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Abstract
Fixed-effect meta-analysis has been used to summarize genetic effects on a phenotype across multiple Genome-Wide Asso-
ciation Studies (GWAS) assuming a common underlying genetic effect. Genetic effects may vary with age (or other charac-
teristics), and not allowing for this in a GWAS might lead to bias. Meta-regression models between study heterogeneity and 
allows effect modification of the genetic effects to be explored. The aim of this study was to explore the use of meta-analysis 
and meta-regression for estimating age-varying genetic effects on phenotypes. With simulations we compared the perfor-
mance of meta-regression to fixed-effect and random -effects meta-analyses in estimating (i) main genetic effects and (ii) 
age-varying genetic effects (SNP by age interactions) from multiple GWAS studies under a range of scenarios. We applied 
meta-regression on publicly available summary data to estimate the main and age-varying genetic effects of the FTO SNP 
rs9939609 on Body Mass Index (BMI). Fixed-effect and random-effects meta-analyses accurately estimated genetic effects 
when these did not change with age. Meta-regression accurately estimated both main genetic effects and age-varying genetic 
effects. When the number of studies or the age-diversity between studies was low, meta-regression had limited power. In 
the applied example, each additional minor allele (A) of rs9939609 was inversely associated with BMI at ages 0 to 3, and 
positively associated at ages 5.5 to 13. Our findings challenge the assumption that genetic effects are consistent across all 
ages and provide a method for exploring this. GWAS consortia should be encouraged to use meta-regression to explore 
age-varying genetic effects.
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Introduction

Genome–wide association studies (GWAS) test associa-
tions of millions of single nucleotide polymorphisms (SNPs) 
across the genome with a phenotype. As SNP effects are 
generally small, large sample sizes are required for adequate 
statistical power. This is commonly achieved through fixed-
effect meta-analysis of summary genetic effects across 
several GWAS, which increases sample size and statistical 
power without sharing individual participant data.

Fixed-effect meta-analysis, which assumes a com-
mon true underlying genetic effect for all studies [1], has 
been favored over random-effects meta-analysis due to its 
increased statistical power [2]. Fixed-effect meta-analysis 
ignores heterogeneity of genetic effects between studies, and 
it has been suggested that this could introduce high rates 
of false positive and/or false negative findings under cer-
tain conditions [2, 3]. One such condition is where genetic 
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effects vary with age, as they have been demonstrated to 
do for some phenotypes [4–8]. As meta-analysis estimates 
an average genetic effect over all studies, meta-analysing 
GWAS studies of age-diverse samples, without considering 
potential heterogeneity of genetic effects due to age, could 
fail to identify clinically important changes of genetic risk 
with age. Moreover, ignoring age-varying genetic effects in 
GWAS may lead to spurious results in other methods that 
use GWAS summary data as input to estimate: genetic cor-
relation between traits (LD score regression) [9], genetic 
predisposition to a trait (Polygenic Risk Scores) [10] and 
the causal effect of an exposure on an outcome (Two-sample 
Mendelian randomization) [11].

An approach recommended in meta-analysis of Rand-
omized Controlled Trials (RCTs) to estimate treatment-
covariate interactions (e.g., treatment-age interactions) is 
a two-stage approach, where the interactions are estimated 
within each study, and these interactions are then meta-ana-
lysed [12]. This approach would have limited application in 
GWAS as most studies do not perform or report an interac-
tion analysis (e.g., SNP-age interaction effects).

An alternative method that could be used to overcome this 
issue is meta-regression. In contrast to meta-analysis that 
uses summary GWAS data to estimate an average genetic 
effect over all studies, meta-regression models observed 
heterogeneity and allows investigation of the impact of 
moderator variables on estimated genetic effect sizes [13, 
14]. For example, considering age as the moderator vari-
able meta-regression could be used to estimate not only 
the average genetic effect at the weighted mean age over 
all studies or at any age of interest, but also the age-varying 
genetic effect (i.e., SNP by age interaction). A search of the 
literature and GWAS data bases in July 2022, suggests that 
meta-regression has been applied in only two GWASs to 
explore age related differences between included studies. In 
both cases, genetic variants with age-varying genetic effects 
were identified [8, 15]. We have not identified published 
research exploring the conditions under which meta-regres-
sion outperforms meta-analysis when age-varying genetic 
effects exist.

The aim of this study was to explore the use of meta-
analysis and meta-regression to examine age-varying genetic 
effects on phenotypes, using summary GWAS data. We 
compared the performance of meta-regression and fixed-
effect and random-effects meta-analysis in estimating (i) 
main genetic effects (i.e., the SNP effect at the youngest 
age available across all studies, age 10) and (ii) age- vary-
ing genetic effects (SNP by age interactions) using multi-
ple simulated cross-sectional GWAS studies. We simulated 
phenotype-genotype associations under a range of data gen-
erating processes, varying the number of studies and their 
sample sizes, the overlap in the age range of study partici-
pants between studies (i.e., age-diversity), and the sampling 

variability within and between studies. We also present an 
empirical example in which we applied meta-analysis and 
meta-regression to estimate the age-varying genetic associa-
tions between the rs9939609 SNP at the FTO locus and body 
mass index (BMI) across early life-course, using publicly 
available summary data, and compare these to estimates 
from previous individual-participant analyses.

