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Integrated Learning-based Framework for 
Autonomous Quadrotor UAV Landing on a 

Collaborative Moving UGV
Chang Wang1†, Jiaqing Wang2†, Changyun Wei⇤2, Kailei Qi2, Ze Ji3, Zhaowei Ma1 and Mingjin Xu4

Abstract—Autonomous unmanned aerial vehicle (UAV) landing
on a moving unmanned ground vehicle (UGV) remains a chal-
lenge as it is di�cult for the UAV to track the real-time state of the
UGV and adjust its landing policy accordingly. In this paper, we
propose a learning framework for a quadrotor UAV to land on a
moving UGV without knowing its motion dynamics. Specifically,
the learning framework consists of two main systems: a Landing
Vision System (LVS) using deep learning and a Landing Control
System (LCS) using deep reinforcement learning. The LVS
enables the UAV to recognize and localize the UGV in real-
time for estimating the relative position and velocity between
them. Besides, the location of the UGV is tracked in the field of
view of the UAV using consecutive images which alleviates the
problem of tracking failure. We propose an algorithm, named
Memory Consolidated TD3 (MCTD3), for generating optimal
policies to enable precise tracking and landing control of the
UAV. In addition, we propose an adaptive COACH (ACOACH)
algorithm that allows human intervention in the action space
of the UAV to speed up the training process. We demonstrate
the e↵ectiveness of the proposed method in both simulation and
real-world experiments.

Index Terms—UAV landing, autonomous landing, convolu-
tional neural networks, YOLO, deep reinforcement learning, bio-
inspired system.

I. Introduction

UNMANNED aerial vehicles (UAVs) and unmanned
ground vehicles (UGVs) have been widely used in a

variety of real-world applications, including agriculture [1],
logistics [2], reconnaissance [3], and search-and-rescue [4].
Coordination between UAVs and UGVs is often more practical
for solving complex, interdependent tasks than using them
individually. For instance, when a quadrotor UAV hovers at
a certain height, it can share a global view of the terrain with
a UGV for e�cient path planning. On the other hand, the
UGV can provide the UAV with a battery charging facility to
extend the flight time.
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Autonomous landing is essential for a UAV to collaborate
with a UGV [5], [6]. If reliable GPS coordinates of the UAV
and the landing destination were provided, the landing task
could be solved as a control problem. This can be achieved
through the use of fuzzy control [7], Model Predictive Control
(MPC) [8], PD (Proportional, Derivative) control [9] , PID
(Proportional, Integral, Derivative) control [10], and other
techniques. Unfortunately, these methods may fail in GPS-
denied environments, where the UAV’s or the destination’s
coordinates are inaccurate [11]. To tackle this issue, the UAV
can apply vision-based control methods to track and locate
the destination, resulting in the use of vision combined with
reinforcement learning to address the landing task [11]–[14].

In our previous work [5], [15], we integrated the Deep De-
terministic Policy Gradient (DDPG) [16] reinforcement learn-
ing algorithm with the traditional PID controller to achieve
autonomous tuning of PID parameters. However, the UAV
would occasionally lose track of the UGV in its field of view,
revealing the need to provide the UAV with reliable target
tracking and localization [17] along with landing control.
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Fig. 1. Tracking and landing process of our proposed autonomous landing
system.

In this paper, we propose an integrated learning framework
consisting of two systems: the onboard Landing Vision System
(LVS) for UGV detection and the Landing Control System
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(LCS) for UAV motion control, as illustrated in Fig. 1. The
main contributions are summarized as follows:
• The integrated learning framework enables reliable UAV

tracking of the UGV while learning the optimal landing
policy.

• We design a lightweight pipeline to achieve rapid detec-
tion and localization of the moving UGV, which can pro-
vide accurate relative positions and velocity estimations
between the UAV and UGV.

• We propose an e�cient deep reinforcement learning
algorithm MCTD3 for learning the landing policy, and
we propose an interactive learning algorithm ACOACH to
incorporate human experience for more e�cient learning.

The rest of the paper is organized as follows: Section II
presents the related preliminaries of deep reinforcement learn-
ing and the kinematic model of the landing task. We illustrate
our system framework in Section III. Our proposed LVS and
LCS are elaborately described in Section IV and V. Section VI
discusses the experimental results. Finally, we conclude the
paper in Section VII.

II. Preliminaries

A. Deep Reinforcement Learning and TD3

Deep Reinforcement Learning (DRL) [18] combines the
advantages of deep neural networks and reinforcement learn-
ing (RL) to learn control policies for high-dimensional or
continuous state spaces. The Q-value Q⇡ (st, at) is defined
as the expected cumulative future discounted rewards for an
action at taken at the time step t. The goal of RL is to find
the optimal policy that maximizes the expected return. In a
deterministic policy µ, the Q-value is defined by the Bellman
expectation condition:

Qµ (st, at) = E
⇥
rt + �Qµ (st+1, µ (st+1))

⇤
, (1)

where st+1 is the state at the time step t + 1 and ⇡ (at | st)
represents the policy that maps from the state space to the
action space. Neural networks are used to calculate the Q-
values for each state-action pair. A function approximator
is designed to minimize the error through the trained and
optimized parameter ✓⇤, as follows:

✓⇤ = arg min
✓
E
h
(�t � Q✓ (st, at))2

i
, (2)

where �t = rt + �maxa Q✓ (st+1, a) is defined as the Tem-
poral Di↵erence error (TD-errors), essentially the di↵erence
between the predicted and actual values of the reward.

