subjective study was the double stimulus
impairment scale with five scales. Participants were tasked
with viewing videos of rotating 3D objects and then providing
ratings for them. [17]. In our experiments, we use the 210
distorted videos stimuli, their corresponding reference videos,
and their reported MOSs. The videos are 18 seconds long and
in 1920× 1080 resolution with a frame rate of 30 fps [17].

To compare the performance of various QA metrics with
their enhanced versions, we employ the Spearman rank-order
correlation coefficient (SRCC) and the Pearson linear corre-
lation coefficient (PLCC). The PLCC score is obtained after
applying a logistic non-linear fitting approach to map predicted
quality scores into the MOS space, as recommended by [25]
and used in [26].

B. Qualitative Results

Fig. 2, 3, and 4 show sample crack maps for various input
frames of reference and distorted 3D textured meshes from
both datasets. Since, to the best of our knowledge, no other
image-based or model-based method has been developed for
crack detection of 3D textured meshes, we build our own
baseline methods for comparison purposes and include them
in Fig. 3. Specifically, we adopt quality maps of GMSD [18],
SSIM [19], and IW-SSIM [20] QA methods - which can
essentially be regarded as artifact localization methods - and
select hard thresholds to binarize them into crack and non-
crack pixels. Thresholds are carefully chosen by empirical
optimization over data samples to generate the best possible
results. The proposed PCD method achieves correct detection
and localization of crack artifacts in all samples and outper-
forms all baseline methods that fail to accurately localize and
differentiate crack artifacts. Furthermore, samples in Fig. 3
exhibit other undesired artifacts (e.g. abrupt edges/patterns)
that are detected by baseline methods. However, the resulting
crack maps only highlight crack artifacts, which shows that
the proposed PCD method is capable of differentiating crack



TABLE I. SRCC (rs) AND PLCC (rp) SCORES OF BASE AND ENHANCED VERSIONS OF VARIOUS QA METRICS ON THE NEHMÉ et al. [13] AND TSMD
[17] DATASETS. THE BOLD VALUES INDICATE THE BEST RESULT IN EACH COLUMN FOR EACH DATASET. THE ENHANCED METHODS ARE THE RESULTS OF

OUR PROPOSED INTEGRATION FRAMEWORK FOR EACH BASE QA MODEL.

Dataset Version lumaPSNR SSIM [19] MS-SSIM [27] IW-SSIM [20] FSIM [28] FSIMC [28] Average
rs rp rs rp rs rp rs rp rs rp rs rp rs rp

Nehmé et al. [13]
Base Method 0.469 0.485 0.333 0.372 0.465 0.480 0.564 0.581 0.559 0.579 0.556 0.577 0.491 0.512

Enhanced Method 0.657 0.655 0.668 0.676 0.680 0.688 0.703 0.711 0.723 0.729 0.722 0.728 0.692 0.698

TSMD [17]
Base Method 0.545 0.528 0.504 0.511 0.654 0.255 0.756 0.768 0.658 0.667 0.657 0.665 0.629 0.564

Enhanced Method 0.663 0.653 0.699 0.705 0.744 0.760 0.757 0.767 0.746 0.749 0.746 0.749 0.726 0.731

from other types of artifacts. Fig. 3 also illustrates the pro-
posed method’s robustness to background and source content
variations, showcasing its generalization on two datasets with
different backgrounds and source collections.

C. Ablation Study

We also conduct an ablation study to confirm the func-
tionality of contrast and Laplacian modulation components
of the proposed PCD method. Specifically, we explore four
versions of the proposed PCD method: (1) the original PCD
method; (2) the PCD method without contrast modulation;
(3) the PCD method without Laplacian modulation; and (4)
the PCD method without contrast and Laplacian modulation.
Fig. 4 showcases the results for two sets of input reference and
distorted frames from the TSMD dataset [17]. As observed,
the version without contrast and Laplacian modulation detects
all types of distortions and fails to distinguish crack artifacts
from other undesired artifacts (e.g. pattern displacement).
However, contrast modulation improves outcomes by modu-
lating artifacts according to the visual masking effect of HVS,
effectively filtering out undesirable and imperceptible artifacts.
Additionally, the application of Laplacian modulation further
enhances the results by magnifying crack artifacts according
to the sensitivity of HVS to high-frequency details. As seen in
Fig. 4, both samples attest to the effectiveness of the proposed
PCD method and confirm necessity of contrast and Laplacian
modulation components.