Methods

Data generating mechanisms for simulations

Participant age ( ageij for participant i in study j ), drawn from 
a uniform distribution, was set between 10 and 59 years. 
A single SNP with a large effect size, SNPij , was simu-
lated with a minor allele frequency (MAF) of 0.2 and the 
number of risk alleles (0,1,2) was drawn from a binomial 
distribution. We generated the outcome phenotype ( Yij ) to 
be dependent on: Scenario 1. age and genotype; Scenario 
2. age and genotype, with an interaction between age and 
genotype (linear interaction term); Scenario 3. age, genotype 
and a quadratic term of age; Scenario 4. genotype, age and a 
quadratic term of age, with an interaction between age and 
genotype (linear interaction term); Scenario 5. genotype, 
age and a quadratic term of age, where genotype interacts 
with age and quadratic age (non-linear interaction term). 
Equations for the phenotype generating scenarios and the 
parameter values are presented in Table 1. We assumed that 
the effect of age on phenotype ( �age ) was identical for each 
study but that the effect of genotype varied randomly across 
studies ( �SNP + uj ), corresponding to a random-effects meta-
analysis model for the genotype–phenotype association. As 
a “base case” scenario, we used 1 SD within and between 
study variability ( �ij ∼ N(0, 1) and uj ∼ N(0, 1) ) in the data 
generating mechanisms, with 40 cross-sectional studies each 
with sample size Nj = 1000.

Estimating study‑specific genotype–phenotype 
associations

Within each cross-sectional study, we used linear regression 
to estimate the genotype–phenotype association. As is usual 
in GWAS studies, models were adjusted only for age, and no 
further adjustments were made to account for non-linearity 
or SNP-age interactions. Equation (1) describes the regres-
sion models:

(1)Yij = �0j + �1j × SNPij + �2j × ageij + �ij
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We collected the estimated genotype–phenotype effect 
estimate ( ̂�1j ) and its standard error ( ŜE(�1j) ) from each 
study, in addition to the mean age ( agej ) and standard devia-
tion of age ( SD(agej) ) for each study.

Description of compared methods

Meta‑analysis

Fixed-effect meta-analysis assumes that all studies draw 
a (random) sample from the same underlying population 
and hence share a common true effect size for each SNP. 
The pooled meta-analysis estimates the population average 
genetic effect at the weighted mean age over all studies [16]. 
The observed effect for a given SNP in each study is:

where, �1j the genotype–phenotype effect in the jth study, 
�SNP is the common genetic effect at the weighted mean age 
over all studies, and �j is random error describing the sam-
pling variability within each study (with variance s2

j
 in study 

j, i.e., the variance of �1j).
Random-effects meta-analysis allows the true genetic 

effect size to differ across studies. The observed effect for a 
given SNP in each study is:

(2)�1j = �SNP + �j, �j ∼ N

(

0, s2
j

)

where �SNP is the mean genetic effect at the weighted mean 
age, �j represents heterogeneity, i.e. the study-specific devia-
tion from the mean genetic effect (with variance �2 across 
studies, i.e. the between study variability), and �j is random 
error describing the sampling variability within each study 
(with variance s2

j
 in study j, i.e. the variance of �1j ). Further 

information about the estimation of combined genetic effects 
in fixed-effect and random-effects meta-analysis can be 
found in Online Resource 2. To estimate the between-study 
variance �2 , we used restricted maximum likelihood 
(REML) method [17].

Meta‑regression

Random-effects meta-regression extends the random-
effects meta-analysis model as follows:

and could also be further extended to include non-linear 
terms such as:

(3)
�1j = �SNP + �j + �j, �j ∼ N

(

0, s2
j

)

�j ∼ N
(

0, �2
)

(4)
�1j = �SNP + �SNP×ageagej + �j + �j, �j ∼ N

(

0, s2
j

)

�j ∼ N
(

0, �2
res

)

Table 1   Equations underlying the phenotype generating mechanism for each simulated scenario and parameter values for ‘Base case scenario’

jth study j = (1, 2, …,40), ith participant i = (1, 2, …, 1000)

Simulated scenarios

Scenario 1 Yij = �0 + �age × ageij + (�SNP + uj) × SNP
ij
+ �ij

Scenario 2 Yij = �0 + �age × ageij + (�SNP + uj) × SNP
ij
+ �SNP×age × ageij × SNP

ij
+ �

ij

Scenario 3 Yij = �0 + �age × ageij + �age2 × age2
ij
+ (�SNP + uj) × SNP

ij
+ �ij

Scenario 4 Yij = �0 + �age × ageij + �age2 × age2
ij
+ (�SNP + uj) × SNP

ij
+ �SNP×age×ageij × SNP

ij
+ �

ij

Scenario 5 Yij = �0 + �age × ageij + �age2 × age2
ij
+ (�SNP + uj) × SNP

ij
+ �SNP×age × ageij × SNP

ij
+ �SNP×age2 × age2

ij
×SNPij + �

ij

Parameter Value Interpretation

�0 25 Baseline mean value of phenotype when ageij = 0 and SNPij = 0

�age 0.010 Effect of age on phenotype
ageij  ~ U (min age, max age) Age of participant i in study j
�SNP 1.5 Effect of genetic variant on phenotype (main genetic effect)
SNPij 0,1,2 Number of alleles of a genetic variant for participant i in study j
�SNP×age 0.020 Age varying-genetic effect on phenotype (linear interaction term)
�SNP×age2 0.001 Non-linear age-varying genetic effect on phenotype (non-linear 