Although Q-value-based approaches are useful in searching
for the optimal policy µ�, parameterized by �, a more e�cient
approach is to use the policy gradient method to maximize the
accumulated reward J

⇣
µ�
⌘
= Eµ�

⇥P
t R (st, at)

⇤
. The gradients

are used to update � and is calculated as [19].
Actor-critic methods combine both value-based and policy-

gradient methods [20]. When the agent interacts with the
environment at the time step t, the state st is observed, and
the agent receives an action command at from the policy
⇡ (at | st; ✓) accordingly.
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Fig. 2. Framework of TD3

Twin delayed deep deterministic policy gradient (TD3)
represents one of the most successful applications of the
actor-critic-based reinforcement learning paradigm, as shown
in Fig. 2. One of the known issues with value-based rein-
forcement learning methods is that the Q-function tends to
overestimate the Q-value, leading to suboptimal policies due to
function-approximation errors. TD3 addresses this problem by
constraining the overestimated Q-value by taking the minimum
value between a pair of critic networks Q✓i (s, a)i=1,2, where
✓i(i=1,2) are the parameters of the critic networks. Furthermore,
Gaussian noises is added to the actions generated from the
actor network to fully explore the environment. The Bellman
equation is utilized to calculate a target value y (r, s0). The
smaller item of the two outputs

⇣
Q✓01 ,Q✓02

⌘
from the target

critic networks is fed into the Bellman equation to avoid
overestimating the Q -value as:

y
�
r, s0
�
= r + �min

i=1,2
Q✓0i
⇣
s0, ⇡�

�
s0
�
+ "
⌘
. (3)

We then update the critic networks as:

✓i  argmin✓i N�1
X�

y � Q✓i (s, a)
�2 (4)

Meanwhile, the target actor network is not updated consecu-
tively to reduce the overestimation problem. In TD3, however,
the parameter � will be updated by the deterministic policy
gradient after certain training iterations, in the author’s case,
e.g., updated the target critic networks two times [21]. The
equation for the policy update is described as follows:

r�J(�) = N�1
X
raQ✓1 (s, a)

����
a=⇡�(s)

r�⇡�(s). (5)

Finally, a hyper-parameter ⌧(0 < ⌧ < 1) is introduced for the
soft update, which deals with reduce the problem of over-
fitting during the training. The target networks are updated as
follows:

✓0i  ⌧✓i + (1 � ⌧)✓0i
�0  ⌧� + (1 � ⌧)�0. (6)

B. Coordinate System
The Coordinate System used in our study consists of several

sub-systems, including the Pixel Coordinate System (PCS), the
Camera Coordinate System, the Rack Coordinate System, the
World Coordinate System (WCS), and the Target Coordinate
Systems (TCS), as shown in Fig. 3. These sub-systems are

Page 2 of 15IEEE Transactions on Vehicular Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 3

essential for understanding the position and orientation of the
UAV. In our design, the on-board camera is fixed to the UAV
Rack. Therefore, we combine the Camera Coordinate System
with Rack Coordinate System as Camera & Rack Coordinate
System (CCS). We also examined a quadrotor UAV with a
rack in the X-configuration. The rack provides upward forces
through four mini-motors installed perpendicular to the rack
and rotation in the OCZC negative direction. The pipline for
the UAV camera’s transformation of the PCS into the WCS is
shown Fig. 4.
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Fig. 3. Definition of the coordinate system and forces acting on the UAV.
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Fig. 4. Conversion process from the PCS to the WCS.

III. Framework
The problem of UAV landing can be represented as a

Markov Decision Process (MDP). When the UAV detects the
UGV, it can estimate their relative position and velocity, which
allows for the calculation of the state vector. We define the
MDP for the landing task as {S , A, P,R, �}. The current state
st leads to the next state st+1 once the UAV perceives the
current state st and executes the current action at, as depicted
in Figure 5.

1) state:
The state vector st at the time step t is defined as (�dxt ,
�dyt , �dzt , �vxt , �vyt , Dt) 2 S , where S represents a
six-dimensional continuous state space. (�dxt ,�dyt ,�dzt )
denotes the relative distances of the UAV to the UGV in
the WCS at the time step t, and (�vxt ,�vyt ) represents
the relative velocity between the UAV and the Landing
Platform (LP) in the x and y axes. Dt serves as a warning
variable indicating whether the UAV is approaching the
boundary of the LP.

2) action:
The action space A is defined as a three-dimensional
continuous space. The action a is represented as a =
(vx, vy, vz) 2 A, where vx, vy, and vz denote the reference
velocities sent to the UAV’s velocity controller along the
x, y, and z axes in the WCS.

3) policy:

Solving the MDP involves determining a policy ⇡✓ 2
⇧ : S ⇥ A ! [0, 1] within a finite time horizon T ,
where ⇡✓ is parameterized by ✓. The policy P represents
the conditional probability p (s0 | s, a). It is defined as
a mapping from the state-action space (S ⇥ A) to a
probability distribution over the next state space S ,
denoted as P : S ⇥ A! P(S ).

Landing
Vision
System

Landing
Control
System

Time step t

Environment

Environment

Image

State

ts

Action
ta

Time step 1t 

Fig. 5. The state transition for UAV autonomous landing.

4) reward function:
Formulating an e↵ective landing policy P necessitates
the creation of a well-defined reward function R.