D. Quantitative Results

To quantitatively demonstrate the effectiveness of the pro-
posed PCD method, we quantify the performance gain by
the proposed integration method over six well-known base
QA models, which include: (1) lumaPSNR, which computes
the peak signal-to-noise ratio (PSNR) on the Y channels of
reference and distorted frames in the YUV color space; (2)
SSIM [19]; (3) MS-SSIM [27]; (4) IW-SSIM [20]; (5) FSIM
[28]; (6) and FSIMC [28]. PIQ implementations of IW-SSIM,
FSIM, and FSIMC were used in our experiments [29]. For
a given QA metric, a single quality score is computed for
each pair of (reference and distorted) videos of the Nehmé
et al. [13] and TSMD [17] datasets by applying the model to
individual frames of the videos and averaging per-frame scores.
For better efficiency, highly overlapped frames are ignored, and
only one out of every ten consecutive frames is included in the
computations, which is sufficient to cover all vertical angles.

Two versions of each QA metric are tested on all videos of
each dataset: (1) the base method; and (2) the enhanced method
which is the result of our proposed integration framework
(Section II-B) for each base QA model. The resulting SRCC
(rs) and PLCC (rp) scores are summarized in TABLE I.
We make the following observations. First, the base methods
generally exhibit poor performance in all evaluation criteria
and both datasets. The QA metrics are developed for natural
scenes and their common distortions, while the snapshots of
3D objects are not statistically similar to natural images and
are contaminated by a different set of distortions. Second,
the proposed integration framework enhances the performance
of all base methods on both datasets, regardless of the base
model, demonstrating the effectiveness and generalizability of
the proposed PCD and integration frameworks. Also, on the
Nehmé et al. dataset, with respect to the base models, the
integration framework provides 40.9% and 36.3% increases,
on average, in terms of SRCC and PLCC scores, respectively.
For the TSMD dataset, these average increases are observed
to be 15.4% for SRCC and 29.6% for PLCC.

Furthermore, we conduct an additional study by testing the
proposed PCD method as a standalone 3D QA model (without
employing any base QA model). Specifically, we assign a
crack artifact score (CAS) to a given pair of (reference and
distorted) frames by averaging the pixel values of the computed
crack map. The larger the CAS, the lower the quality of the
frame. When tested on all videos of the Nehmé et al. dataset,
CAS achieves SRCC and PLCC scores of 0.665 and 0.655,
respectively; while on the TSMD dataset, it attains SRCC and
PLCC scores of 0.675 and 0.651, respectively. Interestingly,
CAS as a standalone QA model outperforms all QA base
models on the Nehmé et al. dataset and most of them on the
TSMD dataset, validating the effectiveness of the proposed
PCD method and highlighting the major influence of crack
artifacts on perceived image quality.

E. Runtime Analysis

Finally, we perform a runtime analysis for the proposed
PCD method. Table II presents the PCD’s crack map compu-
tation time for input video frames of 650 × 550 (Nehmé et
al. dataset [13]) and 1920 × 1080 (from TSMD dataset [17])
resolution and compares it with the processing time needed
for the baseline crack detection methods as introduced in
Section III-B). The analysis was conducted on a computing
platform equipped with an Intel Core i7-12700K CPU. As



TABLE II. RUNTIME ANALYSIS OF THE PROPOSED PCD AND

BASELINE METHODS FOR SAMPLE INPUT FRAMES OF 650× 550 AND

1920× 1080 RESOLUTION. CD STANDS FOR CRACK DETECTION.

Operation 650 × 550 1920 × 1080

Resolution Resolution
PCD (proposed) 0.009s 0.060s

GMSD-based [18] CD 0.004s 0.018s
SSIM-based [19] CD 0.029s 0.238s

IW-SSIM-based [20] CD 0.055s 0.423s

we can see, the proposed PCD method is highly efficient and
provides a real-time computation of the crack maps for all
frames of a video of 650 × 550 resolution with a 100 fps
frame rate. Near real-time performance can also be achieved
in videos of 1920 × 1080 resolution with 25 fps frame rate.
Furthermore, we can observe that the crack map computation
runs much faster than the baseline SSIM-based and IW-
SSIM-based crack detection methods and slightly slower than
the baseline GMSD-based crack detection method. Given its
efficiency, PCD can be applied across various stages of a 3D
mesh supply pipeline to promptly identify crack artifacts in
distorted 3D textured meshes.

IV. CONCLUSION

We propose PCD, a novel Perceptual Crack Detection
method for 3D textured meshes. The proposed method operates
on a pair of input snapshots of distorted and reference 3D
objects and takes advantage of HVS characteristics and visual
characteristics of crack artifacts to generate a crack likeli-
hood map that highlights contaminated pixels. Additionally,
to quantitatively validate the effectiveness of the proposed
PCD method, we propose a simple yet efficient framework
for integration of the crack map with existing QA models
to boost their performance in 3D QA tasks. Experiments on
large-scale public datasets of 3D textured meshes demonstrate
the efficiency and effectiveness of the proposed PCD and
integration frameworks.
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