interaction term)
�age2 0.001 Non-linear effect of age on phenotype
�ij ∼ N(0, 1) Within study sampling error
uj ∼ N(0, 1) Between study sampling error
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where, �SNP×age is the difference in the mean effect of a given 
SNP for each one year increase in age, �SNP×age2 is the differ-
ence in the mean effect of a given SNP for each one year 
difference in the square of age and �2

res
 is the residual hetero-

geneity after accounting for the age effect(s). Meta-regres-
sion estimates these two parameters ( ̂�SNP×age , �̂SNP×age2 ) and 
an intercept term ( ̂�SNP ) representing the effect of genotype 
on phenotype for age = 0. In Eq. (5), agej is the mean age,  
age2

j
 is the mean of quadratic age of each study. Mean of 

quadratic age is often not available in GWAS, but it can be 
derived from within-study standard deviation of age, which 
is often available in GWAS, using the formula 
( age2

j
∼ SD

(

agej
)2

+ (agej)
2 ). Further information about the 

derivation of the meta-regression models including quadratic 
or cubic terms of age can be found in Online Resource 2. To 
estimate the between-study variance �2

res
 we used REML 

[17].
As the effect of genotype on phenotype when age is zero 

may not be of interest for many phenotypes, meta-regression 
models can be modified to estimate the effect of genotype 
on phenotype at a given age of interest (e.g., an age that 
is within the age range of all studies). Similarly to regres-
sion models, including age centred at the age of interest in 
the meta-regression models will change the estimate of the 
intercept term ( ̂�SNP ), which will be the effect of genotype on 
phenotype at the age of interest, while interaction terms will 
remain unchanged. For example, in our simulations we were 
interested in estimating the effect of genotype on phenotype 
at age 10 (the lowest age across studies) and therefore, mod-
els (4) and (5) were modified as follows:

and

where, ( ̂�SNP) is now the effect of genotype on phenotype at 
age = 10 (referred to as main genetic effect), �SNP×age is the 
difference in the mean effect of a given SNP for each one 
year increase in age and �SNP×age2 is the difference in the 
mean effect of a given SNP for each one year difference in 
the square of age.

It is important to note that centering age at the weighted 
mean of all studies in meta-regression is expected to yield 

(5)

�1j = �SNP + �SNP×ageagej + �SNP×age2age
2
j
+ �j + �j, �j ∼ N

(

0, s2
j

)

�j ∼ N
(

0, �2
res

)

(6)

�1j = �SNP + �SNP×age ×
(

agej − 10
)

+ �j + �j, �j ∼ N

(

0, s2
j

)

�j ∼ N
(

0, �2
res

)

(7)�1j = �SNP + �SNP×age × (agej − 10) + �SNP×age2 ×
(

agej − 10
)2

+ �j + �j, �j ∼ N

(

0, s2
j

)

�j ∼ N
(

0, �2
res

)

similar results to meta-analysis only in cases where the phe-
notype-genotype association does not change, or changes 
linearly, with age. In that case the (weighted) mean genetic 
effect across all studies (meta-analysis) will be equivalent to 
the genetic effect at the (weighted) mean age (centred meta-
regression). Additionally, it is expected that standard errors 
for the main genetic effect will be the lowest when centering 
age at the mean of all studies in meta-regression, and equiva-
lent to standard errors as estimated in random-effects meta-
analysis. However, in our simulations we chose to centre age 
at the lowest age of all studies rather than at the mean age 
across all studies, as centring at mean age would have been 
data-driven and not an age of interest for many phenotypes.

Implementation

For each scenario, we ran 1000 iterations. We varied (i) 
study sample sizes from 1000 to 10,000, (ii) the number of 
studies from 10 to 80, (iii) the within and between study var-
iability from 1 ( �ij ∼ N(0, 1) and uj ∼ N(0, 1) ) to 3 ( �ij ∼ N

(0,32 ) and uj ∼ N(0,32)), and (iv) the overlap of age distribu-
tions across studies (i.e., a reflection of the spread of study 
age means and age-diversity) from no overlap (0%) (i.e., 
high age-diversity and spread of study age means) to com-
plete overlap (100%) (i.e., minimal age-diversity and spread 
of study age means) in 25% increments. Figure 1 depicts 
the overlap of age distributions between studies. We also 
varied, (v) the age ranges of studies to allow for standard 
deviations of age to differ between studies. Further infor-
mation about the age ranges of each study can be found in 
Online Resource 1 (Table S1 and S27). Lastly, (vi) we run 
simulations where the simulated value for the main genetic 
effect is the effect of genotype on phenotype at the weighted 
mean age across all studies. In this simulated scenario, meta-
regression models included age centred at the weighted 
mean age across all studies, instead of centring age at age 
10 as in the previous simulations.

Estimands and performance measures

The estimands of interest were the main genetic effect ( βSNP ) 
(the effect of the SNP if the population had mean age = 10), 
the linear age-varying genetic effect ( βSNP×Age ), the non-
linear age-varying effect ( βSNP×Age2 ), and the standard errors 
(SE) of these parameters across simulations.
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We present five performance measures: the mean estimate, 
the bias (the deviation of the estimated parameter from the 
simulated value), the coverage of the 95% confidence inter-
val (CI) (the proportion of simulated datasets for which the 
95% confidence interval included the simulated value), the 
empirical standard error (Emp SE), and the mean standard 
error (Mean SE).