The realization of each reward rt at discrete time steps
comprises three components: tracking rewards, rdist and rvelo,
and landing guidance reward, rland.
• Distance reward rdist: The design of rdist is to encourage

the agent to minimize the relative distance at each step.
The relative distance between the UAV and the target is
calculated as dt =

q
�d2

xt
+ �d2

yt
. The tracking process

is deemed successful if dt meets the distance constraint
din at the time step t. On the other hand, the tracking
process is considered failed if dt exceeds the limited
distance dlim. dout represents the maximum safe distance
for tracking. Fig. 6 illustrates the distance setup for item
rdist. Additionally, we record an approach step napproach to
encourage continuous tracking. napproach increments by 1
when dt is within the range of din and resets to 1 when the
limit is exceeded. napproach has a maximum of 5 steps to
prevent overflow of data. Moreover, an indicator variable
Dt is incorporated into the state space. Dt is set to �1 if
the distance between the UAV and the target is larger than
din. The indicator variable Dt acts as a warning signal,
alerting the UAV when it approaches the boundary of the
LP.

rdist =

8>>>>><
>>>>>:

(din � dt) · napproach, if dt  din

Dt, if din < dt  dout

Dt � dt, if dout < dt  dlim

(7)
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Fig. 6. Reward setup.

• Velocity reward rvelo: In the rvelo design, �vt =q
�v2

xt
+ �v2

yt
represents the UAV’s velocity relative to

the LP. We employ the velocity delimiter �vin to prevent
sudden acceleration and ensure stability. If the velocity
di↵erence �vt adheres to the �vin, then the tracking
process is deemed successful at the the time step t.
However, agent recives a penalty of ��vt when the
velocity di↵erence exceeds �vin.

rvelo =

8>><
>>:

(�vin � �vt) · napproach, if �vt  �vin

��vt, if �vin  �vt
(8)

• Landing guidance reward rland: The design of rland aims
to incentivize the agent to land successfully on the LP.
If the relative distance between UAV and UGV is within
the range of din in the termination steps, a positive reward
of 200 � dt is given; otherwise, a penalty of �200 given.
The agent receives more rewards if it lands closer to the
center of the LP.

rland =

8>><
>>:

200din � 200dt if �zt < h and dt  din

�200 else
(9)

As a result, the reward function is as follows:

rt = !1 · rdist + !2 · rvelo + !3 · rland, (10)

where !1, !2, and !3 are the weight coe�cients assigned to
each reward component.

IV. Landing Vision System

The Landing Vision System (LVS) aims to provide the
UAV with the capability to recognize, locate and track the
target UGV. Specifically, we consider the relative position and
velocity between the UAV and UGV to construct a state vector
that enables the UAV to learn the optimal landing policy.
YOLO5 is used for target detection. The coordinates of the
bounding box are then used to extract Dt, �dxt , and �dyt . The
UAV’s altitude �zt is determined using the Depth Estimator
(DE) module. Finally, the relative velocities, �vxt and �vyt , are
computed using a velocity estimation algorithm, as shown in
Fig. 7.

A. Depth Estimator

We develop the Depth Estimator (DE) using a Convolu-
tional Neural Network (CNN), which estimates the distance
between an UAV and a UGV. To reduce noises and increase
computational e�ciency, we first crop the images to obtain our
Region of Interest (ROI) before sending it to the vision system
pipeline. Cropping reduces the amount of data and improves
the computational e�ciency of our landing approach. The LVS
continually estimates the relative position and velocity of the
UGV with respect to the UAV during the autonomous landing
process, therefore we select bounding box of the UGV and
a ten-pixel region around it as the Region of Interest (ROI).
We feed this ROI into the DE pipeline. We construct a feature
extraction architecture in DE using two convolutional layers
and two subsampling layers, respectively. Specifically, the ten
channels in the first convolution layer are fed by the input
layer’s single channel, and each of the ten kernels (each with
a size of 5 ⇥ 5) represents a feature between two corresponding
channels. The ReLU [22] (Rectified Linear Unit) is used
to introduce non-linearity to the convolution layer. The last
fully-connected layer’s output provides the direct distance
estimation.

We pre-trained our YOLOv5 model using a dataset compris-
ing images of the Landing Platform (LP) taken at various al-
titudes in the simulation. In testing, we validated the accuracy
of the weights used in YOLOv5. We optimized the network
in DE training using SGD (Stochastic Gradient Descent) with
a momentum of 0.9 and a learning rate of 10�3. We used the
Huber loss function to update the DE network. We initialized
all layer weights from a normal Gaussian distribution with a
mean of zero and a standard deviation of 0.01, while the biases
were initialized to 0.1. Unlike previous YOLOv5 regression
training, we did not prepare any dataset or labels for the DE
training. Instead, we commenced DE training and the LCS
training simultaneously using Gazebo. During each training
step t, we fed a 640 ⇥ 480 image into the DE network, along
with real-time altitude information read from Gazebo to serve
as the label over the LVS training process. The training ended
after the DE’s prediction error was lower than 0.2 for 15 times
continuously.

B. Velocity estimator

To estimate the velocity of a moving object captured by a
camera, we propose a methodology that involves converting
pixel coordinates of the target in two frames to the WCS.
Suppose we have images of a moving object captured at time
steps t1 and t2, with pixel coordinates P1 and P2 from equation
(??). We derive corresponding camera coordinate positions PC1

and PC2 of the target in the PCS as:

PC1 = �zt1 K�1

2
666666664

u1
v1
1

3
777777775 , PC2 = �zt2 K�1

2
666666664

u2
v2
1

3
777777775 . (11)

We then transform PC1 and PC2 from the CCS to the WCS.
The distance between the UGV’s two positions in the WCS is
calculated as d = ||PW2�PW1||, where ||·|| denotes the Euclidean
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norm. Finally, we can estimate the velocity vt of the moving
platform in the WCS using the following equation:

vt =
d
�t
· 1
p

f 2 + 1
· S , (12)

where �t is the time interval between the two frames, S is the
scale of the image in pixels per meter, and f is the focal length
of the camera lens in millimeters. The velocity components
(vxt and vyt ) of the unmanned ground vehicle (UGV) can be
estimated using the Sine and Cosine Theorems.

V. Landing Control System
Deep reinforcement learning for robotic control presents

two challenges. First, if the agent was trapped in failed trials
and used those samples for training, it would prematurely
terminate the learning process [23]. Second, it is challenging

for the agent to discover an optimal policy in reward-sparse en-
vironments [24]. In other words, the agent needs to experience
su�cient successful trials and explore e�ciently to collect
high-quality training samples. To address these challenges, we
propose the Landing Control System (LCS) that consists of
the Memory Consolidated TD3 (MCTD3) and the Adaptive
COACH (ACOACH), as shown in Fig. 8.

A. Memory Consolidated TD3

The proposed Memory Consolidated TD3 (MCTD3) algo-
rithm has two parts: the Mandatory Sampling and the TD-error
Discriminator.

1) Mandatory Sampling: This approach draws inspiration
from the Partitioned Bu↵er Replay method [25] and the
Prioritized Experience Replay method [11].
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The MS method utilizes an additional replay bu↵er Bv,
which is specifically designed to record exceptional transitions.
After the completion of a landing trial, the terminal transition
is copied into Bv for five times. Besides, we use the Prioritized
Experience Replay (PER) method to draw samples from the
replay bu↵er B. PER samples according to the probabilities
based on the TD-errors from the critic network updates.
Compared to random sampling, PER can help the agent
learn more e↵ectively in an environment with sparse reward.
Subsequently, Nbatch samples are drawn from both bu↵ers to
update all critic networks. Actor networks are updated every
Npolicy iterations. Finally, the parameters of the critic networks
and the actor network are updated together.

2) TD-error Discriminator: It is used to advice the direc-
tion of the update process base on the work of Hasselt et
al. [26]. During training, taking an action at that results in
a positive change in the state-value function has the potential
to enhance the policy by maximizing the discounted future
reward. To encourage the RL agent to select significant transi-
tions with direct impacts on the policy, we adopt the following
approach:

If �t > 0 : increase t (⇡t (st, at)) (13)

where increaset(⇡(st, at)) is the increase in the probability of
selecting action at in state st.

In summary, the learning process of MCTD3 begins with
random initialization of the network weights, clearing both
bu↵ers B and Bv. Next, the agent selects an action with
exploration noise Nt and interacts with the environment, and
recives the resulting transitions. Subsequently, Nbatch samples
are drawn from bu↵ers B and Bv to update all networks based
on the TD errors. Finally, the parameters of the target critic
networks ✓iQ

0

(i=1,2) and the parameter of the target actor network
✓µ
0 are updated. The Memory Consolidated TD3 (MCTD3)

algorithm is summarized in Algorithm 1.

Algorithm 1 Memory Consolidated TD3

1: ✓Q0
i  ✓Q, ✓µ0  ✓µ; . Initialize target network with

random weights.
2: B ;, Bv  ;; . Initiate memory bu↵ers B and Bv.
3: for t = 1 to T do:
4: Select and execute at + Nt, Obtain st+1 with rt;
5: Store (st,at,rt,st+1) in B with maximal priority pi ;
6: if the terminal condition is satisfied then:
7: Store the termination transition (st,at,rt,st+1) in Bv

for NBv times ;
8: for i = 1 to Nupdate do:
9: Draw Nbatch

2 samples from B with priority pi and
another Nbatch

2 from Bv randomly;
10: if (�t > 0) then:
11: Update ✓iQ

0

(i=1,2) using equation (3), (4), (6);
12: Update ✓µ0 using equation (5), (6);
13: end if;
14: end for;
15: end if;
16: Update priority pi, start a new episode;
17: end for.

B. Adaptive COACH
The COACH (COrrective Advice Communicated by Hu-

mans) method [27] provides online feedback from human
during the RL process. In this framework, the signal Ae : S !
R represents the human feedback with respect to the state
space. By utilizing information from Ae, COACH computes
an adaptive learning rate ↵(st) to facilitate learning of expert
experiences by the agent. A higher learning rate allows for
larger corrections by the human supervisor, while a lower
learning rate enables finer adjustments. The adaptive learning
rate is computed as:

↵(st) = |Ae(st)| + bias (14)

where bias is the default value of the learning rate.
In this paper, we propose the Adaptive COACH (ACOACH)

method by introducing the Action Smoother to enhance the
performance of the COACH method. In traditional imitation
learning, sparse signals from expert demonstrations can hinder
the generalizability of policies [28]. Specifically, the RL agent
learns that performing actions in multiple dimensions simulta-
neously is more e↵ective than taking one-dimensional actions
at each time step. Therefore, we propose a regularization
strategy that smoothes the received actions as follows:

ãe  ⌘(at
e +
⇠

2
(at�1

e + at�2
e))

⌘ ⇠ �z
H
, ⇠ ⇠ N

⇣
µ,�2

⌘
,

(15)

where ⇠ is drawn from a Gaussian distribution and superim-
poses the previous actions with the take-o↵ height H of the
UAV, enabling the agent to e�ciently learn action combina-
tions in the later training stages.

Whenever ACOACH receives an action signal at
e provided

by the human expert at the time step t, it replaces the action at
generated by MCTD3 and executes the smoothed action ãt

e.
st

e and rt
e correspond to the states and rewards obtained from

the environment through expert instruction ãt
e, respectively.

ACOACH then utilizes these transitions to update the target
MCTD3 networks whenever the agent receives the current
reward rt

e, the current state se
t+1, and the previous state se

t based
on expert instructions. Algorithm 2 outlines the procedure of
ACOACH.