Estimating the age‑varying genetic association 
between the rs9939609 SNP at the FTO locus 
and body mass index (BMI)

We used a real data example to illustrate the application of 
meta-analysis and meta-regression in estimating age-varying 
genetic effects using summary level association statistics. An 
age-varying association between the rs9939609 SNP at the 
FTO locus and body mass index (BMI) has been previously 
demonstrated [4, 5, 18, 19]. We extracted summary level data 
for the association between rs9939609 and BMI from a study 
investigating the effect of this genetic variant on BMI from 
infancy to late childhood [5]. The effect of rs9939609 on BMI 
was estimated in 8 cohorts (N = 569 to 7482) at up to 10 ages 
within each cohort from 0 to 13 years. Detailed information 

about effect sizes within each cohort at each time point can be 
found in Online Resource 1 (Table S2).

We estimated the association between rs9939609 SNP and 
BMI using fixed-effect meta-analysis and meta-regression 
adjusting for a cubic term of age, which can be written as 
follows:

We chose not to centre age in this example as we 
were interested in the effect of the SNP at age zero. 
The choice to adjust for a cubic term of age was made 
based on evidence suggesting that each additional minor 
allele (A) of this variant is inversely associated with 
BMI from ages 0 to 3 and positively associated from 
ages 5.5 to 13 [5]. Effect sizes were estimated at multi-
ple time points within the same cohorts, so we used gen-

(8)

βj = �SNP + �SNP×ageagej + �SNP×age2 age2j + �SNP×age3 age3j + �j + �j , �j ∼ N
(

0, s2j
)

�j ∼ N
(

0, �2res
)

Fig. 1   Scatter plot of age of each participant within each study to show age overlap
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eralized weights to adjust standard errors for the sample  
overlap [20].

Results

Scenarios 1 and 3: data generated 
with no age‑varying genetic effect

Estimation of main genetic effect ( ̌ SNP ) (i.e., the effect 
in a population with mean age = 10)

As expected, as there was no age-varying genetic effect, 
both the fixed-effect and the random effects meta-anal-
yses yielded estimates of the main genetic effect ( βSNP ) 
similar to the simulated values across all proportions of 
overlapping ages between simulated studies (Fig. 2a, b), 

although CI coverage was below the nominal 95% level 
for the fixed-effect meta-analysis. Similarly, meta-regres-
sion models including either a linear or a quadratic term 
of age demonstrated negligible bias for the main genetic 
effect (Fig. 2c, d). CI coverage was consistent with the 
nominal 95% level for random-effects meta-analysis 
and both meta-regression models (Online Resource 1, 
Table S3).

Estimation of age‑varying genetic effects 
( ̌ SNP×Age,ˇSNP×Age2)

Both meta-regression models (including a linear or quadratic 
term of age) yielded unbiased (i.e., mean of zero) estimates 
of the linear age-varying genetic effect ( βSNP×Age ) (Fig. 3a, 
b) and the non-linear age-varying genetic effect ( βSNP×Age2 ) 
(Fig. 3c). However, for both estimands ( βSNP×Age,βSNP×Age2 ), 
the values estimated by the meta-regression models (erro-
neously including a linear or a quadratic term of age) were 

Fig. 2   Heat maps displaying the mean difference (Monte Carlo standard error) between estimated main genetic and simulated main genetic effect 
(i.e., the genetic effect in a population of mean age = 10) ( �SNP ) for each method, scenario, and age overlap ( N = 1000). MA: Meta-analysis
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variable as seen by the large Monte Carlo SEs of bias in 
(Fig. 3a–c). As the proportion of overlapping ages between 
simulated studies was increased, the variability of estimated 
values increased.

CI coverage for the linear age-varying genetic effect 
( βSNP×Age = 0 ) was consistent with the nominal 95% level 
for meta-regression models including a linear term of  
age, CI coverage was below the nominal 95% level for the 

linear and non-linear age-varying genetic effect 
( βSNP×Age, βSNP×Age2 ) in meta-regression models including a 
quadratic term of age (Online Resource 1, Table S4 and S5).

Fig. 3   A, B Heat maps displaying the absolute bias (Monte Carlo 
standard error) of each meta-regression model, for each scenario 
and age overlap for the linear age-varying genetic effect ( �SNP×Age
)(N = 1000). Squares represent scenarios where �SNP×Age = 0.02 
(scenario 2&3) and �SNP×Age = 0.04 (scenario 5). In other sce-

narios�SNP×Age = 0 . C Heat maps displaying the absolute bias 
(Monte Carlo standard error) of meta-regression including a non-
linear term of age, for each scenario and age overlap for the non-
linear age-varying genetic effect ( �SNP×age2 ) (N = 1000). In scenario 
5 �SNP×age2 = 0.001 . In all other scenarios�SNP×age2 = 0
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Scenarios 2 and 4: data generated with a linear 
age‑varying genetic effect

Estimation of main genetic effect ( ̌ SNP ) (i.e., the effect 
in a population with mean age = 10)

When there were linear age-varying genetic effects, the dif-
ference between the estimated main genetic effects and the 
simulated value was not zero for both fixed and random-
effects meta-analyses, across all proportions of overlapping 
ages between simulated studies (Fig. 2a, b). Meta-regression 
models including a linear or quadratic term of age produced 
unbiased estimates of the main genetic effect (Fig. 2c, d). 
As the age overlap between studies increased, the meta-
regression estimates were more variable, as seen by the large 
Monte Carlo SEs.