Algorithm 2 ACOACH

Input: ✓Q0
i , ✓µ0 ; . Network parameters from Algorithm 1.

Output: ✓Q0
i , ✓µ0 . New parameters for Algorithm 1.

1: while Algorithm 1 is running do:
2: Record current state se

t;
3: Take action at accoding to the current policy P(st).
4: at

e  gethumanCorrectiveAdvice()
5: if at

e != 0 then:
6: Get the smoothed action ãt

e using equation (15);
7: Take action ãt

e , obtain se
t+1 and re

t from the
environment;

8: Update ✓iQ
0

(i=1,2), ✓
µ0 using equation (6), (14).

9: end if;
10: end while.
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Fig. 9. Components and data stream in the simulation and real-world experiments.

VI. Experiments and Results

A. Experimental Settings

The experiments consisted of two parts, i.e. simulation
and real-world as shown in Fig. 9. The training of all the
controllers was conducted in the Gazebo simulation environ-
ment. MAVLink was used to connect the PX4 Autopilot flight
controller* computer. During our simulated experiments, we
utilized a modified Iris UAV equipped with a camera mounted
beneath it, perpendicular to the UAV frame. Importantly, the
connection between the UAV and the on-board camera re-
mained fixed for these experiments. Furthermore, we modified
the top plate of a Husky UGV† model to mount a detection
marker.

We used the Adam optimizer [29] for the actor network and
two critic networks during the simulated training phase. All
hidden layers in the neural networks used the Leaky Relu [30].
The actor-critic network architecture is presented in Table I.
Throughout the training and testing stages, we simulated high-

TABLE I
Settings Of Networks.

Input Network Dimensions Output Operator
st 6⇥ 150 FC1 Leaky Relu

Actor FC1 150⇥ 75 FC2 Leaky Relu
FC2 75⇥ 3 at tanh

st + at 9⇥ 200 FC1 Leaky Relu
Critics FC1 200⇥ 150 FC2 Leaky Relu

FC2 150⇥ 1 Q /

*https://px4.io/
†https://robots.ros.org/husky/

wind conditions for landing by adding continuous Gaussian
noise to the UAV maneuver commands. The supplementary
action noises were limited to a magnitude of 0.4 m/s and
lasted no more than 2 seconds. The training parameters are
presented in Table II. For our real-world experiments, we

TABLE II
Parameters description

Parameters Definition Value
T Training iterations 400
N Replay bu↵er size of B 1.6 ⇥ 105

Nv Replay bu↵er size of Bv 1.6 ⇥ 103

NBv Copies for termial transitions 5
Nupdate Update iterations 100
Nbatch Batch size 16
Npolicy Policy update delay 2

Nt Exploration noise 0.2
� Discount factor 5 ⇥ 10�3

↵ Learning rate of actor network 10�4

↵1 Learning rate of critic network 1 10�4

↵2 Learning rate of critic network 2 10�3

⌧ Learning rate of the soft update 5 ⇥ 10�3

transferred the algorithms and learned policies directly from
the simulation to the on-board firmware of our custom-built
S450 UAV platform.

B. Training in Simulation

At the start of the training, the UAV took o↵ to 3.5 m
above the UGV from the same side, and the UGV kept moving
forward. In the first ten training episodes, an operator guided
the UAV to land using ACOACH. After an episode ended,
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the positions of both the UGV and UAV were reset for the
next episode. Three factors were taken into account when
determining the trial termination condition. First, it is time-
consuming to prepare the UAV for re-takeo↵ once the PX4
activates the landing mode. Secondly, we aimed to prevent
the UAV from colliding with any parts of the UGV during
training for safety reasons. Finally, we assumed the UAV is
capable of landing successfully at a height of 20 cm above the
safe-landing zone of the LP by utilizing PX4’s landing mode.

The training process utilized a mini-batch size Nbatch of 32
with 10 iterations whenever the UAV landed, while a Gaussian
noise was added to the action values with a standard deviation
of 0.2 during the exploration. We trained three algorithms
(TD3, TD3+ACOACH, and LCS) under the same conditions in
two landing scenarios. Each algorithm was used for 10 trials,
with 400 episodes per trial. We averaged the accumulated
reward along with the success records obtained in the training
trials, and the learning curves are presented in Fig. 10 and
Fig. 11. In the training process of LCS and TD3+ACOACH,
an expert employs ACOACH (Algorithm 2) to deliver action
instructions at

e to the agent through a keyboard in the Gazebo
simulation environment for the initial ten training episodes.

(1) Training Scenario A: UGV movement along a straight
trajectory with an uniform speed.

Training trials were initially conducted with a consistent
UGV speed of 0.2 m/s under scenario A, as depicted in
Fig. 10(a). The learning curves of our proposed models LVS
and TD3+ACOACH, along with a TD3 baseline, are presented
in Fig. 10(b). Additionally, Fig. 10(c) demonstrates a signifi-
cant increase in the success rate curves of all three algorithms
between episodes 0 and 70, indicating the e↵ectiveness of our
training design in developing an e�cient landing approach.
Both the TD3+ACOACH algorithm and the LCS, which
utilizes the ACOACH, outperformed TD3. This suggests that
the ACOACH significantly enhances stability and convergence
speed in less complex scenarios. However, not much di↵erence
was observed among the three methods in Fig. 10(b) and 10(c).
We attribute this lack of distinction to the insu�cient di�culty
of the experimental settings. Therefore, further training was
conducted under Scenario B.