In both scenarios, CI coverage for the main genetic 
effect (i.e., the effect if the population had a mean age 
of 10) was consistently below the nominal 95% level for 
fixed-effect and random-effects meta-analyses, across all 
proportions of overlapping ages between simulated stud-
ies. Both meta-regression models (including a linear or a 
non-linear term of age) yielded coverage of CIs consistent 
with the nominal 95% level (Online Resource 1, Table S3).

Estimation of age‑varying genetic effect ( ̌ SNP×Age,ˇSNP×Age2)

Meta-regression estimates of the linear age-varying 
genetic effect ( βSNP×Age ) were unbiased in both meta-
regression models (Fig. 3a, b). Similarly, estimates of the 
non-linear age-varying genetic effect ( βSNP×Age2 = 0 ) was 
unbiased in the meta-regression model including a quad-
ratic term of age (Fig. 3c). The variance of the estimated 
values increased as the proportion of overlapping ages 
between simulated studies increased.

In both scenarios, CI coverage for the linear and non-
linear age-varying genetic effects ( βSNP×Age , βSNP×Age2 ) 
were consistent with the nominal 95% level for meta-
regression models including a linear term of age but not 
for meta-regression including a quadratic term of age 
(Online Resource 1, Table S4 and S5).

Scenario 5: data generated with a quadratic 
age‑varying genetic effect

Estimation of main genetic effect ( ̌ SNP ) (i.e., the effect 
in a population with mean age = 10)

The difference between the estimated main genetic effect 
and the simulated value was not zero for both fixed and 
random meta-analyses (Fig. 2a, b). Meta-regression with 
only a linear age term gave biased estimates of the main 

genetic effect (Fig. 2c), due to wrongly specifying a lin-
ear meta-regression model. Meta-regression including a 
quadratic term of age yielded unbiased estimates, but vari-
ability of bias increased as age overlaps between studies 
increased (Fig. 2d).

CI coverage for the main genetic effect (i.e., the effect in 
a population of mean age = 10) was consistently below the 
nominal 95% level for all compared methods, except meta-
regression models including a quadratic term of age, across 
all proportions of overlapping ages between simulated stud-
ies. (Online Resource 1, Table S3).

Estimation of age‑varying genetic effect ( ̌ SNP×Age,ˇSNP×Age2)

Meta-regression models including only a linear term of 
age gave biased estimates of the linear age-varying genetic 
effect ( βSNP×Age ), across all proportions of overlapping ages 
between simulated studies, due to wrongly specifying a lin-
ear meta-regression model. In contrast, the meta-regression 
model also including a quadratic term of age yielded unbi-
ased estimates of both the linear and non-linear age-varying 
genetic effects ( �SNP×Age ), ( βSNP×Age2 ), but variance of esti-
mates increased as proportions of overlapping ages between 
studies increased (Fig. 3a–c).

CI coverage for the linear and non-linear age-varying 
genetic effect ( βSNP×Age , βSNP×Age2 ) was consistently slightly 
below the nominal 95% level in both meta-regression models 
(Online Resource 1, Table S4 and S5).

Comparison of empirical SE and mean SE

Across all scenarios and proportions of overlapping ages 
between studies and for all estimands of interest, the ran-
dom-effects meta-analysis and meta-regression includ-
ing both a linear term and quadratic term of age yielded 
comparable empirical and mean SEs (Online Resource 1, 
Table S3-S5). In contrast, the fixed-effect meta-analysis pro-
duced mean SEs that were smaller than the empirical SEs, 
highlighting the incompatibility of fixed-effect meta-analysis 
to our data-generating mechanisms.

The random-effects meta-analysis and meta-regression 
(both including a linear and quadratic term of age) produced 
large mean SEs of the main genetic effect ( �SNP ). However, 
when there was no age-varying genetic effect, meta-regres-
sion produced larger mean SEs compared to random-effects 
meta-analysis (Fig. 4a, Scenario 1 and 3). Including highly 
age-diverse studies (no (0%) age overlaps in age ranges 
between studies) in the meta-regression models produced 
more precise estimates of the main genetic effect compared 
to inclusion of less age-diverse studies (100% overlap in age 
ranges) (Fig. 4).
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The meta-regression models including a linear term of 
age produced smaller mean SEs for both the linear and non-
linear age-varying effects ( βSNP×Age , βSNP×Age2 ) compared 
with meta-regression models including a quadratic term of 
age, as expected due to having fewer number of parameters 
estimated (Fig. 4). Moreover, including highly age-diverse 
studies (no (0%) overlap in age ranges between studies) in 
the meta-regression models produced more precise estimates 
of the linear and non-linear age-varying effects compared to 
inclusion of less age-diverse (100% overlap in age ranges) 
studies.