(2) Training Scenario B: UGV movement along a curved
trajectory with sudden accelerations. In order to further val-
idate the e↵ectiveness of the proposed landing method, we
conducted more challenging trainings under Training Scenario
B. A faster and more variable speed of the UGV can increase
the complexity of automated landing task, as depicted in
Fig. 11(a). We set the velocity of the UGV to vary randomly
between 0.2 m/s and 0.8 m/s every 5 seconds during the
training trials. Random sudden velocity changes ranging from
-0.2 m2/s to 0.2 m2/s were applied to the UGV’s motion every
5 seconds during the training trials.

We present the learning curves of our proposed models
LVS, TD3+ACOACH, and the baselines in Fig 11(b). It is
noteworthy that TD3 failed to achieve satisfactory performance
within 400 training episodes, as indicated by its success rate
climbing in Fig. 11(c). This poor performance can be attributed
to the replay bu↵er being overwhelmed with negative rewards,
which reduces the chances of updating the Critics and leads to

t0 tnV

(a) Training diagram of Scenario A in the Gazebo
simulator.

(b) Learning curve for accumulated reward.

(c) Learning curve for success rate.

Fig. 10. Comparison of averaged accumulated reward and averaged success
rate for three algorithms (TD3, TD3+ACOACH, LCS) in Scenario A.

a lower learning e�ciency. The ACOACH module increases
the probability of discovering the optimal landing policy
by exploring higher-rewarded state and action spaces. The
proposed LCS algorithm demonstrates better performance than
both TD3 and TD3+ACOACH. Additionally, LCS maintains a
higher reward than other agents starting from the 50th episode.
This can be attributed to the utilization of the MCTD3, which
allows the agent to refine its original update strategy and
improve learning e�ciency and convergence rate. Finally, our
results indicate that the learning curves of TD3+ACOACH
and LCS exhibit more stability and rapidity compared to TD3,

Page 8 of 15IEEE Transactions on Vehicular Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 9

t0

tn

(a) Training diagram of Scenario B in the Gazebo sim-
ulator.

(b) Learning curve for accumulated reward.

(c) Learning curve for success rate.

Fig. 11. Comparison of averaged accumulated reward and averaged success
rate for three algorithms (TD3, TD3+ACOACH, LCS) in Scenario B.

further highlighting the benefits of the ACOACH method.

C. Testing in Simulation

We evaluated the landing performance of our learned poli-
cies using three metrics: landing success rate, time cost, and
landing precision. To test the e↵ectiveness of our policies
under various UGV speeds, we performed experiments using
four constant speed values: vugv = 0 m/s (static), 0.2 m/s,
0.5 m/s, and 1 m/s. Since Training Scenario B incorporates
Training Scenario A, we implemented the landing strategies

trained for each controller in Training Scenario B. We repeated
the experiments for 100 trials for each of the three algorithms
(TD3, TD3+ACOACH, LCS) to assess their performance.

1) Success rate and time cost: The success rates and
average time costs are presented in Fig. 12. We averaged the
success rates and time costs over all testing trials, see Table III.

TABLE III
Averaged success rate and time cost in testing

Algorithm Success Rate Time
TD3 58.75% 6.741s

TD3+ACOACH 68.50% 7.198s
LCS 83.75% 7.489s

Based on our analysis of Fig. 12 and Table III, we can
conclude that LCS outperformed the other two algorithms.
In the static UGV scenario, LCS achieved an almost 100%
success landing rate, while TD3 had a significantly lower
success rate. As the UGV speed vugv increased, the success rate
of UAV landings gradually decreased for all three methods.
At UGV velocity of 0.5 m/s, LCS had a success rate of 77%,
TD3+ACOACH had a success rate of approximately 60%, and
TD3 had a success rate of 49%. When the UGV speed was
raised to 1 m/s, the success rate of LCS dropped to 62%. This
result supports the hypothesis that increasing UGV velocities
result in a more complicated landing task.

2) Landing precision: Under the vugv = 0.5 m/s condition,
we collected and compared the landing points of 100 trials
for each of the three algorithms. A safe and precise landing
requires proximity to the center of the UGV. We designated
75% of the 0.8 m/s ⇥ 0.6 m/s marker as the safe-landing zone,
depicted by the black rectangle in Fig. 13. The distribution
statistics of the landing points are presented in Table IV.

Fig. 13 displays the landing accuracy of the three algo-
rithms under the condition of vugv = 0.5 m/s. Each circle
corresponds to nearly 95.44% (2� criteria) of the landing
points generated by the corresponding algorithm, presum-
ing a normal distribution of the landing points. LCS and
TD3+ACOACH demonstrated significantly better performance
than TD3. Specifically, LCS and TD3+ACOACH were able to
identify superior landing policies that led to safe and precise
landings close to the center of the UGV, while TD3 learned
sub-optimal policies that resulted in potentially dangerous
landings near the edges of the nestling marker.

3) Tracking and Landing Trajectories: Fig. 14 illus-
trates the landing trajectories of the three algorithms (TD3,
TD3+ACOACH, LCS) under the condition of vugv = 0.5
m/s. Both successful and failed landings are shown in the
figure. The moving trajectories of the UGV are depicted by
red lines, while the final positions of the LP are represented
by black rectangles. The landing trajectories of the UAV are
denoted by blue lines. This visualization enables us to better
understand the e↵ectiveness of the policies learned by the
di↵erent methods.

Fig. 14(d) and Fig. 14(a) shows that the landing points
of TD3 were predominantly located near the edges of the
UGV, which can also be seen in Fig. 13. Additionally, the
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(a) vugv = 0 m/s(static) (b) vugv = 0.2 m/s

(c) vugv = 0.5 m/s (d) vugv = 1.0 m/s

Fig. 12. Testing results of landing success rates and cost time under di↵erent UGV speed conditions using three algorithms (TD3, TD3+ACOACH, LCS)
using policy trained from Scenario B.

TABLE IV
Statistics of the Landing Points

Algorithm x-axis average distance(cm) y-axis average distance(cm) Total average distance(cm) �(cm) Safe landing count
TD3 26.1 ± 29.3 15.8 ± 13.7 30.5 32.3 43

TD3+ACOACH 17.6 ± 19.8 17.6 ± 14.7 24.8 24.5 62
LCS 6.5 ± 12.1 8.2 ± 14.1 10.5 18.6 84

UAV took longer periods to hover and showed less elegant
diving behavior near the UGV during low-altitude approach,
as compared to other successful landing trajectories. However,
TD3+ACOACH demonstrated a more deliberate approach
before vertically diving towards the UGV, as displayed in
Fig. 14(e), while the trajectory of LCS appeared more coher-
ent, as seen in Fig. 14(f). To further demostrate the tracking
and landing e↵ect of the LCS, we recorded a representative
motion trajectory, as shown in Fig. 16. The less optimal
landing policies of TD3 may explain the lower landing success
rate as compared to TD3+ACOACH and LCS. Contrarily,
the UAV’s most common failure was its inability to locate
the UGV, where LCS produced the most reasonable landing
trajectory among the algorithms, as shown in Fig. 14(c).

We collected 10 successful tracking and landing trajectories
for each controller on the position and velocity of the UAV

relative to the Landing Platform (LP) in both the x and
y axes while examining landing accuracies, and shown in
Fig. 15. Each algorithm underwent 10 successful landing
trajectories, and the average distance and velocity errors in
the x and y for these trajectories are listed in Table V. The
LCS algorithm exhibited the highest level of performance
with a smoother operation, higher stability, and no significant
fluctuations compared to those of TD3 and TD3+ACOACH.
The landing trajectories generated by the LCS algorithm
exhibited the lowest average distance error of 27.3 cm and
the lowest average velocity error of 21.3 cm. Both Fig. 15(a)
and Fig. 15(b) demonstrates LCS’s superior performance in
preventing tracking loss, thereby improving motion stability
and safety throughout the landing process. This is a significant
improvement over our previous work [5] and the work of Zhao
et al. [32]. The results presented in the figures demonstrate
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TABLE V
Statistics of the Landing Trajectories

Algorithm Average distance error(cm) Average velocity error(cm)
x-axis y-axis � Total x-axis y-axis � Total

TD3 64.3 ± 48.6 38.1 ± 35.4 60.1 74.7 40.2 ± 58.6 25.8 ± 31.9 66.7 47.8
TD3+ACOACH 44.9 ± 28.5 27.8± 19.6 34.4 52.8 26.1 ± 35.3 20.3 ± 28.1 45.1 33.1

LCS 21.7 ± 16.8 16.5 ± 9.2 19.2 27.3 17.7 ± 23.9 11.8 ± 17.4 29.6 21.27

Fig. 13. Distribution of the landing points on the LP.

each algorithm’s ability to track the UGV’s movement over
time.

As a comparison, the TD3 and TD3+ACOACH methods
displayed poor tracking abilities in keeping up with the motion
trend of the UGV, which could lead to speed up more to catch
the UGV in landing (see Fig. 15(c) and 15(d)). This may also
be one of the reasons for inaccurate landing under the control
of these two algorithms.

D. Field Test
To evaluate the performance of our Landing Vision System

(LVS) and Landing Control System (LCS) in real-world en-
vironments, we applied the optimal landing policies learned
by the LCS to the real world. The quadrotor UAV S450,
equipped with a Horizon Robotics Developer Kit X3‡ (RDK
X3) onboard computer and PX4 Autopilot flight controller was
used for the tests. A USB camera was mounted perpendicular
to the frame toward the ground. Similarly to the simulated
training, the UAV’s connection to the on-board camera re-
mained constant.

In the field test, the UGV was permitted to move at random
speeds, with a maximum of 0.5 m/s. We mounted a LP of 0.8
m ⇥ 0.6 m on the back plate of the UGV. Although the AI
acceleration method in RDK X3 was utilized, we still reduced
the LVS’s real-time detection frequency to reserve su�cient
computational resources for the LCS-controlled UAV. The
decision to lower the detection frequency of LVS was made
to ensure adequate computational resources were available in
real-time for the LCS controller. We conducted 5 landing trails

‡https://developer.horizon.ai

in outdoor environments, and one of the landing results from
a third person view is given in Fig. 17.

We highlighted some of the key waypoints of the UAV
and UGV. The successful landing trajectory was similar to
the trajectory in simulations. We observe that first, the LVS
was able to identify the designated ground target using the
YOLOv5 (see Fig. 18(b)).As the UGV was identified by the
LCS and moved forward, the UAV could catch up with it
at t = 5s, demonstrating its ability of tracking the UGV
during landing. We then observed that at t = 8s, as the target
UGV drive forward and the UAV lost track, the UAV quickly
flew toward where the target had disappeared, as shown in
Fig. 18(c). Furthermore, Fig. 18(d) demonstrates that at t =
12s, the UAV successfully regained tracking and continues
the landing process. Furthermore, we reached an 80% success
rate in the conducted experiments. The learned strategies were
successfully implemented in real-world environments without
requiring any parameter tuning, which verifies the stability of
our method.

Furthermore, we reached an 80% success rate in the con-
ducted experiments. The learned strategies were successfully
implemented in real-world environments without requiring any
parameter tuning, which verifies the stability of our method.