Influence of study characteristics

The Online Resource 1 (Table S6–S33) shows results 
from simulations varying the number of studies included 
in the analysis (from 10 to 80), sample sizes of each cohort 
(from 1,000 to 10,000), study level error ( uj ), individual 
level error ( �ij ), standard deviations of age and center-
ing age to weighted mean age across all studies. A small 
number of studies included in the meta-regression mod-
els (including a linear or quadratic term of age) resulted 
in CI coverage below the nominal 95% level for all esti-
mands of interest ( �SNP,βSNP×Age , βSNP×Age2 ), even when 
the meta-regression models correctly reflected the data 
generating mechanisms. Increasing the number of partici-
pants within each cohort resulted in decreased mean SEs 
in fixed effect meta-analysis, while the results remained 

similar in random-effects methods. As expected, increas-
ing study-level variability resulted in increased mean SEs 
in all random-effects methods, while mean SEs in fixed-
effect meta-analysis remained unchanged. Conversely, 
increasing individual-level variability resulted in increased 
mean SEs in fixed effect meta-analysis and SEs remained 
unaffected in random-effects methods. When standard 
deviations of age were simulated to differ across studies 
all methods produced results similar to these observed 
in the “Base case scenario”. Lastly, we set the simulated 
value for the main genetic effect as the effect of genotype 
on phenotype at the weighted mean age across all studies. 
Meta-analysis and meta-regression models yield unbiased 
estimates of the main genetic effect (�SNP) in scenarios 1 
to 4 (as expected), where there was either no age-varying 
genetic effect or a linear age-varying genetic effect in the 
data generating mechanism. Moreover, meta-analysis and 
meta-regression models including a linear term of cen-
tred age yield similar mean SEs. However, in scenario 5, 
where there was a non-linear age-varying genetic effect in 
the data generating mechanisms, meta-analysis and meta-
regression including only a linear term of centred age pro-
duced biased estimates of the main genetic effect (�SNP) . 
Meta-regression results for the linear and non-linear age-
varying genetic effects (βSNP×Age , βSNP×Age2 ) remained 
unchanged as expected.

Fig. 4   Mean Standard Errors for A the main genetic effect ( �SNP ), B linear and C non-linear age-varying genetic effects ( �SNP×Age, �SNP×age2 ), for 
each method, scenario, and age overlap (N = 1,000)
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Estimating the age‑varying genetic association 
between the rs9939609 SNP at the FTO locus 
and body mass index (BMI)

Detailed information about the effect sizes used in the 
meta-analysis and meta-regression can be found in Online 
Resource 1 (Table S2). When we applied fixed-effect meta-
analysis, a constant negative association (β = −0.05, 95% CI 
−0.06 to −0.03) between each additional minor allele (A) 
of rs9939609 and BMI was estimated. As fixed-effect meta-
analysis is a weighted average of all studies, the estimated 
genetic effect is highly influenced by the fact that most of 
the largest studies are in early ages, therefore if a different 
selection of studies was used a different effect may have been 
estimated. In contrast, when we applied meta-regression, we 
observed an age-varying association: each additional minor 
allele (A) of rs9939609 was inversely associated with BMI 
at ages 0 to 3, and positively associated with BMI at ages 5.5 
to 13 (Fig. 5). The percentage of variation between studies 
that can be attributed to heterogeneity rather than chance in 
fixed-effect meta-analysis was substantial (I2 = 76.9%), while 
adjusting for cubic age using meta-regression reduced the 
between study heterogeneity (I2 = 28.09%) (Online Resource 
1, Table S34). Lastly, the association estimated using meta-
regression was similar to the association described in the 
study we extracted summary data from [5]. In that study, 
individual participant data were utilised to model the median 
BMI curves of each genotype using the LMS method, and it 
was observed that carriers of minor alleles (A) showed lower 
BMI in infancy and higher in childhood.

Discussion

In this study, we compared the performance of meta-
regression and meta-analysis in accurately estimating main 
genetic effects (at age 10) and age-varying genetic effects 
(i.e., SNP-age interactions) from simulated cross-sectional 
GWAS studies and provided an empirical demonstration of 
this. Our results demonstrated that fixed-effect and random-
effects meta-analyses accurately estimate genetic effects 
when these are not moderated by age, but not when age-
varying genetic effects exist. This is because when there 
is age-moderation of genetic effects, the fixed or random-
effects meta-analyses estimate the average effect across the 
(weighted) age distribution of the studies included. This will 
coincide with the genetic effect at the mean age if the genetic 
effect varies linearly with age, but not otherwise. In con-
trast, meta-regression produces unbiased estimates of both 
the main genetic effects and the age-varying genetic effects, 
regardless of whether age is a moderator or not. For exam-
ple, in our empirical analysis, meta-analysis suggested an 
inverse association in children aged 0 to 13 years, whereas 
meta-regression correctly revealed an inverse association in 
early childhood (0 to 3 years) with this changing to a posi-
tive association between age 5.5 and 13 years. This empiri-
cal analysis demonstrates that the assumption that genetic 
effects are consistent across life will not always be the case, 
and we suggest that meta-regression should be used more 
widely to explore this possibility. It is important to note how-
ever that applying meta-regression when there are no age-
varying genetic effects will produce less precise estimates, 
as more parameters will be estimated.