Before testing our landing approach, we evaluated the
accuracy of our Depth Estimator (DE) network by comparing
the predicted altitude with recorded barometer data. The results
from both systems were comparable, as shown in Fig. 18.
This demonstrated that the LVS was able to capture accurate
information about the system state to be used to perform the
autonomous landing task.

E. Discussion
Although the UAV can learn satisfying landing policies

using the proposed method, there are still several issues
worth discussing arising from the simulation and real-world
experiments.

Tracking the unmanned ground vehicle (UGV) by the
unmanned aerial vehicle (UAV) can be problematic even when
the UGV moves in a constant low-speed, up to 1 m/s, and
follows a fixed direction. In some instances, the UAV may
lose track of the UGV even when it was about 3 m above
the ground and it was assumed that the UGV was moving
in a fixed direction. The detection was relatively stable when
the UAV was at a distance from the UGV. However, when the
UAV was getting closer, its field of view (FOV) would change
quickly due to its sudden movement, making it di�cult to
locate the UGV again. Moreover, at such a close range, there
was a risk that the UAV could not detect the marker at all,
rendering it blind about its relative positioning to the UGV.
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(a) A failure (TD3) (b) A failure (TD3+ACOACH) (c) A failure (LCS)

(d) A success (TD3) (e) A success (TD3+ACOACH) (f) A success (LCS)

Fig. 14. Trajectories of successful and failed landing on a moving UGV (vugv = 0.5 m/s) using three algorithms (TD3, TD3+ACOACH, LCS)

(a) Averaged position of the UAV with respect to the landing platform
in the x-axes.

(b) Averaged position of the UAV with respect to the landing platform
in the y-axes.

(c) Averaged velocity of the UAV with respect to the landing platform
in the x-axes.

(d) Averaged velocity of the UAV with respect to the landing platform
in the y-axes.

Fig. 15. Averaged partial state of 10 successful landing episodes for three algorithms in simulated testing phase under vugv = 0.5 m/s.
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Fig. 16. Tracking and landing trajectories of the LCS-controlled UAV in the
simulation, (vugv = 0.5 m/s)
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Fig. 17. Illustration of the landing trajectory using LVS and LCS in the field
test with changing speed with a maximum velocity of 0.5 m/s.

Fig. 18. The altitude information from the barometer was compared to a
predetermined altitude for landing on the UGV, and to the height profile
predicted by the DE algorithm.

In our training and testing, the UAV has learned to follow
the UGV. Specifically, the UAV will accelerate towards the
direction the UGV headed after leaving the UAV camera
view. Two solutions could make tracking the UGV more
achievable and consistent. First, one could use a wide-angle
camera instead of an ordinary camera to enable the detection
of the marker with higher precision. Second, the state of
the UGV could be predicted, making use of the Extended
Kalman filter [33]. By doing so, the UAV would track the UGV
proactively, allowing it to move in a more consistent pattern,
leading to more e↵ective policy learning, and more competent
policy use. Furthermore, this improved method should enable
the UAV to learn more versatile landing skills to match
the faster-moving UGV with more complicated movement
trajectories.

In this paper, the state space was three-dimensional, con-
sidering only the 3D relative position between the UAV and
the UGV. It would be more informative to include the relative
heading direction of the UGV from the perspective of the UAV.
If communication was allowed between the UAV and the UGV,
not only would the heading direction be easily available, but
also its speed for constructing the system state representation.
Such information would be helpful for tracking the UGV in
the FOV of the UAV. Besides, the altitude of the UAV could be
considered for inclined quadrotor landing as discussed in [34].

The reward function was also essential for shaping the
landing behavior of the UAV. In equation (7), a negative
reward was given when the UAV approach the edge of the
UGV in its FOV, which encouraged the UAV to keep tracking
the UGV. If the tracking capability could be improved as
discussed above, we would revise this reward because a good
landing policy did not necessarily require sight of the UGV at
every time step.

Due to the consideration of convenience and safety reasons,
a training or testing episode in simulation was simply ended
when the UAV reached 0.2 m vertically above the UGV.
But the UAV was allowed to land on the UGV in the real-
world experiment. Although the UAV demonstrated good
performance in simulation, it happened occasionally that the
UAV was likely to collide with the UGV at the end of the
landing task in real-world. As the UAV did not learn how
to land in the last 0.2 m, the UAV had to generalize the
learned policy to account for this situation. However, it was
essentially a blind landing strategy similar to using human
intuition without seeing the state of the environment. This
problem should be carefully considered from the perspective
of sim-to-real transfer in reinforcement learning [35]. Specifi-
cally, the training experience can be enriched in simulation
by taking into account the problems encountered in real-
world. Continual and fast online learning methods can also be
considered for adapting to unforeseen situations in real-world
environments.

VII. Conclusion

In this paper, we have proposed a novel approach for
autonomous UAV landing on a moving UGV. A vision system
has been designed to detect the target marker and extract
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relevant information to estimate the relative position and
velocity between the UAV and the UGV. The Landing Control
System has been introduced to e�ciently learn the optimal
landing policy with human guidance. Our proposed algorithms
has exhibited better performance in landing accuracy, time
cost, and landing precision compared to benchmark deep
reinforcement learning algorithms in simulation. Furthermore,
the learned strategies were successfully implemented into real-
world environments without requiring any parameter tuning.
In future work, we aim to enhance the detection and tracking
capabilities of the vision system to address the occasional
problems of losing sight of the UGV. Additionally, we intend
to design more curriculum-based experiments with increasing
complexity to address the challenge of transferring the learned
strategies from simulation to real-world environments.
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