Fig. 5   Estimated genetic association between rs9939609 SNP at the FTO locus and BMI, as estimated using fixed-effect meta-analysis and meta-
regression adjusting for cubic term of age. Number of studies = 8, N = 19,725
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Exploring age-varying genetic effects in GWAS is 
important for various reasons. Firstly, it could help to bet-
ter characterise the extent to which genetic variants which 
have already been associated with traits in a cross-sectional 
GWAS also influence change in that phenotype over time. 
For example, the FTO gene has been consistently reported 
to be associated with BMI and adiposity related traits, and 
there is evidence to suggest that this association may be time 
dependent [18, 19]. More specifically, a longitudinal cohort 
study reports association of the FTO gene with BMI during 
childhood and up to 20 years of age, when this association 
starts to get weaker with increasing age [4]. Secondly, it 
could contribute to identifying novel genetic variants, which 
may be associated with traits only in specific time periods 
during the life course. For instance, the LEPR locus has been 
associated with BMI in infancy and it is not linked with adult 
BMI, suggesting that its effect is no longer present in adult-
hood [21, 22]. Other traits with age-varying genetic effects 
are: diastolic blood pressure (DBP), systolic blood pressure 
(SBP), mean arterial pressure (MAP) and pulse pressure 
(PP), where genetic variants located in the EHBP1L1 (DBP 
and MAP), CASZ1 (SBP and MAP), and GOSR2 (PP) loci 
had effects with opposite directions in the young versus old 
participants [8]; prostate-specific antigens (PSA) where 15 
novel genetic variants were identified after accounting for 
age-varying genetic effects [6]; age-related macular degen-
eration where 4 loci, 2 of which were novel, identified after 
accounting for age-varying genetic effects [7]. Exploring 
age-varying genetic effects could therefore contribute to 
identifying novel genetic variants associated with age of 
onset, development of traits over time, and disease progres-
sion. Thirdly, the increasing number of GWAS and the pub-
lic availability of their results has increased the popularity 
of two-sample MR studies, where the effect estimates of 
the genetic variants of exposure and outcome are extracted 
from different GWAS [11]. These allow the estimation of 
causal effects without requiring the exposure and outcome 
to be measured in the same participants. The causal effects 
estimated by MR are often interpreted as “lifetime causal 
effects of exposures on outcomes”. This interpretation has 
recently been challenged [23]. More specifically, when the 
association between genetic variants and exposure is time-
varying, then the estimated causal effects that do not take 
account of this are likely to be biased, particularly if this is 
interpreted as a lifetime causal effect [23]. Therefore, explor-
ing and accurately estimating age-varying genetic effects 
could help in better characterising causal relationships when 
the exposure of interest is time-varying.

Age-varying genetic effects could be explored in a GWAS 
in two different ways. The first approach would be to esti-
mate SNP by age interactions within each GWAS. This 
would be possible if either the study was longitudinal, or it 
included participants with a wide range of ages. However, 

interaction analysis within GWAS might not always be fea-
sible due to the large sample sizes required to have suffi-
cient statistical power to identify interaction effects and the 
large computational time required to run the analyses. The 
study-specific SNP by age interactions would then be meta-
analysed to obtain combined estimates [12]. This approach 
is feasible only in consortia where a pre-specified analysis 
plan requires estimation of interaction effects. Outside the 
scope of a consortium this approach would not be feasible, 
as GWAS rarely perform interaction analysis or report the 
full summary results of this analysis so they can be used in 
a meta-analysis. In this study we propose a second approach, 
meta-regression. Compared to meta-analysis of interaction 
effects, meta-regression will have smaller statistical power 
to identify interaction effects when median/mean ages across 
studies do not differ substantially [24]. Furthermore, as 
demonstrated in our simulations, meta-regression produces 
larger mean SEs compared to meta-analysis for the main 
genetic effect, when no age-varying genetic effect exist, 
therefore statistical power to identify main genetic effects 
is also smaller. Therefore, meta-regression still offers the 
opportunity of exploring age-varying genetic effects without 
the need of additional data collection, as it requires only 
summary level data for the effect of each SNP on the out-
come, the mean and standard deviation of age of each study. 
Given the large number of already published GWAS that 
include large sample sizes and the public availability of their 
summary data, meta-regression could be considered as a step 
towards investigation of age-varying genetic effects without 
the need for additional data collection.

Even though GWAS commonly include age-diverse sam-
ples, meta-regression is rarely used to explore the differences 
in SNP-phenotype associations due to age. We have identi-
fied only two studies that applied meta-regression to account 
for heterogeneity introduced due to age. A GWAS of bone 
mineral density (N = 30 studies with a total 66,628 partici-
pants) applied meta-regression by stratifying the participants 
in each study into subgroups based on age and adjusting for 
the median age of each subgroup [15]. Two loci (in ESR1 
and RANKL) demonstrated age-varying genetic effects, 
with stronger associations in older age groups. A GWAS of 
blood pressure traits (N = 9 studies and 55,796 participants) 
applied meta-regression and adjusted for median age of each 
contributing study; it identified 9 genetic variants with age-
varying effects. SNPs located in CASZ1, EHBP1L1, and 
GOSR2, demonstrated the largest age-dependent effects, 
with the effect alleles increasing blood pressure traits in the 
younger ages and decreasing them in the older [8].

It is important to note that the use of meta-regression 
is not limited to exploration of age-varying genetic effects. 
Meta-regression is beginning to be used to explore sources 
of heterogeneity in large scale genetic studies, such as to 
account for variation in phenotype assessment [25].GWAS 
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that include samples from diverse ancestry backgrounds 
are becoming more prevalent and meta-regression has also 
been used as an approach to explore differences in SNP-
phenotype association due to ethnicity/ancestry [25–27]. 
Therefore, meta-regression could be useful in estimating 
interactions between genetic variants and various risk fac-
tors such as ancestry and sex [25–28].

Meta-regression offers a feasible analytic tool to estimate 
age-varying genetic effects in the framework of GWAS. Sim-
ilar to many statistical methods, a clear research question 
and justification for applying meta-regression is necessary a 
priori. We suggest two uses of meta-regression in a GWAS; 
(i) to complement GWAS meta-analysis to explore age-vary-
ing genetic effects and/or to (ii) estimate age-varying genetic 
effects when these are hypothesised and part of the main 
aim of the GWAS. We suggest that application of meta-
regression should be considered in cases where moderate 
or high between-study heterogeneity ( I2 ≥ 25 ) is observed. 
Additionally, careful consideration must be given regarding 
the data needed. Meta-regression requires only summary 
level data for the effect of each SNP on the outcome within 
each study, in addition to the mean and standard deviation 
of age of participants in each study. As many GWAS on 
various traits and diseases have already been published and 
their summary level data are often publicly available, meta-
regression maximizes the value of already existing stud-
ies to explore age-varying genetic effects. However, often 
GWAS consortia provide summary level data of each SNP 
across studies, but not separately by study. For example, in 
our applied example we originally planned to use publicly 
available summary data from GWAS consortia but were 
unable to find any that provided summary data by study. 

Future GWAS should therefore aim to publish study specific 
summary results (including the mean and standard deviation 
of age) to enable meta-regression. Our simulation study sug-
gests that consideration should be given to the number of 
studies and the age-diversity between the studies included 
in the meta-regression. This is in line with simulation stud-
ies reporting that the statistical power to identify moderator 
effects in meta-regression depends on the number of trials, 
the spread of study means, sample sizes and residual hetero-
geneity [24, 29]. In Fig. 6, we provide guidance regarding 
the number of trials and age-diversity. When the number of 
studies included in the meta-regression is low ( ≤ 60 in our 
simulations) and the age-diversity between samples is low 
(study mean ages are similar), meta-regression has limited 
power to estimate age-varying genetic effects. Therefore, 
researchers will need to either include more studies of age-
diverse samples or estimate age-varying genetic effects 
within studies and meta-analyse these. The additional num-
ber of studies that needs to be included to reach adequate 
statistical power to identify main and age-varying genetic 
effects, can be calculated by performing sample size calcula-
tions. However, when the number of studies included in the 
meta-regression is high and the between-study age-diversity 
moderate to high, then meta-regression should be considered 
as the main analytical approach in GWAS. Lastly, our simu-
lations suggest the importance of carefully selecting whether 
the application of a linear or non-linear meta-regression is 
appropriate, as over-misspecification of the model could lead 
to below nominal CI coverage and under-specification could 
lead to biased estimates. Information about the effect of a 
SNP on a phenotype, in relation to age, can be obtained by 

Fig. 6   Recommendations for 
the application of meta-regres-
sion in estimating age-varying 
genetic effects in GWAS, 
based on the number of studies 
included and the age-diversity 
between studies
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smaller longitudinal studies, where this relationship can be 
investigated.

Our study has limitations that should be considered. Even 
though we explored a wide range of plausible scenarios in 
our simulations, we have inevitably not explored all possible 
real-world scenarios. For example, further work would be 
needed to investigate the applicability of our results in cases 
where the trait of interest is binary/categorical or in cases 
where the sample size of studies differs and this differen-
tiation is age related (e.g., smaller sample sizes in studies 
with older participants compared to studies with younger 
participants). Simulating larger number of studies and sam-
ple sizes would have been computationally intensive and 
would not provide any further insights, as we were already 
able to observe that power of meta-regression is influenced 
by the number of studies included. Additionally, we have 
only investigated the applicability of meta-regression in 
estimating the association between the genetic effects and 
quadratic function of age (non-linear age-varying genetic 
effects). Meta-regression could be easily extended to accom-
modate higher degree polynomials and splines. Moreover, 
we have not explored the impact of overlapping samples 
on our results. Overlapping participants between GWAS 
results in higher false positive rates and similarly will have 
an impact on meta-regression. Methods have been proposed 
to adjust for sample overlaps in a meta-analytic framework. 
For instance, in our empirical example each GWAS contrib-
uted summary level data in multiple time points, thus sample 
overlaps could not be avoided and to account for this overlap 
we used generalized weights to adjust standard errors [20]. 
Lastly, the impact of population stratification on our results 
has not been explored. Inadequate adjustment for population 
stratification will result in biased estimates of GWAS, which 
in turn will produce biased estimates in both meta-analysis 
and meta-regression. However, as it is common practice to 
adjust for population stratification in each study included in 
GWAS, we consider bias due to population stratification to 
be minimal.

Conclusions

A correctly specified meta-regression analysis can provide 
unbiased estimates of the main and age-varying genetic 
effects using summary level data, particularly when sum-
mary level data are available for a large number of studies 
covering a range of ages.
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